Exemplo n.º 1
0
void TR::ValidateNodeRefCountWithinBlock::validate(TR::TreeTop *firstTreeTop,
                                                      TR::TreeTop *exitTreeTop)
   {
   _nodeChecklist.empty();
   for (TR::TreeTop *tt = firstTreeTop; tt != exitTreeTop->getNextTreeTop();
        tt = tt->getNextTreeTop())
      {
      TR::Node *node = tt->getNode();
      node->setLocalIndex(node->getReferenceCount());
      validateRefCountPass1(node);
      }

   /**
    * We start again from the start of the block, and check the localIndex to
    * make sure it is 0.
    *
    * NOTE: Walking the tree backwards causes huge stack usage in validateRefCountPass2.
    */
   _nodeChecklist.empty();
   for (TR::TreeTop *tt = firstTreeTop; tt != exitTreeTop->getNextTreeTop();
        tt = tt->getNextTreeTop())
      {
      validateRefCountPass2(tt->getNode());
      }
   }
Exemplo n.º 2
0
int32_t
OMR::Simplifier::perform()
   {

   vcount_t visitCount = comp()->incOrResetVisitCount();
   TR::TreeTop * tt;
   for (tt = comp()->getStartTree(); tt; tt = tt->getNextTreeTop())
      tt->getNode()->initializeFutureUseCounts(visitCount);

   comp()->incVisitCount();
   for (tt = comp()->getStartTree(); tt; tt = tt->getNextTreeTop())
      cleanupFlags(tt->getNode());

   visitCount = comp()->incVisitCount();
   tt = comp()->getStartTree();
   while (tt)
      tt = simplifyExtendedBlock(tt);

   comp()->getFlowGraph()->removeUnreachableBlocks();

   if (manager()->numPassesCompleted() == 0)
      manager()->incNumPassesCompleted();

   return 1;
   }
Exemplo n.º 3
0
void TR::ILValidator::checkSoundness(TR::TreeTop *start, TR::TreeTop *stop)
   {
   soundnessRule(start, start != NULL, "Start tree must exist");
   soundnessRule(stop, !stop || stop->getNode() != NULL, "Stop tree must have a node");

   TR::NodeChecklist treetopNodes(comp()), ancestorNodes(comp()), visitedNodes(comp());

   // Can't use iterators here, because those presuppose the IL is sound.  Walk trees the old-fashioned way.
   //
   for (TR::TreeTop *currentTree = start; currentTree != stop; currentTree = currentTree->getNextTreeTop())
      {
      soundnessRule(currentTree, currentTree->getNode() != NULL, "Tree must have a node");
      soundnessRule(currentTree, !treetopNodes.contains(currentTree->getNode()), "Treetop node n%dn encountered twice", currentTree->getNode()->getGlobalIndex());

      treetopNodes.add(currentTree->getNode());

      TR::TreeTop *next = currentTree->getNextTreeTop();
      if (next)
         {
         soundnessRule(currentTree, next->getNode() != NULL, "Tree after n%dn must have a node", currentTree->getNode()->getGlobalIndex());
         soundnessRule(currentTree, next->getPrevTreeTop() == currentTree, "Doubly-linked treetop list must be consistent: n%dn->n%dn<-n%dn", currentTree->getNode()->getGlobalIndex(), next->getNode()->getGlobalIndex(), next->getPrevTreeTop()->getNode()->getGlobalIndex());
         }
      else
         {
         soundnessRule(currentTree, stop == NULL, "Reached the end of the trees after n%dn without encountering the stop tree n%dn", currentTree->getNode()->getGlobalIndex(), stop? stop->getNode()->getGlobalIndex() : 0);
         checkNodeSoundness(currentTree, currentTree->getNode(), ancestorNodes, visitedNodes);
         }
      }
   }
Exemplo n.º 4
0
static bool safeToMoveGuard(TR::Block *destination, TR::TreeTop *guardCandidate,
   TR::TreeTop *branchDest, TR_BitVector &privArgSymRefs)
   {
   static char *disablePrivArgMovement = feGetEnv("TR_DisableRuntimeGuardPrivArgMovement");
   TR::TreeTop *start = destination ? destination->getExit() : TR::comp()->getStartTree();
   if (guardCandidate->getNode()->isHCRGuard())
      {
      for (TR::TreeTop *tt = start; tt && tt != guardCandidate; tt = tt->getNextTreeTop())
         {
         if (tt->getNode()->canGCandReturn())
            return false;
         }
      }
   else if (guardCandidate->getNode()->isOSRGuard())
      {
      for (TR::TreeTop *tt = start; tt && tt != guardCandidate; tt = tt->getNextTreeTop())
         {
         if (TR::comp()->isPotentialOSRPoint(tt->getNode(), NULL, true))
            return false;
         }
      }
   else
      {
      privArgSymRefs.empty();
      for (TR::TreeTop *tt = start; tt && tt != guardCandidate; tt = tt->getNextTreeTop())
         {
         // It's safe to move the guard if there are only priv arg stores and live monitor stores
         // ahead of the guard
         if (tt->getNode()->getOpCodeValue() != TR::BBStart
             && tt->getNode()->getOpCodeValue() != TR::BBEnd
             && !tt->getNode()->chkIsPrivatizedInlinerArg()
             && !(tt->getNode()->getOpCode().hasSymbolReference() && tt->getNode()->getSymbol()->holdsMonitoredObject())
             && !tt->getNode()->isNopableInlineGuard())
                return false;

         if (tt->getNode()->chkIsPrivatizedInlinerArg() && (disablePrivArgMovement ||
             // If the priv arg is not for this guard
             (guardCandidate->getNode()->getInlinedSiteIndex() > -1 &&
             // if priv arg store does not have the same inlined site index as the guard's caller, that means it is not a priv arg for this guard,
             // then we cannot move the guard and its priv args up across other calls' priv args
             tt->getNode()->getInlinedSiteIndex() != TR::comp()->getInlinedCallSite(guardCandidate->getNode()->getInlinedSiteIndex())._byteCodeInfo.getCallerIndex())))
            return false;

         if (tt->getNode()->chkIsPrivatizedInlinerArg())
            privArgSymRefs.set(tt->getNode()->getSymbolReference()->getReferenceNumber());

         if (tt->getNode()->isNopableInlineGuard()
             && tt->getNode()->getBranchDestination() != branchDest)
            return false;
         }
      }
   return true;
   }
Exemplo n.º 5
0
void TR_ReachingDefinitions::initializeGenAndKillSetInfo()
   {
   // For each block in the CFG build the gen and kill set for this analysis.
   // Go in treetop order, which guarantees that we see the correct (i.e. first)
   // evaluation point for each node.
   //
   TR::Block *block;
   int32_t   blockNum = 0;
   bool      seenException = false;
   TR_BitVector defsKilled(getNumberOfBits(), trMemory()->currentStackRegion());

   comp()->incVisitCount();
   for (TR::TreeTop *treeTop = comp()->getStartTree(); treeTop; treeTop = treeTop->getNextTreeTop())
      {
      TR::Node *node = treeTop->getNode();

      if (node->getOpCodeValue() == TR::BBStart)
         {
         block = node->getBlock();
         blockNum = block->getNumber();
         seenException  = false;
         if (traceRD())
            traceMsg(comp(), "\nNow generating gen and kill information for block_%d\n", blockNum);
         continue;
         }

#if DEBUG
      if (node->getOpCodeValue() == TR::BBEnd && traceRD())
         {
         traceMsg(comp(), "  Block %d:\n", blockNum);
         traceMsg(comp(), "     Gen set ");
         if (_regularGenSetInfo[blockNum])
            _regularGenSetInfo[blockNum]->print(comp());
         else
            traceMsg(comp(), "{}");
         traceMsg(comp(), "\n     Kill set ");
         if (_regularKillSetInfo[blockNum])
            _regularKillSetInfo[blockNum]->print(comp());
         else
            traceMsg(comp(), "{}");
         traceMsg(comp(), "\n     Exception Gen set ");
         if (_exceptionGenSetInfo[blockNum])
            _exceptionGenSetInfo[blockNum]->print(comp());
         else
            traceMsg(comp(), "{}");
         traceMsg(comp(), "\n     Exception Kill set ");
         if (_exceptionKillSetInfo[blockNum])
            _exceptionKillSetInfo[blockNum]->print(comp());
         else
            traceMsg(comp(), "{}");
         continue;
         }
#endif

      initializeGenAndKillSetInfoForNode(node, defsKilled, seenException, blockNum, NULL);

      if (!seenException && treeHasChecks(treeTop))
         seenException = true;
      }
   }
Exemplo n.º 6
0
// Add an async check into a block - MUST be at block entry
//
void TR_AsyncCheckInsertion::insertAsyncCheck(TR::Block *block, TR::Compilation *comp, const char *counterPrefix)
   {
   TR::TreeTop *lastTree = block->getLastRealTreeTop();
   TR::TreeTop *asyncTree =
      TR::TreeTop::create(comp,
         TR::Node::createWithSymRef(lastTree->getNode(), TR::asynccheck, 0,
            comp->getSymRefTab()->findOrCreateAsyncCheckSymbolRef(comp->getMethodSymbol())));


   if (lastTree->getNode()->getOpCode().isReturn())
      {
      TR::TreeTop *prevTree = lastTree->getPrevTreeTop();
      prevTree->join(asyncTree);
      asyncTree->join(lastTree);
      }
   else
      {
      TR::TreeTop *nextTree = block->getEntry()->getNextTreeTop();
      block->getEntry()->join(asyncTree);
      asyncTree->join(nextTree);
      }

   const char * const name = TR::DebugCounter::debugCounterName(comp,
      "asynccheck.insert/%s/(%s)/%s/block_%d",
      counterPrefix,
      comp->signature(),
      comp->getHotnessName(),
      block->getNumber());
   TR::DebugCounter::prependDebugCounter(comp, name, asyncTree->getNextTreeTop());
   }
Exemplo n.º 7
0
TR_DominatorVerifier::TR_DominatorVerifier(TR_Dominators &findDominators)
   : _compilation(findDominators.comp())
   {
   TR::StackMemoryRegion stackMemoryRegion(*trMemory());

   _dominators = &findDominators;

   TR::CFG *cfg = comp()->getFlowGraph();
   _visitCount = comp()->incVisitCount();
   _numBlocks = cfg->getNumberOfNodes()+1;

   if (debug("traceVER"))
      {
      dumpOptDetails(comp(), "Printing out the TreeTops from DominatorVerifier\n");

      TR::TreeTop *currentTree = comp()->getStartTree();

      while (!(currentTree == NULL))
         {
         comp()->getDebug()->print(comp()->getOutFile(), currentTree);
         currentTree = currentTree->getNextTreeTop();
         }

      dumpOptDetails(comp(), "Printing out the CFG from DominatorVerifier\n");
      if (cfg != NULL)
         comp()->getDebug()->print(comp()->getOutFile(), cfg);
      }

   TR_DominatorsChk expensiveAlgorithm(comp());
   expensiveAlgorithmCorrect = isExpensiveAlgorithmCorrect(expensiveAlgorithm);

   if (expensiveAlgorithmCorrect)
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the expensive algorithm are correct\n");
      }
   else
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the expensive algorithm are NOT correct\n");
      TR_ASSERT(0, "Dominators computed by the expensive algorithm are NOT correct\n");
      }


   bothImplementationsConsistent = areBothImplementationsConsistent(expensiveAlgorithm, findDominators);

   if (bothImplementationsConsistent)
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the two implementations are consistent\n");
      }
   else
      {
      if (debug("traceVER"))
         dumpOptDetails(comp(), "Dominators computed by the two implementations are NOT consistent\n");
      TR_ASSERT(0, "Dominators computed by the two implementations are NOT consistent\n");
      }
   }
Exemplo n.º 8
0
void TR::SoundnessRule::validate(TR::ResolvedMethodSymbol *methodSymbol)
   {
   TR::TreeTop *start = methodSymbol->getFirstTreeTop();
   TR::TreeTop *stop = methodSymbol->getLastTreeTop();
   checkSoundnessCondition(start, start != NULL, "Start tree must exist");
   checkSoundnessCondition(stop, !stop || stop->getNode() != NULL,
                           "Stop tree must have a node");

   TR::NodeChecklist treetopNodes(comp()), ancestorNodes(comp()), visitedNodes(comp());

   /* NOTE: Can't use iterators here, because iterators presuppose that the IL is sound. */
   for (TR::TreeTop *currentTree = start; currentTree != stop;
        currentTree = currentTree->getNextTreeTop())
      {
      checkSoundnessCondition(currentTree, currentTree->getNode() != NULL,
                              "Tree must have a node");
      checkSoundnessCondition(currentTree, !treetopNodes.contains(currentTree->getNode()),
                              "Treetop node n%dn encountered twice",
                              currentTree->getNode()->getGlobalIndex());

      treetopNodes.add(currentTree->getNode());

      TR::TreeTop *next = currentTree->getNextTreeTop();
      if (next)
         {
         checkSoundnessCondition(currentTree, next->getNode() != NULL,
                                 "Tree after n%dn must have a node",
                                 currentTree->getNode()->getGlobalIndex());
         checkSoundnessCondition(currentTree, next->getPrevTreeTop() == currentTree,
                                 "Doubly-linked treetop list must be consistent: n%dn->n%dn<-n%dn",
                                 currentTree->getNode()->getGlobalIndex(),
                                 next->getNode()->getGlobalIndex(),
                                 next->getPrevTreeTop()->getNode()->getGlobalIndex());
         }
      else
         {
         checkSoundnessCondition(currentTree, stop == NULL,
                                 "Reached the end of the trees after n%dn without encountering the stop tree n%dn",
                                 currentTree->getNode()->getGlobalIndex(),
                                 stop? stop->getNode()->getGlobalIndex() : 0);
         checkNodeSoundness(currentTree, currentTree->getNode(),
                            ancestorNodes, visitedNodes);
         }
      }
   }
Exemplo n.º 9
0
TR::TreeTop *
OMR::TreeTop::getExtendedBlockExitTreeTop()
   {
   TR_ASSERT(self()->getNode()->getOpCodeValue() == TR::BBStart, "getExitTreeTop, is only valid for a bbStart");
   TR::Block * b;
   TR::TreeTop * exitTT = self()->getNode()->getBlock()->getExit(), * nextTT;
   while ((nextTT = exitTT->getNextTreeTop()) && (b = nextTT->getNode()->getBlock(), b->isExtensionOfPreviousBlock()))
      exitTT = b->getExit();
   return exitTT;
   }
Exemplo n.º 10
0
inline TR::TreeTop *
OMR::TreeTop::getNextRealTreeTop()
   {
   TR::TreeTop *treeTop;
   for (treeTop = self()->getNextTreeTop();
        treeTop && treeTop->getNode() && treeTop->getNode()->getOpCode().isExceptionRangeFence();
        treeTop = treeTop->getNextTreeTop())
      {}
   return treeTop;
   }
Exemplo n.º 11
0
void
OMR::CodeGenPhase::performCleanUpFlagsPhase(TR::CodeGenerator * cg, TR::CodeGenPhase * phase)
   {
   TR::TreeTop * tt;
   vcount_t visitCount = cg->comp()->incVisitCount();

   for (tt = cg->comp()->getStartTree(); tt; tt = tt->getNextTreeTop())
      {
      cg->cleanupFlags(tt->getNode());
      }
   }
Exemplo n.º 12
0
int32_t
TR::RegDepCopyRemoval::perform()
   {
   if (!cg()->supportsPassThroughCopyToNewVirtualRegister())
      return 0;

   discardAllNodeChoices();
   TR::TreeTop *tt;
   for (tt = comp()->getStartTree(); tt != NULL; tt = tt->getNextTreeTop())
      {
      TR::Node *node = tt->getNode();
      switch (node->getOpCodeValue())
         {
         case TR::BBStart:
            if (!node->getBlock()->isExtensionOfPreviousBlock())
               {
               if (trace())
                  traceMsg(comp(), "clearing remembered node choices at start of extended block at block_%d\n", node->getBlock()->getNumber());
               discardAllNodeChoices();
               }
            if (node->getNumChildren() > 0)
               processRegDeps(node->getFirstChild(), tt);
            break;
         case TR::BBEnd:
            if (node->getNumChildren() > 0)
               processRegDeps(node->getFirstChild(), tt);
            break;
         default:
            if (node->getOpCode().isSwitch())
               {
               TR::Node *defaultDest = node->getSecondChild();
               if (defaultDest->getNumChildren() > 0)
                  processRegDeps(defaultDest->getFirstChild(), tt);
               }
            else if (node->getOpCode().isBranch())
               {
               int nChildren = node->getNumChildren();
               // only the last child may be GlRegDeps
               for (int i = 0; i < nChildren - 1; i++)
                  TR_ASSERT(node->getChild(i)->getOpCodeValue() != TR::GlRegDeps, "GlRegDeps for branch is not the last child\n");
               if (nChildren > 0)
                  {
                  TR::Node *lastChild = node->getChild(nChildren - 1);
                  if (lastChild->getOpCodeValue() == TR::GlRegDeps)
                     processRegDeps(lastChild, tt);
                  }
               }
            break;
         }
      }
   return 1; // a bit arbitrary...
   }
Exemplo n.º 13
0
static TR::TreeTop *findNextLegalTreeTop(TR::Compilation *comp, TR::Block *block)
   {
   vcount_t startVisitCount = comp->getStartTree()->getNode()->getVisitCount();
   TR::TreeTop * tt = NULL;
   for (tt = comp->getStartTree(); tt; tt = tt->getNextTreeTop())
      {
      if (tt->getNode()->getVisitCount() < startVisitCount)
         break;
      if (tt->getNode()->getOpCodeValue() == TR::BBStart)
         tt = tt->getNode()->getBlock()->getExit();
      }
   return tt;
   }
Exemplo n.º 14
0
static bool blockHasCalls(TR::Block *block, TR::Compilation *comp)
   {
   intptrj_t visitCount = comp->incVisitCount();

   TR::TreeTop *currentTree = block->getEntry();
   TR::TreeTop *exitTree = block->getExit();
   bool hasCalls = false;

   while (!hasCalls && currentTree != exitTree)
      {
      hasCalls = examineNode(currentTree->getNode(), visitCount);
      currentTree = currentTree->getNextTreeTop();
      }

   return hasCalls;
   }
Exemplo n.º 15
0
inline TR::Block *
OMR::TreeTop::getEnclosingBlock( bool forward)
   {
   TR::TreeTop * tt = self();
   if (forward)
      while (tt->getNode()->getOpCodeValue() != TR::BBEnd)
         {
         tt = tt->getNextTreeTop();
         //TR_ASSERT(tt && tt->getNode(), "either tt or node on a tt null here, we will segfault");
         }
   else
      while (tt->getNode()->getOpCodeValue() != TR::BBStart)
         {
         tt = tt->getPrevTreeTop();
         //TR_ASSERT(tt && tt->getNode(), "either tt or node on a tt null here, we will segfault");
         }
   return tt->getNode()->getBlock();
   }
Exemplo n.º 16
0
int32_t
OMR::Simplifier::performOnBlock(TR::Block * block)
   {
   if (block->getEntry())
      {
      TR::TreeTop *extendedExitTree = block->getEntry()->getExtendedBlockExitTreeTop();
      vcount_t visitCount = comp()->incOrResetVisitCount();
      for (TR::TreeTop * tt = block->getEntry(); tt; tt = tt->getNextTreeTop())
         {
         tt->getNode()->initializeFutureUseCounts(visitCount);
         if (tt == extendedExitTree)
            break;
         }

      comp()->incVisitCount();
      simplifyExtendedBlock(block->getEntry());
      }
   return 0;
   }
Exemplo n.º 17
0
void
OMR::TreeTop::removeDeadTrees(TR::Compilation * comp, TR::TreeTop* first, TR::TreeTop* last)
   {
   for (TR::TreeTop* cur = first; cur != last; cur = cur->getNextTreeTop())
      {
      int numChildren = cur->getNode()->getNumChildren();
      for (int child = numChildren-1; child>0; --child)
         {
         TR::Node * node = cur->getNode()->getChild(child);
         cur->insertAfter(TR::TreeTop::create(comp, TR::Node::create(TR::treetop, 1, node)));
         node->decReferenceCount();
         }
      if (numChildren != 0)
         {
         TR::Node * node = cur->getNode()->getChild(0);
         cur->setNode(TR::Node::create(TR::treetop, 1, node));
         node->decReferenceCount();
         }
      }
   }
Exemplo n.º 18
0
void
TR_ExpressionsSimplification::invalidateCandidates()
   {
   _visitCount = comp()->incVisitCount();

   if (trace())
      {
      traceMsg(comp(), "Checking which candidates may be invalidated\n");

      ListIterator<TR::TreeTop> treeTops(_candidateTTs);
      for (TR::TreeTop *treeTop = treeTops.getFirst(); treeTop; treeTop = treeTops.getNext())
         {
         traceMsg(comp(), "   Candidate treetop: %p node: %p\n", treeTop, treeTop->getNode());
         }
      }

   TR_ScratchList<TR::Block> blocksInLoop(trMemory());
   _currentRegion->getBlocks(&blocksInLoop);
   ListIterator<TR::Block> blocks(&blocksInLoop);

   for (TR::Block *currentBlock = blocks.getFirst(); currentBlock; currentBlock  = blocks.getNext())
      {
      TR::TreeTop *tt = currentBlock->getEntry();
      TR::TreeTop *exitTreeTop = currentBlock->getExit();
      while (tt != exitTreeTop)
         {
         TR::Node *currentNode = tt->getNode();

         if (trace())
            traceMsg(comp(), "Looking at treeTop [%p]\n", currentNode);

         removeCandidate(currentNode, tt);

         tt = tt->getNextTreeTop();
         }
      }
   removeUnsupportedCandidates();
   }
Exemplo n.º 19
0
//---------------------------- collecting ref info at the beginning -----------------------------------------
void TR_LocalLiveRangeReduction::collectInfo(TR::TreeTop *entryTree,TR::TreeTop *exitTree)
   {

   TR::TreeTop *currentTree = entryTree;
   TR_TreeRefInfo *treeRefInfo;
   int32_t i = 0;
   int32_t maxRefCount = 0;
   vcount_t visitCount = comp()->getVisitCount();

   while (!(currentTree == exitTree))
      {
      treeRefInfo = new (trStackMemory()) TR_TreeRefInfo(currentTree, trMemory());
      collectRefInfo(treeRefInfo, currentTree->getNode(),visitCount,&maxRefCount);
      _treesRefInfoArray[i++] = treeRefInfo;
      initPotentialDeps(treeRefInfo);
      treeRefInfo->resetSyms();
      populatePotentialDeps(treeRefInfo,treeRefInfo->getTreeTop()->getNode());
      currentTree = currentTree->getNextTreeTop();
      }

   comp()->setVisitCount(visitCount+maxRefCount);

   }
Exemplo n.º 20
0
bool TR_LocalLiveRangeReduction::moveTreeBefore(TR_TreeRefInfo *treeToMove,TR_TreeRefInfo *anchor,int32_t passNumber)
   {
   TR::TreeTop *treeToMoveTT = treeToMove->getTreeTop();
   TR::TreeTop *anchorTT = anchor->getTreeTop();
   if (treeToMoveTT->getNextRealTreeTop() == anchorTT)
      {
      addDepPair(treeToMove, anchor);
      return false;
      }

   if (!performTransformation(comp(), "%sPass %d: moving tree [%p] before Tree %p\n", OPT_DETAILS, passNumber, treeToMoveTT->getNode(),anchorTT->getNode()))
      return false;

   //   printf("Moving [%p] before Tree %p\n",  treeToMoveTT->getNode(),anchorTT->getNode());


   //changing location in block
   TR::TreeTop *origPrevTree = treeToMoveTT->getPrevTreeTop();
   TR::TreeTop *origNextTree = treeToMoveTT->getNextTreeTop();
   origPrevTree->setNextTreeTop(origNextTree);
   origNextTree->setPrevTreeTop(origPrevTree);
   TR::TreeTop *prevTree = anchorTT->getPrevTreeTop();
   anchorTT->setPrevTreeTop(treeToMoveTT);
   treeToMoveTT->setNextTreeTop(anchorTT);
   treeToMoveTT->setPrevTreeTop(prevTree);
   prevTree->setNextTreeTop(treeToMoveTT);

   //UPDATE REFINFO
   //find locations of treeTops in TreeTopsRefInfo array
   //startIndex points to the currentTree that has moved
   //endIndex points to the treeTop after which we moved the tree (nextTree)

   int32_t startIndex = getIndexInArray(treeToMove);
   int32_t endIndex = getIndexInArray(anchor)-1;
   int32_t i=0;
   for ( i = startIndex+1; i<= endIndex ; i++)
      {
      TR_TreeRefInfo *currentTreeRefInfo = _treesRefInfoArray[i];
      List<TR::Node> *firstList = currentTreeRefInfo->getFirstRefNodesList();
      List<TR::Node> *midList = currentTreeRefInfo->getMidRefNodesList();
      List<TR::Node> *lastList = currentTreeRefInfo->getLastRefNodesList();
      List<TR::Node> *M_firstList = treeToMove->getFirstRefNodesList();
      List<TR::Node> *M_midList = treeToMove->getMidRefNodesList();
      List<TR::Node> *M_lastList = treeToMove->getLastRefNodesList();

      if (trace())
    	 {
    	 traceMsg(comp(),"Before move:\n");
    	 printRefInfo(treeToMove);
    	 printRefInfo(currentTreeRefInfo);
    	 }

      updateRefInfo(treeToMove->getTreeTop()->getNode(), currentTreeRefInfo, treeToMove , false);
      treeToMove->resetSyms();
      currentTreeRefInfo->resetSyms();
      populatePotentialDeps(currentTreeRefInfo,currentTreeRefInfo->getTreeTop()->getNode());
      populatePotentialDeps(treeToMove,treeToMove->getTreeTop()->getNode());

      if (trace())
    	 {
    	 traceMsg(comp(),"After move:\n");
    	 printRefInfo(treeToMove);
    	 printRefInfo(currentTreeRefInfo);
    	 traceMsg(comp(),"------------------------\n");
    	 }
      }

   TR_TreeRefInfo *temp = _treesRefInfoArray[startIndex];
   for (i = startIndex; i< endIndex ; i++)
      {
      _treesRefInfoArray[i] = _treesRefInfoArray[i+1];
      }

   _treesRefInfoArray[endIndex]=temp;

#if defined(DEBUG) || defined(PROD_WITH_ASSUMES)
   if (!(comp()->getOption(TR_EnableParanoidOptCheck) || debug("paranoidOptCheck")))
      return true;

   //verifier
   {
   TR::StackMemoryRegion stackMemoryRegion(*trMemory());

   vcount_t visitCount = comp()->getVisitCount();
   int32_t maxRefCount = 0;
   TR::TreeTop *tt;
   TR_TreeRefInfo **treesRefInfoArrayTemp = (TR_TreeRefInfo**)trMemory()->allocateStackMemory(_numTreeTops*sizeof(TR_TreeRefInfo*));
   memset(treesRefInfoArrayTemp, 0, _numTreeTops*sizeof(TR_TreeRefInfo*));
   TR_TreeRefInfo *treeRefInfoTemp;


   //collect info
   for ( int32_t i  = 0; i<_numTreeTops-1; i++)
      {
      tt =_treesRefInfoArray[i]->getTreeTop();
      treeRefInfoTemp = new (trStackMemory()) TR_TreeRefInfo(tt, trMemory());
      collectRefInfo(treeRefInfoTemp, tt->getNode(),visitCount,&maxRefCount);
      treesRefInfoArrayTemp[i] = treeRefInfoTemp;
      }

   comp()->setVisitCount(visitCount+maxRefCount);

   for ( int32_t i  = 0; i<_numTreeTops-1; i++)
      {
      if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getFirstRefNodesList(),_treesRefInfoArray[i]->getFirstRefNodesList()))
    	 {
    	 printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]);
    	 TR_ASSERT(0,"fail to verify firstRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode());
    	 }

      if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getMidRefNodesList(),_treesRefInfoArray[i]->getMidRefNodesList()))
    	 {
    	 printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]);
    	 TR_ASSERT(0,"fail to verify midRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode());
    	 }

      if (!verifyRefInfo(treesRefInfoArrayTemp[i]->getLastRefNodesList(),_treesRefInfoArray[i]->getLastRefNodesList()))
    	 {
    	 printOnVerifyError(_treesRefInfoArray[i],treesRefInfoArrayTemp[i]);
    	 TR_ASSERT(0,"fail to verify lastRefNodesList for %p\n",_treesRefInfoArray[i]->getTreeTop()->getNode());
    	 }


       }
   } // scope of the stack memory region

#endif
   return true;
   }
Exemplo n.º 21
0
TR_BitVector *
addVeryRefinedCallAliasSets(TR::ResolvedMethodSymbol * methodSymbol, TR_BitVector * aliases, List<void> * methodsPeeked)
   {
   TR::Compilation *comp = TR::comp();

   void * methodId = methodSymbol->getResolvedMethod()->getPersistentIdentifier();
   if (methodsPeeked->find(methodId))
      {
      // This can't be allocated into the alias region as it must be accessed across optimizations
      TR_BitVector *heapAliases = new (comp->trHeapMemory()) TR_BitVector(comp->getSymRefCount(), comp->trMemory(), heapAlloc, growable);
      *heapAliases |= *aliases;
      return heapAliases;
      }

   // stop if the peek is getting very deep
   //
   if (methodsPeeked->getSize() >= PEEK_THRESHOLD)
      return 0;

   methodsPeeked->add(methodId);

   dumpOptDetails(comp, "O^O REFINING ALIASES: Peeking into the IL to refine aliases \n");

   if (!methodSymbol->getResolvedMethod()->genMethodILForPeeking(methodSymbol, comp, true))
      return 0;

   TR::SymbolReferenceTable * symRefTab = comp->getSymRefTab();
   for (TR::TreeTop * tt = methodSymbol->getFirstTreeTop(); tt; tt = tt->getNextTreeTop())
      {
	   TR::Node *node = tt->getNode();
      if (node->getOpCode().isResolveCheck())
         return 0;

      if ((node->getOpCodeValue() == TR::treetop) ||
          (node->getOpCodeValue() == TR::compressedRefs) ||
          node->getOpCode().isCheck())
         node = node->getFirstChild();

      if (node->getOpCode().isStore())
         {
         TR::SymbolReference * symRefInCallee = node->getSymbolReference(), * symRefInCaller;
         TR::Symbol * symInCallee = symRefInCallee->getSymbol();
         TR::DataType type = symInCallee->getDataType();
         if (symInCallee->isShadow())
            {
            if (symInCallee->isArrayShadowSymbol())
               symRefInCaller = symRefTab->getSymRef(symRefTab->getArrayShadowIndex(type));

            else if (symInCallee->isArrayletShadowSymbol())
               symRefInCaller = symRefTab->getSymRef(symRefTab->getArrayletShadowIndex(type));

            else
               symRefInCaller = symRefTab->findShadowSymbol(symRefInCallee->getOwningMethod(comp), symRefInCallee->getCPIndex(), type);

            if (symRefInCaller)
               {
               if (symRefInCaller->reallySharesSymbol(comp))
                  symRefInCaller->setSharedShadowAliases(aliases, symRefTab);

               aliases->set(symRefInCaller->getReferenceNumber());
               }

            }
         else if (symInCallee->isStatic())
            {
            symRefInCaller = symRefTab->findStaticSymbol(symRefInCallee->getOwningMethod(comp), symRefInCallee->getCPIndex(), type);
            if (symRefInCaller)
               {
               if (symRefInCaller->reallySharesSymbol(comp))
                  symRefInCaller->setSharedStaticAliases(aliases, symRefTab);
               else
                  aliases->set(symRefInCaller->getReferenceNumber());
               }
            }
         }
      else if (node->getOpCode().isCall())
         {
         if (node->getOpCode().isCallIndirect())
            return 0;
         TR::ResolvedMethodSymbol * calleeSymbol = node->getSymbol()->getResolvedMethodSymbol();
         if (!calleeSymbol)
            return 0;
         TR_ResolvedMethod * calleeMethod = calleeSymbol->getResolvedMethod();
         if (!calleeMethod->isCompilable(comp->trMemory()) || calleeMethod->isJNINative())
            return 0;

         if (!addVeryRefinedCallAliasSets(calleeSymbol, aliases, methodsPeeked))
            return 0;
         }
      else if (node->getOpCodeValue() == TR::monent)
         return 0;
      }

   // This can't be allocated into the alias region as it must be accessed across optimizations
   TR_BitVector *heapAliases = new (comp->trHeapMemory()) TR_BitVector(comp->getSymRefCount(), comp->trMemory(), heapAlloc, growable);
   *heapAliases |= *aliases;
   return heapAliases;
   }
Exemplo n.º 22
0
int32_t TR_CatchBlockRemover::perform()
   {
   TR::CFG *cfg = comp()->getFlowGraph();
   if (cfg == NULL)
      {
      if (trace())
         traceMsg(comp(), "Can't do Catch Block Removal, no CFG\n");
      return 0;
      }

   if (trace())
      traceMsg(comp(), "Starting Catch Block Removal\n");

   bool thereMayBeRemovableCatchBlocks = false;

   {
   TR::StackMemoryRegion stackMemoryRegion(*trMemory());

   TR::Block *block;
   ListIterator<TR::CFGEdge> edgeIterator;

   // Go through all blocks that have exception successors and see if any of them
   // are not reached. Mark each of these edges with a visit count so they can
   // be identified later.
   //
   vcount_t visitCount = comp()->incOrResetVisitCount();

   TR::CFGNode *cfgNode;
   for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext())
      {
      if (cfgNode->getExceptionSuccessors().empty())
         continue;

      block = toBlock(cfgNode);
      uint32_t reachedExceptions = 0;
      TR::TreeTop *treeTop;
      for (treeTop = block->getEntry(); treeTop != block->getExit(); treeTop = treeTop->getNextTreeTop())
         {
         reachedExceptions |= treeTop->getNode()->exceptionsRaised();

         if (treeTop->getNode()->getOpCodeValue() == TR::monexitfence) // for live monitor metadata
            reachedExceptions |= TR::Block::CanCatchMonitorExit;
         }

      if (reachedExceptions & TR::Block::CanCatchUserThrows)
         continue;

      for (auto edge = block->getExceptionSuccessors().begin(); edge != block->getExceptionSuccessors().end();)
         {
         TR::CFGEdge * current = *(edge++);
         TR::Block *catchBlock = toBlock(current->getTo());
         if (catchBlock->isOSRCodeBlock() || catchBlock->isOSRCatchBlock()) continue;
         if (!reachedExceptions &&
             performTransformation(comp(), "%sRemove redundant exception edge from block_%d at [%p] to catch block_%d at [%p]\n", optDetailString(), block->getNumber(), block, catchBlock->getNumber(), catchBlock))
            {
            cfg->removeEdge(block, catchBlock);
            thereMayBeRemovableCatchBlocks = true;
            }
         else
            {
            if (!catchBlock->canCatchExceptions(reachedExceptions))
               {
               current->setVisitCount(visitCount);
               thereMayBeRemovableCatchBlocks = true;
               }
            }
         }
      }

   bool edgesRemoved = false;

   // Now look to see if there are any catch blocks for which all exception
   // predecessors have the visit count set. If so, the block is unreachable and
   // can be removed.
   // If only some of the exception predecessors are marked, these edges are
   // left in place to identify the try/catch structure properly.
   //
   while (thereMayBeRemovableCatchBlocks)
      {
      thereMayBeRemovableCatchBlocks = false;
      for (cfgNode = cfg->getFirstNode(); cfgNode; cfgNode = cfgNode->getNext())
         {
         if (cfgNode->getExceptionPredecessors().empty())
            continue;
         auto edgeIt = cfgNode->getExceptionPredecessors().begin();
         for (; edgeIt != cfgNode->getExceptionPredecessors().end(); ++edgeIt)
            {
            if ((*edgeIt)->getVisitCount() != visitCount)
               break;
            }

         if (edgeIt == cfgNode->getExceptionPredecessors().end() && performTransformation(comp(), "%sRemove redundant catch block_%d at [%p]\n", optDetailString(), cfgNode->getNumber(), cfgNode))
            {
            while (!cfgNode->getExceptionPredecessors().empty())
               {
               cfg->removeEdge(cfgNode->getExceptionPredecessors().front());
               }
            edgesRemoved = true;
            thereMayBeRemovableCatchBlocks = true;
            }
         }
      }


   // Any transformations invalidate use/def and value number information
   //
   if (edgesRemoved)
      {
      optimizer()->setUseDefInfo(NULL);
      optimizer()->setValueNumberInfo(NULL);
      requestOpt(OMR::treeSimplification, true);
      }

   } // scope of the stack memory region

   if (trace())
      traceMsg(comp(), "\nEnding Catch Block Removal\n");

   return 1; // actual cost
   }
Exemplo n.º 23
0
void TR::DeadTreesElimination::prePerformOnBlocks()
   {
   _cannotBeEliminated = false;
   _delayedRegStores = false;

   _targetTrees.deleteAll();

   // Walk through all the blocks to remove trivial dead trees of the form
   // treetop
   //   => node
   // The problem with these trees is in the scenario where the earlier use
   // of 'node' is also dead.  However, our analysis won't find that because
   // the reference count is > 1.
   vcount_t visitCount = comp()->incOrResetVisitCount();
   for (TR::TreeTop *tt = comp()->getStartTree();
        tt != 0;
        tt = tt->getNextTreeTop())
      {
      bool removed = false;

      TR::Node *node = tt->getNode();
      if (node->getOpCodeValue() == TR::treetop &&
          node->getFirstChild()->getVisitCount() == visitCount &&
          performTransformation(comp(), "%sRemove trivial dead tree: %p\n", optDetailString(), node))
         {
         TR::TransformUtil::removeTree(comp(), tt);
         removed = true;
         }
      else
         {
         if (node->getOpCode().isCheck() &&
             node->getFirstChild()->getOpCode().isCall() &&
             node->getFirstChild()->getReferenceCount() == 1 &&
             node->getFirstChild()->getSymbolReference()->getSymbol()->isResolvedMethod() &&
             node->getFirstChild()->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree() &&
             performTransformation(comp(), "%sRemove dead check of side-effect free call: %p\n", optDetailString(), node))
            {
            TR::TransformUtil::removeTree(comp(), tt);
            removed = true;
            }
         }

      if (removed
          && tt->getNextTreeTop()->getNode()->getOpCodeValue() == TR::Goto
          && tt->getPrevTreeTop()->getNode()->getOpCodeValue() == TR::BBStart
          && !tt->getPrevTreeTop()->getNode()->getBlock()->isExtensionOfPreviousBlock())
         {
         requestOpt(OMR::redundantGotoElimination, tt->getEnclosingBlock());
         }

      if (node->getVisitCount() >= visitCount)
         continue;
      TR::TransformUtil::recursivelySetNodeVisitCount(tt->getNode(), visitCount);
      }

   // If the last use of an iRegLoad has been removed, then remove the node from
   // the BBStart and remove the corresponding dependency node from each of the block's
   // predecessors.
   //
   while (1)
      {
      bool glRegDepRemoved = false;
      for (TR::Block * b = comp()->getStartBlock(); b; b = b->getNextBlock())
         {
         TR::TreeTop * startTT = b->getEntry();
         TR::Node * startNode = startTT->getNode();
         if (startNode->getNumChildren() > 0 && !debug("disableEliminationOfGlRegDeps"))
            {
            TR::Node * glRegDeps = startNode->getFirstChild();
            TR_ASSERT(glRegDeps->getOpCodeValue() == TR::GlRegDeps, "expected TR::GlRegDeps");
            for (int32_t i = glRegDeps->getNumChildren() - 1; i >= 0; --i)
               {
               TR::Node * dep = glRegDeps->getChild(i);
               if (dep->getReferenceCount() == 1 &&
                   (!dep->getOpCode().isFloatingPoint() ||
                    cg()->getSupportsJavaFloatSemantics()) &&
                   performTransformation(comp(), "%sRemove GlRegDep : %p\n", optDetailString(), glRegDeps->getChild(i)))

                  {
                  glRegDeps->removeChild(i);
                  glRegDepRemoved = true;
                  TR_GlobalRegisterNumber registerNum = dep->getGlobalRegisterNumber();
                  for (auto e = b->getPredecessors().begin(); e != b->getPredecessors().end(); ++e)
                     {
                     TR::Block * pred = toBlock((*e)->getFrom());
                     if (pred == comp()->getFlowGraph()->getStart())
                        continue;

                     TR::Node * parent = pred->getLastRealTreeTop()->getNode();
                     if ( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren())
                        {
                        for (int32_t j = parent->getCaseIndexUpperBound() - 1; j > 0; --j)
                           {
                           TR::Node * caseNode = parent->getChild(j);
                           TR_ASSERT(caseNode->getOpCode().isCase() || caseNode->getOpCodeValue() == TR::branch,
                                  "having problems navigating a switch");
                           if (caseNode->getBranchDestination() == startTT &&
                               caseNode->getNumChildren() > 0 &&
                               0) // can't do this now that all glRegDeps are hung off the default branch
                              removeGlRegDep(caseNode, registerNum, pred, this);
                           }
                        }
                     else if (!parent->getOpCode().isReturn() &&
                              parent->getOpCodeValue() != TR::igoto &&
                              !( parent->getOpCode().isJumpWithMultipleTargets() && parent->getOpCode().hasBranchChildren()) &&
                              !(parent->getOpCodeValue()==TR::treetop &&
                              parent->getFirstChild()->getOpCode().isCall() &&
                              parent->getFirstChild()->getOpCode().isIndirect()))

                        {
                        if (pred->getNextBlock() == b)
                           parent = pred->getExit()->getNode();
                        removeGlRegDep(parent, registerNum, pred, this);
                        }
                     }
                  }
               }

            if (glRegDeps->getNumChildren() == 0)
               startNode->removeChild(0);
            }
         }

      if (!glRegDepRemoved)
         break;
      }
   }
Exemplo n.º 24
0
/**
 * A runtime guard block may have monitor stores and privarg stores along with the guard
 * it self. This method will rearrange these stores and split the block, managing any
 * uncommoning necessary for eventual block order.
 *
 * The provided block will become the privarg block, containing any privarg stores and additonal
 * temps for uncommoning. It must be evaluated first. The returned block will contain monitor
 * stores and the guard. If no split is required, the provided block will be returned.
 *
 * @param comp Compilation object
 * @param block Block to manipulate
 * @param cfg Current CFG
 * @return The block containing the guard.
 */
static TR::Block* splitRuntimeGuardBlock(TR::Compilation *comp, TR::Block* block, TR::CFG *cfg)
   {
   TR::NodeChecklist checklist(comp);
   TR::TreeTop *start = block->getFirstRealTreeTop();
   TR::TreeTop *guard = block->getLastRealTreeTop();
   TR::TreeTop *firstPrivArg = NULL;
   TR::TreeTop *firstMonitor = NULL;

   // Manage the unexpected case that monitors and priv args are reversed
   bool privThenMonitor = false;

   TR_ASSERT(isMergeableGuard(guard->getNode()), "last node must be guard %p", guard->getNode());

   // Search for privarg and monitor stores
   // Only commoned nodes under the guard are required to be anchored, due to the guard being
   // evaluted before the monitor stores later on
   bool anchoredTemps = false;
   for (TR::TreeTop *tt = start; tt && tt->getNode()->getOpCodeValue() != TR::BBEnd; tt = tt->getNextTreeTop())
      {
      TR::Node * node = tt->getNode();

      if (node->getOpCode().hasSymbolReference() && node->getSymbol()->holdsMonitoredObject())
         firstMonitor = firstMonitor == NULL ? tt : firstMonitor;
      else if (node->chkIsPrivatizedInlinerArg())
         {
         if (firstPrivArg == NULL)
            {
            firstPrivArg = tt;
            privThenMonitor = (firstMonitor == NULL);
            }
         }
      else if (isMergeableGuard(node))
         anchoredTemps |= anchorCommonNodes(comp, node, start, checklist);
      else
         TR_ASSERT(0, "Node other than monitor or privarg store %p before runtime guard", node);
      }

   // If there are monitors then privargs, they must be swapped around, such that all privargs are
   // evaluated first
   if (firstPrivArg && firstMonitor && !privThenMonitor)
      {
      TR::TreeTop *monitorEnd = firstPrivArg->getPrevTreeTop();
      firstMonitor->getPrevTreeTop()->join(firstPrivArg);
      guard->getPrevTreeTop()->join(firstMonitor);
      monitorEnd->join(guard);
      }

   // If there were temps created or privargs in the block, perform a split
   TR::TreeTop *split = NULL;
   if (firstPrivArg)
      split = firstMonitor ? firstMonitor : guard;
   else if (anchoredTemps)
      split = start;

   if (split)
      return block->split(split, cfg, true /* fixupCommoning */, false /* copyExceptionSuccessors */);
   return block;
   }
Exemplo n.º 25
0
TR_LocalAnalysisInfo::TR_LocalAnalysisInfo(TR::Compilation *c, bool t)
   : _compilation(c), _trace(t), _trMemory(c->trMemory())
   {
   _numNodes = -1;

#if 0  // somehow stops PRE from happening
   // We are going to increment visit count for every tree so can reach max
   // for big methods quickly. Perhaps can improve containsCall() in the future.
   comp()->resetVisitCounts(0);
#endif
   if (comp()->getVisitCount() > HIGH_VISIT_COUNT)
      {
      _compilation->resetVisitCounts(1);
      dumpOptDetails(comp(), "\nResetting visit counts for this method before LocalAnalysisInfo\n");
      }

   TR::CFG *cfg = comp()->getFlowGraph();
   _numBlocks = cfg->getNextNodeNumber();
   TR_ASSERT(_numBlocks > 0, "Local analysis, node numbers not assigned");

   // Allocate information on the stack. It is the responsibility of the user
   // of this class to determine the life of the information by using jitStackMark
   // and jitStackRelease.
   //
   //_blocksInfo = (TR::Block **) trMemory()->allocateStackMemory(_numBlocks*sizeof(TR::Block *));
   //memset(_blocksInfo, 0, _numBlocks*sizeof(TR::Block *));

   TR::TreeTop *currentTree = comp()->getStartTree();

   // Only do this if not done before; typically this would be done in the
   // first call to this method through LocalTransparency and would NOT
   // need to be re-done by LocalAnticipatability.
   //
   if (_numNodes < 0)
      {
      _optimizer = comp()->getOptimizer();

      int32_t numBuckets;
      int32_t numNodes = comp()->getNodeCount();
      if (numNodes < 10)
         numBuckets = 1;
      else if (numNodes < 100)
         numBuckets = 7;
      else if (numNodes < 500)
         numBuckets = 31;
      else if (numNodes < 3000)
         numBuckets = 127;
      else if (numNodes < 6000)
         numBuckets = 511;
      else
         numBuckets = 1023;

      // Allocate hash table for matching expressions
      //
      HashTable hashTable(numBuckets, comp());
      _hashTable = &hashTable;

      // Null checks are handled differently as the criterion for
      // commoning a null check is different than that used for
      // other nodes; for a null check, the null check reference is
      // important (and not the actual indirect access itself)
      //
      _numNullChecks = 0;
      while (currentTree)
         {
         if (currentTree->getNode()->getOpCodeValue() == TR::NULLCHK)
         //////if (currentTree->getNode()->getOpCode().isNullCheck())
            _numNullChecks++;

         currentTree = currentTree->getNextTreeTop();
         }

      if (_numNullChecks == 0)
         _nullCheckNodesAsArray = NULL;
      else
         {
         _nullCheckNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNullChecks*sizeof(TR::Node*));
         memset(_nullCheckNodesAsArray, 0, _numNullChecks*sizeof(TR::Node*));
         }

      currentTree = comp()->getStartTree();
      int32_t symRefCount = comp()->getSymRefCount();
      _checkSymbolReferences = new (trStackMemory()) TR_BitVector(symRefCount, trMemory(), stackAlloc);

      _numNodes = 1;
      _numNullChecks = 0;

      // This loop counts all the nodes that are going to take part in PRE.
      // This is a computation intensive loop as we check if the node that
      // is syntactically equivalent to a given node has been seen before
      // and if so we use the local index of the original node (that
      // is syntactically equivalent to the given node). Could be improved
      // in complexity with value numbering at some stage.
      //
      _visitCount = comp()->incVisitCount();
      while (currentTree)
         {
         TR::Node *firstNodeInTree = currentTree->getNode();
         TR::ILOpCode *opCode = &firstNodeInTree->getOpCode();

         if (((firstNodeInTree->getOpCodeValue() == TR::treetop) ||
              (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) &&
             (firstNodeInTree->getFirstChild()->getOpCode().isStore()))
            {
            firstNodeInTree->setLocalIndex(-1);
            if (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())
               firstNodeInTree->getSecondChild()->setLocalIndex(-1);

            firstNodeInTree = firstNodeInTree->getFirstChild();
            opCode = &firstNodeInTree->getOpCode();
            }

         // This call finds nodes with opcodes that are supported by PRE
         // in this subtree; this accounts for all opcodes other than stores/checks
         // which are handled later on below
         //
         bool firstNodeInTreeHasCallsInStoreLhs = false;
         countSupportedNodes(firstNodeInTree, NULL, firstNodeInTreeHasCallsInStoreLhs);

         if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) ||
             opCode->isCheck())
            {
            int32_t oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree);

            //
            // Return value 0 denotes that the node contains some sub-expression
            // that cannot participate in PRE; e.g. a call or a new
            //
            // Return value -1 denotes that the node can participate in PRE
            // but did not match with any existing expression seen so far
            //
            // Any other return value (should be positive always) denotes that
            // the node can participate in PRE and has been matched with a seen
            // expression having local index == return value
            //
            if (oldExpressionOnRhs == -1)
               {
               if (trace())
                  {
                  traceMsg(comp(), "\nExpression #%d is : \n", _numNodes);
                  comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree, 6, true);
                  }

               firstNodeInTree->setLocalIndex(_numNodes++);
               }
            else
               firstNodeInTree->setLocalIndex(oldExpressionOnRhs);

            if (opCode->isCheck() &&
                (firstNodeInTree->getFirstChild()->getOpCode().isStore() &&
                 !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm()))
               {
               int oldExpressionOnRhs = hasOldExpressionOnRhs(firstNodeInTree->getFirstChild());

               if (oldExpressionOnRhs == -1)
                  {
                  if (trace())
                     {
                     traceMsg(comp(), "\nExpression #%d is : \n", _numNodes);
                     comp()->getDebug()->print(comp()->getOutFile(), firstNodeInTree->getFirstChild(), 6, true);
                     }

                  firstNodeInTree->getFirstChild()->setLocalIndex(_numNodes++);
                  }
               else
                  firstNodeInTree->getFirstChild()->setLocalIndex(oldExpressionOnRhs);
               }
            }
         else
            firstNodeInTree->setLocalIndex(-1);

         currentTree = currentTree->getNextTreeTop();
         }
      }

   _supportedNodesAsArray = (TR::Node**)trMemory()->allocateStackMemory(_numNodes*sizeof(TR::Node*));
   memset(_supportedNodesAsArray, 0, _numNodes*sizeof(TR::Node*));
   _checkExpressions = new (trStackMemory()) TR_BitVector(_numNodes, trMemory(), stackAlloc);

   //_checkExpressions.init(_numNodes, trMemory(), stackAlloc);

   // This loop goes through the trees and collects the nodes
   // that would take part in PRE. Each node has its local index set to
   // the bit position that it occupies in the bit vector analyses.
   //
   currentTree = comp()->getStartTree();
   _visitCount = comp()->incVisitCount();
   while (currentTree)
      {
      TR::Node *firstNodeInTree = currentTree->getNode();
      TR::ILOpCode *opCode = &firstNodeInTree->getOpCode();

      if (((firstNodeInTree->getOpCodeValue() == TR::treetop) ||
           (comp()->useAnchors() && firstNodeInTree->getOpCode().isAnchor())) &&
          (firstNodeInTree->getFirstChild()->getOpCode().isStore()))
         {
         firstNodeInTree = firstNodeInTree->getFirstChild();
         opCode = &firstNodeInTree->getOpCode();
         }

      collectSupportedNodes(firstNodeInTree, NULL);

      if ((opCode->isStore() && !firstNodeInTree->getSymbolReference()->getSymbol()->isAutoOrParm()) ||
          opCode->isCheck())
         {
        if (opCode->isCheck())
            {
            _checkSymbolReferences->set(firstNodeInTree->getSymbolReference()->getReferenceNumber());
            _checkExpressions->set(firstNodeInTree->getLocalIndex());
            }

         if (!_supportedNodesAsArray[firstNodeInTree->getLocalIndex()])
            _supportedNodesAsArray[firstNodeInTree->getLocalIndex()] = firstNodeInTree;

         if (opCode->isCheck() &&
             firstNodeInTree->getFirstChild()->getOpCode().isStore() &&
             !firstNodeInTree->getFirstChild()->getSymbolReference()->getSymbol()->isAutoOrParm() &&
             !_supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()])
            _supportedNodesAsArray[firstNodeInTree->getFirstChild()->getLocalIndex()] = firstNodeInTree->getFirstChild();
         }

      currentTree = currentTree->getNextTreeTop();
      }

   //initialize(toBlock(cfg->getStart()));
   }
Exemplo n.º 26
0
void TR_ExpressionsSimplification::simplifyInvariantLoopExpressions(ListIterator<TR::Block> &blocks)
   {
   // Need to locate the induction variable of the loop
   //
   LoopInfo *loopInfo = findLoopInfo(_currentRegion);

   if (trace())
      {
      if (!loopInfo)
         {
         traceMsg(comp(), "Accurate loop info is not found, cannot carry out summation reduction\n");
         }
      else
         {
         traceMsg(comp(), "Accurate loop info has been found, will try to carry out summation reduction\n");
         if (loopInfo->getBoundaryNode())
            {
            traceMsg(comp(), "Variable iterations from node %p has not been handled\n",loopInfo->getBoundaryNode());
            }
         else
            {
            traceMsg(comp(), "Natural Loop %p will run %d times\n", _currentRegion, loopInfo->getNumIterations());
            }
         }
      }

   // Initialize the list of candidates
   //
   _candidateTTs = new (trStackMemory()) TR_ScratchList<TR::TreeTop>(trMemory());

   for (TR::Block *currentBlock = blocks.getFirst(); currentBlock; currentBlock  = blocks.getNext())
      {
      if (trace())
         traceMsg(comp(), "Analyzing block #%d, which must be executed once per iteration\n", currentBlock->getNumber());


      // Scan through each node in the block
      //
      TR::TreeTop *tt = currentBlock->getEntry();
      TR::TreeTop *exitTreeTop = currentBlock->getExit();
      while (tt != exitTreeTop)
         {
         TR::Node *currentNode = tt->getNode();
         if (trace())
            traceMsg(comp(), "Analyzing tree top node %p\n", currentNode);

         if (loopInfo)
            {
            // requires loop info for the number of iterations
            setSummationReductionCandidates(currentNode, tt);
            }
         setStoreMotionCandidates(currentNode, tt);

         tt = tt->getNextTreeTop();
         }
      }

   // New code: without using any UDI
   // walk through the trees in the loop
   // to invalidate the candidates
   //
   if (!_supportedExpressions)
      {
      _supportedExpressions = new (trStackMemory()) TR_BitVector(comp()->getNodeCount(), trMemory(), stackAlloc, growable);
      }

   invalidateCandidates();

   ListIterator<TR::TreeTop> treeTops(_candidateTTs);
   for (TR::TreeTop *treeTop = treeTops.getFirst(); treeTop; treeTop = treeTops.getNext())
      {
      if (trace())
         traceMsg(comp(), "Candidate TreeTop: %p, Node:%p\n", treeTop, treeTop->getNode());

      bool usedCandidate = false;
      bool isPreheaderBlockInvalid = false;

      if (loopInfo)
         {
         usedCandidate = tranformSummationReductionCandidate(treeTop, loopInfo, &isPreheaderBlockInvalid);
         }

      if (isPreheaderBlockInvalid)
         {
         break;
         }

      if (!usedCandidate)
         {
         tranformStoreMotionCandidate(treeTop, &isPreheaderBlockInvalid);
         }
      if (isPreheaderBlockInvalid)
         {
         break;
         }
      }
   }
Exemplo n.º 27
0
TR_ExpressionsSimplification::LoopInfo*
TR_ExpressionsSimplification::findLoopInfo(TR_RegionStructure* region)
   {
   ListIterator<TR::CFGEdge> exitEdges(&region->getExitEdges());

   if (region->getExitEdges().getSize() != 1)
      {
      if (trace())
         traceMsg(comp(), "Region with more than 1 exit edges can't be handled\n");
      return 0;
      }

   TR_StructureSubGraphNode* exitNode = toStructureSubGraphNode(exitEdges.getFirst()->getFrom());

   if (!exitNode->getStructure()->asBlock())
      {
      if (trace())
         traceMsg(comp(), "The exit block can't be found\n");
      return 0;
      }

   TR::Block *exitBlock = exitNode->getStructure()->asBlock()->getBlock();
   TR::Node *lastTreeInExitBlock = exitBlock->getLastRealTreeTop()->getNode();

   if (trace())
      {
      traceMsg(comp(), "The exit block is %d\n", exitBlock->getNumber());
      traceMsg(comp(), "The branch node is %p\n", lastTreeInExitBlock);
      }


   if (!lastTreeInExitBlock->getOpCode().isBranch())
      {
      if (trace())
         traceMsg(comp(), "The branch node couldn't be found\n");
      return 0;
      }

   if (lastTreeInExitBlock->getNumChildren() < 2)
      {
      if (trace())
         traceMsg(comp(), "The branch node has less than 2 children\n");
      return 0;
      }

   TR::Node *firstChildOfLastTree = lastTreeInExitBlock->getFirstChild();
   TR::Node *secondChildOfLastTree = lastTreeInExitBlock->getSecondChild();

   if (!firstChildOfLastTree->getOpCode().hasSymbolReference())
      {
      if (trace())
         traceMsg(comp(), "The branch node's first child node %p - its opcode does not have a symbol reference\n", firstChildOfLastTree);
      return 0;
      }

   TR::SymbolReference *firstChildSymRef = firstChildOfLastTree->getSymbolReference();

   if (trace())
      traceMsg(comp(), "Symbol Reference: %p Symbol: %p\n", firstChildSymRef, firstChildSymRef->getSymbol());

   // Locate the induction variable that matches with the exit node symbol
   //
   TR_InductionVariable *indVar = region->findMatchingIV(firstChildSymRef);
   if (!indVar) return 0;

   if (!indVar->getIncr()->asIntConst())
      {
      if (trace())
         traceMsg(comp(), "Increment is not a constant\n");
      return 0;
      }

   int32_t increment = indVar->getIncr()->getLowInt();

   _visitCount = comp()->incVisitCount();
   bool indVarWrittenAndUsedUnexpectedly = false;
   if (firstChildOfLastTree->getReferenceCount() > 1)
      {
      TR::TreeTop *cursorTreeTopInExitBlock = exitBlock->getEntry();
      TR::TreeTop *exitTreeTopInExitBlock = exitBlock->getExit();

      bool loadSeen = false;
      while (cursorTreeTopInExitBlock != exitTreeTopInExitBlock)
         {
         TR::Node *cursorNode = cursorTreeTopInExitBlock->getNode();
         if (checkForLoad(cursorNode, firstChildOfLastTree))
            loadSeen = true;

         if (!cursorNode->getOpCode().isStore() &&
             (cursorNode->getNumChildren() > 0))
           cursorNode = cursorNode->getFirstChild();

         if (cursorNode->getOpCode().isStore() &&
             (cursorNode->getSymbolReference() == firstChildSymRef))
            {
            indVarWrittenAndUsedUnexpectedly = true;
            if ((cursorNode->getFirstChild() == firstChildOfLastTree) ||
                !loadSeen)
               indVarWrittenAndUsedUnexpectedly = false;
            else
               break;
            }

         cursorTreeTopInExitBlock = cursorTreeTopInExitBlock->getNextTreeTop();
         }
      }

   if (indVarWrittenAndUsedUnexpectedly)
      {
      return 0;
      }

   int32_t lowerBound;
   int32_t upperBound = 0;
   TR::Node *bound = 0;
   bool equals = false;

   switch(lastTreeInExitBlock->getOpCodeValue())
      {
      case TR::ificmplt:
      case TR::ificmpgt:
         equals = true;
      case TR::ificmple:
      case TR::ificmpge:
         if (!(indVar->getEntry() && indVar->getEntry()->asIntConst()))
            {
            if (trace())
               traceMsg(comp(), "Entry value is not a constant\n");
            return 0;
            }
         lowerBound = indVar->getEntry()->getLowInt();

         if (secondChildOfLastTree->getOpCode().isLoadConst())
            {
            upperBound = secondChildOfLastTree->getInt();
            }
         else if (secondChildOfLastTree->getOpCode().isLoadVar())
            {
            bound = secondChildOfLastTree;
            }
         else
            {
            if (trace())
               traceMsg(comp(), "Second child is not a const or a load\n");
            return 0;
            }
         return new (trStackMemory()) LoopInfo(bound, lowerBound, upperBound, increment, equals);


      default:
         if (trace())
            traceMsg(comp(), "The condition has not been implemeted\n");
         return 0;
      }

   return 0;
   }
Exemplo n.º 28
0
static bool isSafeToReplaceNode(TR::Node *currentNode, TR::TreeTop *curTreeTop, bool *seenConditionalBranch,
      vcount_t visitCount, TR::Compilation *comp, List<OMR::TreeInfo> *targetTrees, bool &cannotBeEliminated,
      LongestPathMap &longestPaths)
   {
   LexicalTimer tx("safeToReplace", comp->phaseTimer());

   TR::SparseBitVector symbolReferencesInNode(comp->allocator());

   // Collect all symbols that could be killed between here and the next reference
   //
   comp->incVisitCount();
   //////vcount_t visitCount = comp->getVisitCount();
   int32_t numDeadSubNodes = 0;
   bool cantMoveUnderBranch = false;
   bool seenInternalPointer = false;
   bool seenArraylet = false;
   int32_t curMaxHeight = getLongestPathOfDAG(currentNode, longestPaths);
   collectSymbolReferencesInNode(currentNode, symbolReferencesInNode, &numDeadSubNodes, visitCount, comp,
         &seenInternalPointer, &seenArraylet, &cantMoveUnderBranch);

   bool registersScarce = comp->cg()->areAssignableGPRsScarce();
#ifdef J9_PROJECT_SPECIFIC
   bool isBCD = currentNode->getType().isBCD();
#endif

   if (numDeadSubNodes > 1 &&
#ifdef J9_PROJECT_SPECIFIC
       !isBCD &&
#endif
       registersScarce)
      {
      return false;
      }

   OMR::TreeInfo *curTreeInfo = findOrCreateTreeInfo(curTreeTop, targetTrees, comp);
   int32_t curHeight = curTreeInfo->getHeight()+curMaxHeight;
   if (curHeight > MAX_ALLOWED_HEIGHT)
      {
      cannotBeEliminated = true;
      return false;
      }

   // TEMPORARY
   // Don't allow removal of a node containing an unresolved reference if
   // the gcOnResolve option is set
   //
   bool isUnresolvedReference = currentNode->hasUnresolvedSymbolReference();
   if (isUnresolvedReference)
      return false;

   bool mayBeVolatileReference = currentNode->mightHaveVolatileSymbolReference();
   //if (mayBeVolatileReference)
   //   return false;

   // Now scan forwards through the trees looking for the next use and checking
   // to see if any symbols in the subtree are getting modified; if so it is not
   // safe to replace the node at its next use.
   //

   comp->incVisitCount();
   for (TR::TreeTop *treeTop = curTreeTop->getNextTreeTop(); treeTop; treeTop = treeTop->getNextTreeTop())

      {
      TR::Node *node = treeTop->getNode();
      if(node->getOpCodeValue() == TR::treetop)
          node = node->getFirstChild();

      if (node->getOpCodeValue() == TR::BBStart &&
          !node->getBlock()->isExtensionOfPreviousBlock())
         return true;

      if (cantMoveUnderBranch && (node->getOpCode().isBranch()
         || node->getOpCode().isJumpWithMultipleTargets()))
         return false;

      if (node->canGCandReturn() &&
          seenInternalPointer)
         return false;

      int32_t tempHeight = 0;
      int32_t maxHeight = 0;
      bool canMoveIfVolatile = true;
      if (containsNode(node, currentNode, visitCount, comp, &tempHeight, &maxHeight, canMoveIfVolatile))
         {
         // TEMPORARY
         // Disable moving an unresolved reference down to the middle of a
         // JNI call, until the resolve helper is fixed properly
         //
         if (isUnresolvedReference && node->getFirstChild()->getOpCode().isCall() &&
             node->getFirstChild()->getSymbol()->castToMethodSymbol()->isJNI())
            return false;

         if (curTreeInfo)
            {
            OMR::TreeInfo *treeInfo = findOrCreateTreeInfo(treeTop, targetTrees, comp);
            int32_t height = treeInfo->getHeight();
            int32_t maxHeightUsed = maxHeight;
            if (maxHeightUsed < curMaxHeight)
               maxHeightUsed = curMaxHeight;

            if (height < curTreeInfo->getHeight())
               height = curTreeInfo->getHeight();
            height++;
            if ((height+maxHeightUsed) > MAX_ALLOWED_HEIGHT)
               {
               cannotBeEliminated = true;
               return false;
               }
            treeInfo->setHeight(height);
            }

         return true;
         }

      if (mayBeVolatileReference && !canMoveIfVolatile)
         return false;

      if ((node->getOpCode().isBranch() &&
           (node->getOpCodeValue() != TR::Goto)) ||
           (node->getOpCode().isJumpWithMultipleTargets() && node->getOpCode().hasBranchChildren()))
        *seenConditionalBranch = true;

      if (node->getOpCodeValue() == TR::treetop ||
          node->getOpCode().isNullCheck() ||
          node->getOpCode().isResolveCheck() ||
          node->getOpCodeValue() == TR::ArrayStoreCHK ||
          node->getOpCode().isSpineCheck())
         {
         node = node->getFirstChild();
         }

      if (node->getOpCode().isStore())
         {
         // For a store, just the single symbol reference is killed.
         // Resolution of the store symbol is handled by TR::ResolveCHK
         //
         if (symbolReferencesInNode.ValueAt(node->getSymbolReference()->getReferenceNumber()))
            return false;
         }

      // Node Aliasing Changes
      // Check if the definition modifies any symbol in the subtree
      //
      if (node->mayKill(true).containsAny(symbolReferencesInNode, comp))
        return false;
      }
   return true;
   }
Exemplo n.º 29
0
int32_t TR::DeadTreesElimination::process(TR::TreeTop *startTree, TR::TreeTop *endTree)
   {
   TR::StackMemoryRegion stackRegion(*comp()->trMemory());
   LongestPathMap longestPaths(std::less<TR::Node*>(), stackRegion);

   typedef TR::typed_allocator<CRAnchor, TR::Region&> CRAnchorAlloc;
   typedef TR::forward_list<CRAnchor, CRAnchorAlloc> CRAnchorList;
   CRAnchorList anchors(stackRegion);

   vcount_t visitCount = comp()->incOrResetVisitCount();
   TR::TreeTop *treeTop;
   for (treeTop = startTree; (treeTop != endTree); treeTop = treeTop->getNextTreeTop())
      treeTop->getNode()->initializeFutureUseCounts(visitCount);

   TR::Block *block = NULL;
   bool delayedRegStoresBeforeThisPass = _delayedRegStores;

   // Update visitCount as they are used in this optimization and need to be
   visitCount = comp()->incOrResetVisitCount();
   for (TR::TreeTopIterator iter(startTree, comp()); iter != endTree; ++iter)
      {
      TR::Node *node = iter.currentTree()->getNode();

      if (node->getOpCodeValue() == TR::BBStart)
         {
         block = node->getBlock();
         if (!block->isExtensionOfPreviousBlock())
            longestPaths.clear();
         }

      int vcountLimit = MAX_VCOUNT - 3;
      if (comp()->getVisitCount() > vcountLimit)
         {
         dumpOptDetails(comp(),
            "%sVisit count %d exceeds limit %d; stopping\n",
            optDetailString(), comp()->getVisitCount(), vcountLimit);
         return 0;
         }

      // correct at all intermediate stages
      //
      if ((node->getOpCodeValue() != TR::treetop) &&
          (!node->getOpCode().isAnchor() || (node->getFirstChild()->getReferenceCount() != 1)) &&
          (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() != 1)) &&
          (delayedRegStoresBeforeThisPass ||
           (iter.currentTree() == block->getLastRealTreeTop()) ||
           !node->getOpCode().isStoreReg() ||
           (node->getVisitCount() == visitCount)))
         {
         if (node->getOpCode().isAnchor() && node->getFirstChild()->getOpCode().isLoadIndirect())
            anchors.push_front(CRAnchor(iter.currentTree(), block));

         TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount);
         continue;
         }

      if (node->getOpCode().isStoreReg())
         _delayedRegStores = true;

      TR::Node *child = node->getFirstChild();
      if (child->getOpCodeValue() == TR::PassThrough)
         {
         TR::Node *newChild = child->getFirstChild();
         node->setAndIncChild(0, newChild);
         newChild->incFutureUseCount();
         if (child->getReferenceCount() <= 1)
            optimizer()->prepareForNodeRemoval(child);
         child->recursivelyDecReferenceCount();
         recursivelyDecFutureUseCount(child);
         child = newChild;
         }

      bool treeTopCanBeEliminated = false;

      // If the treetop child has been seen before then it must be anchored
      // somewhere above already; so we don't need the treetop to be anchoring
      // this node (as the computation is already done at the first reference to
      // the node).
      //

      if (visitCount == child->getVisitCount())
         {
         treeTopCanBeEliminated = true;
         }
      else
         {
         TR::ILOpCode &childOpCode = child->getOpCode();
         TR::ILOpCodes opCodeValue = childOpCode.getOpCodeValue();
         bool seenConditionalBranch = false;

         bool callWithNoSideEffects = child->getOpCode().isCall() &&
              child->getSymbolReference()->getSymbol()->isResolvedMethod() &&
              child->getSymbolReference()->getSymbol()->castToResolvedMethodSymbol()->isSideEffectFree();

         if (callWithNoSideEffects)
            {
            treeTopCanBeEliminated = true;
            }
         else if (!((childOpCode.isCall() && !callWithNoSideEffects) ||
               childOpCode.isStore() ||
               ((opCodeValue == TR::New ||
                 opCodeValue == TR::anewarray ||
                 opCodeValue == TR::newarray) &&
                 child->getReferenceCount() > 1) ||
                 opCodeValue == TR::multianewarray ||
                 opCodeValue == TR::MergeNew ||
               opCodeValue == TR::checkcast ||
               opCodeValue == TR::Prefetch ||
               opCodeValue == TR::iu2l ||
               ((childOpCode.isDiv() ||
                 childOpCode.isRem()) &&
                 child->getNumChildren() == 3)))
            {
            // Perform the rather complex check to see whether its safe
            // to disconnect the child node from the treetop
            //
            bool safeToReplaceNode = false;
            if (child->getReferenceCount() == 1)
               {
               safeToReplaceNode = true;
#ifdef J9_PROJECT_SPECIFIC
               if (child->getOpCode().isPackedExponentiation())
                  {
                  // pdexp has a possible message side effect in truncating or no significant digits left cases
                  safeToReplaceNode = false;
                  }
#endif
               if (opCodeValue == TR::loadaddr)
                  treeTopCanBeEliminated = true;
               }
            else if (!_cannotBeEliminated)
               {
               safeToReplaceNode = isSafeToReplaceNode(
                  child,
                  iter.currentTree(),
                  &seenConditionalBranch,
                  visitCount,
                  comp(),
                  &_targetTrees,
                  _cannotBeEliminated,
                  longestPaths);
               }

            if (safeToReplaceNode)
               {
               if (childOpCode.hasSymbolReference())
                  {
                  TR::SymbolReference *symRef = child->getSymbolReference();

                  if (symRef->getSymbol()->isAuto() || symRef->getSymbol()->isParm())
                     treeTopCanBeEliminated = true;
                  else
                     {
                     if (childOpCode.isLoad() ||
                         (opCodeValue == TR::loadaddr) ||
                         (opCodeValue == TR::instanceof) ||
                         (((opCodeValue == TR::New)  ||
                            (opCodeValue == TR::anewarray ||
                              opCodeValue == TR::newarray)) &&
                          ///child->getFirstChild()->isNonNegative()))
                           child->markedAllocationCanBeRemoved()))
                       //        opCodeValue == TR::multianewarray ||
                       //        opCodeValue == TR::MergeNew)
                        treeTopCanBeEliminated = true;
                     }
                  }
               else
                  treeTopCanBeEliminated = true;
               }
            }

         // Fix for the case when a float to non-float conversion node swings
         // down past a branch on IA32; this would cause a FP value to be commoned
         // across a branch where there was none originally; this causes pblms
         // as a value is left on the stack.
         //
         if (treeTopCanBeEliminated &&
             seenConditionalBranch)
            {
            if (!cg()->getSupportsJavaFloatSemantics())
               {
               if (child->getOpCode().isConversion() ||
                   child->getOpCode().isBooleanCompare())
                 {
                 if (child->getFirstChild()->getOpCode().isFloatingPoint() &&
                     !child->getOpCode().isFloatingPoint())
                     treeTopCanBeEliminated = false;
                 }
               }
            }

         if (treeTopCanBeEliminated)
            {
            TR::NodeChecklist visited(comp());
            bool containsFloatingPoint = false;
            for (int32_t i = 0; i < child->getNumChildren(); ++i)
               {
               // Anchor nodes with reference count > 1
               //
               bool highGlobalIndex = false;
               if (fixUpTree(child->getChild(i), iter.currentTree(), visited, highGlobalIndex, self(), visitCount))
                  containsFloatingPoint = true;
               if (highGlobalIndex)
                  {
                  dumpOptDetails(comp(),
                     "%sGlobal index limit exceeded; stopping\n",
                     optDetailString());
                  return 0;
                  }
               }

            if (seenConditionalBranch &&
                containsFloatingPoint)
               {
               if (!cg()->getSupportsJavaFloatSemantics())
                  treeTopCanBeEliminated = false;
               }
            }
         }

      // Update visitCount as they are used in this optimization and need to be
      // correct at all intermediate stages
      //
      if (!treeTopCanBeEliminated)
         TR::TransformUtil::recursivelySetNodeVisitCount(node, visitCount);

      if (treeTopCanBeEliminated)
         {
         TR::TreeTop *prevTree = iter.currentTree()->getPrevTreeTop();
         TR::TreeTop *nextTree = iter.currentTree()->getNextTreeTop();

         if (!node->getOpCode().isStoreReg() || (node->getFirstChild()->getReferenceCount() == 1))
            {
            // Actually going to remove the treetop now
            //
            if (performTransformation(comp(), "%sRemove tree : [" POINTER_PRINTF_FORMAT "] ([" POINTER_PRINTF_FORMAT "] = %s)\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName()))
               {
               prevTree->join(nextTree);
               optimizer()->prepareForNodeRemoval(node);
               ///child->recursivelyDecReferenceCount();
               node->recursivelyDecReferenceCount();
               recursivelyDecFutureUseCount(child);
               iter.jumpTo(prevTree);
               if (child->getReferenceCount() == 1)
                  requestOpt(OMR::treeSimplification, true, block);

               if (nextTree->getNode()->getOpCodeValue() == TR::Goto
                   && prevTree->getNode()->getOpCodeValue() == TR::BBStart
                   && !prevTree->getNode()->getBlock()->isExtensionOfPreviousBlock())
                  {
                  requestOpt(
                     OMR::redundantGotoElimination,
                     prevTree->getNode()->getBlock());
                  }
               }
            }
         else
            {
            if (performTransformation(comp(), "%sMove tree : [" POINTER_PRINTF_FORMAT "]([" POINTER_PRINTF_FORMAT "] = %s) to end of block\n", optDetailString(), node, node->getFirstChild(), node->getFirstChild()->getOpCode().getName()))
               {
               prevTree->join(nextTree);
               node->setVisitCount(visitCount);

               TR::TreeTop *lastTree = findLastTreetop(block, prevTree);
               TR::TreeTop *prevLastTree = lastTree->getPrevTreeTop();

               TR::TreeTop *cursorTreeTop = nextTree;
               while (cursorTreeTop != lastTree)
                  {
                  if (cursorTreeTop->getNode()->getOpCode().isStoreReg() &&
                      (cursorTreeTop->getNode()->getGlobalRegisterNumber() == iter.currentTree()->getNode()->getGlobalRegisterNumber()))
                     {
                     lastTree = cursorTreeTop;
                     prevLastTree = lastTree->getPrevTreeTop();
                     break;
                     }

                  cursorTreeTop = cursorTreeTop->getNextTreeTop();
                  }

               if (lastTree->getNode()->getOpCodeValue() == TR::BBStart)
                  {
                  prevLastTree = lastTree;
                  lastTree = block->getExit();
                  }

               TR::Node *lastNode = lastTree->getNode();
               TR::Node *prevLastNode = prevLastTree->getNode();

               if (lastNode->getOpCode().isIf() && !lastNode->getOpCode().isCompBranchOnly() &&
                   prevLastNode->getOpCode().isStoreReg() &&
                   ((prevLastNode->getFirstChild() == lastNode->getFirstChild()) ||
                    (prevLastNode->getFirstChild() == lastNode->getSecondChild())))
                  {
                  lastTree = prevLastTree;
                  prevLastTree = lastTree->getPrevTreeTop();
                  }

               prevLastTree->join(iter.currentTree());
               iter.currentTree()->join(lastTree);

               iter.jumpTo(prevTree);
               requestOpt(OMR::treeSimplification, true, block);
               }
            }
         }
      }

   for (auto it = anchors.begin(); it != anchors.end(); ++it)
      {
      TR::Node *anchor = it->tree->getNode();
      TR::Node *load = anchor->getChild(0);
      if (load->getReferenceCount() > 1)
         continue;

      // We can eliminate the indirect load immediately, but for the moment the
      // subtree providing the base object has to be anchored.

      TR::Node *heapBase = anchor->getChild(1);

      TR::Node::recreate(anchor, TR::treetop);
      anchor->setAndIncChild(0, load->getChild(0));
      anchor->setChild(1, NULL);
      anchor->setNumChildren(1);

      if (!heapBase->getOpCode().isLoadConst())
         {
         it->tree->insertAfter(
            TR::TreeTop::create(
               comp(),
               TR::Node::create(heapBase, TR::treetop, 1, heapBase)));
         }

      load->recursivelyDecReferenceCount();
      heapBase->recursivelyDecReferenceCount();

      // A later pass of dead trees can likely move (or even remove) the base
      // object expression.

      requestOpt(OMR::deadTreesElimination, true, it->block);
      }

   return 1; // actual cost
   }
Exemplo n.º 30
0
/**
 * Search for direct loads in the taken side of a guard
 *
 * @param firstBlock The guard's branch destination
 * @param coldPathLoads BitVector of symbol reference numbers for any direct loads seen until the merge back to mainline
 */
static void collectColdPathLoads(TR::Block* firstBlock, TR_BitVector &coldPathLoads)
   {
   TR_Stack<TR::Block*> blocksToCheck(TR::comp()->trMemory(), 8, false, stackAlloc);
   blocksToCheck.push(firstBlock);
   TR::NodeChecklist checklist(TR::comp());

   coldPathLoads.empty();
   while (!blocksToCheck.isEmpty())
      {
      TR::Block *block = blocksToCheck.pop();

      for (TR::TreeTop *tt = block->getFirstRealTreeTop(); tt->getNode()->getOpCodeValue() != TR::BBEnd; tt = tt->getNextTreeTop())
         collectDirectLoads(tt->getNode(), coldPathLoads, checklist);

      // Search for any successors that have not merged with the mainline
      for (auto itr = block->getSuccessors().begin(), end = block->getSuccessors().end(); itr != end; ++itr)
         {
         TR::Block *dest = (*itr)->getTo()->asBlock();
         if (dest != TR::comp()->getFlowGraph()->getEnd() && dest->getPredecessors().size() == 1)
            blocksToCheck.push(dest);
         }
      }
   }