/**Function*************************************************************

  Synopsis    [Visualizes BDD of the node.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NodeShowBdd( Abc_Obj_t * pNode )
{
    FILE * pFile;
    Vec_Ptr_t * vNamesIn;
    char FileNameDot[200];
    char * pNameOut;

    assert( Abc_NtkIsBddLogic(pNode->pNtk) );
    // create the file name
    Abc_ShowGetFileName( Abc_ObjName(pNode), FileNameDot );
    // check that the file can be opened
    if ( (pFile = fopen( FileNameDot, "w" )) == NULL )
    {
        fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", FileNameDot );
        return;
    }

    // set the node names 
    vNamesIn = Abc_NodeGetFaninNames( pNode );
    pNameOut = Abc_ObjName(pNode);
    Cudd_DumpDot( pNode->pNtk->pManFunc, 1, (DdNode **)&pNode->pData, (char **)vNamesIn->pArray, &pNameOut, pFile );
    Abc_NodeFreeNames( vNamesIn );
    Abc_NtkCleanCopy( pNode->pNtk );
    fclose( pFile );

    // visualize the file 
    Abc_ShowFile( FileNameDot );
}
Esempio n. 2
0
/**Function*************************************************************

  Synopsis    [Implementation of max-flow/min-cut computation.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NtkMaxFlow( Abc_Ntk_t * pNtk, int fForward, int fVerbose )
{
    Vec_Ptr_t * vMinCut;
    Abc_Obj_t * pLatch;
    int Flow, FlowCur, RetValue, i;
    abctime clk = Abc_Clock();
    int fUseDirectedFlow = 1;

    // find the max-flow
    Abc_NtkCleanCopy( pNtk );
    Flow = 0;
    Abc_NtkIncrementTravId(pNtk);
    Abc_NtkForEachLatch( pNtk, pLatch, i )
    {
        if ( fForward )
        {
//            assert( !Abc_ObjFanout0(pLatch)->fMarkA );
            FlowCur  = Abc_NtkMaxFlowFwdPath2_rec( Abc_ObjFanout0(pLatch) );
//            FlowCur  = Abc_NtkMaxFlowFwdPath3_rec( Abc_ObjFanout0(pLatch), pLatch, 1 );
            Flow    += FlowCur;
        }
        else
        {
            assert( !Abc_ObjFanin0(pLatch)->fMarkA );
            FlowCur  = Abc_NtkMaxFlowBwdPath2_rec( Abc_ObjFanin0(pLatch) );
            Flow    += FlowCur;
        }
        if ( FlowCur )
            Abc_NtkIncrementTravId(pNtk);
    }

    if ( !fUseDirectedFlow )
    {
        Abc_NtkIncrementTravId(pNtk);
        Abc_NtkForEachLatch( pNtk, pLatch, i )
        {
            if ( fForward )
            {
    //            assert( !Abc_ObjFanout0(pLatch)->fMarkA );
                FlowCur  = Abc_NtkMaxFlowFwdPath_rec( Abc_ObjFanout0(pLatch) );
                Flow    += FlowCur;
            }
            else
            {
                assert( !Abc_ObjFanin0(pLatch)->fMarkA );
                FlowCur  = Abc_NtkMaxFlowBwdPath_rec( Abc_ObjFanin0(pLatch) );
                Flow    += FlowCur;
            }
            if ( FlowCur )
                Abc_NtkIncrementTravId(pNtk);
        }
    }
Esempio n. 3
0
Vec_Ptr_t * Abc_NtkAssignIDs2( Abc_Ntk_t * pNtk )
{
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pObj;
    int i;
    Abc_NtkCleanCopy( pNtk );
    Abc_NtkForEachCi( pNtk, pObj, i )
        pObj->iTemp = i;
    vNodes = Vec_PtrAlloc( Abc_NtkNodeNum(pNtk) );
    Abc_NtkForEachNode( pNtk, pObj, i )
    {
        pObj->iTemp = Abc_NtkCiNum(pNtk) + Vec_PtrSize(vNodes);
        Vec_PtrPush( vNodes, pObj );
    }
Esempio n. 4
0
/**Function*************************************************************

  Synopsis    [Converts combinational AIG with latches into sequential AIG.]

  Description [The const/PI/PO nodes are duplicated. The internal
  nodes are duplicated in the topological order. The dangling nodes
  are not duplicated. The choice nodes are duplicated.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkAigToSeq( Abc_Ntk_t * pNtk )
{
    Abc_Ntk_t * pNtkNew;
    Abc_Obj_t * pObj, * pFaninNew;
    Vec_Int_t * vInitValues;
    Abc_InitType_t Init;
    int i, k, RetValue;

    // make sure it is an AIG without self-feeding latches
    assert( Abc_NtkIsStrash(pNtk) );
    assert( Abc_NtkIsDfsOrdered(pNtk) );

    if ( RetValue = Abc_NtkRemoveSelfFeedLatches(pNtk) )
        printf( "Modified %d self-feeding latches. The result will not verify.\n", RetValue );
    assert( Abc_NtkCountSelfFeedLatches(pNtk) == 0 );

    // start the network
    pNtkNew = Abc_NtkAlloc( ABC_NTK_SEQ, ABC_FUNC_AIG, 1 );
    // duplicate the name and the spec
    pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
    pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);

    // map the constant nodes
    Abc_NtkCleanCopy( pNtk );
    Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);

    // copy all objects, except the latches and constant
    Vec_PtrFill( pNtkNew->vObjs, Abc_NtkObjNumMax(pNtk), NULL );
    Vec_PtrWriteEntry( pNtkNew->vObjs, 0, Abc_AigConst1(pNtk)->pCopy );
    Abc_NtkForEachObj( pNtk, pObj, i )
    {
        if ( i == 0 || Abc_ObjIsLatch(pObj) )
            continue;
        pObj->pCopy = Abc_ObjAlloc( pNtkNew, pObj->Type );
        pObj->pCopy->Id     = pObj->Id;      // the ID is the same for both
        pObj->pCopy->fPhase = pObj->fPhase;  // used to work with choices
        pObj->pCopy->Level  = pObj->Level;   // used for upper bound on clock cycle
        Vec_PtrWriteEntry( pNtkNew->vObjs, pObj->pCopy->Id, pObj->pCopy );
        pNtkNew->nObjs++;
    }
    pNtkNew->nObjCounts[ABC_OBJ_NODE] = pNtk->nObjCounts[ABC_OBJ_NODE];

    // create PI/PO and their names
    Abc_NtkForEachPi( pNtk, pObj, i )
    {
        Vec_PtrPush( pNtkNew->vPis, pObj->pCopy );
        Vec_PtrPush( pNtkNew->vCis, pObj->pCopy );
        Abc_ObjAssignName( pObj->pCopy, Abc_ObjName(pObj), NULL );
    }
Esempio n. 5
0
/**Function*************************************************************

  Synopsis    [Starts a new network using existing network as a model.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkStartFromNoLatches( Abc_Ntk_t * pNtk, Abc_NtkType_t Type, Abc_NtkFunc_t Func )
{
    Abc_Ntk_t * pNtkNew; 
    Abc_Obj_t * pObj;
    int i;
    if ( pNtk == NULL )
        return NULL;
    assert( Type != ABC_NTK_NETLIST );
    // start the network
    pNtkNew = Abc_NtkAlloc( Type, Func, 1 );
    // duplicate the name and the spec
    pNtkNew->pName = Extra_UtilStrsav(pNtk->pName);
    pNtkNew->pSpec = Extra_UtilStrsav(pNtk->pSpec);
    // clean the node copy fields
    Abc_NtkCleanCopy( pNtk );
    // map the constant nodes
    if ( Abc_NtkIsStrash(pNtk) && Abc_NtkIsStrash(pNtkNew) )
        Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pNtkNew);
    // clone CIs/CIs/boxes
    Abc_NtkForEachPi( pNtk, pObj, i )
        Abc_NtkDupObj( pNtkNew, pObj, 1 );
    Abc_NtkForEachPo( pNtk, pObj, i )
        Abc_NtkDupObj( pNtkNew, pObj, 1 );
    Abc_NtkForEachAssert( pNtk, pObj, i )
        Abc_NtkDupObj( pNtkNew, pObj, 1 );
    Abc_NtkForEachBox( pNtk, pObj, i )
    {
        if ( Abc_ObjIsLatch(pObj) )
            continue;
        Abc_NtkDupBox(pNtkNew, pObj, 1);
    }
    // transfer the names
//    Abc_NtkTrasferNamesNoLatches( pNtk, pNtkNew );
    Abc_ManTimeDup( pNtk, pNtkNew );
    // check that the CI/CO/latches are copied correctly
    assert( Abc_NtkPiNum(pNtk) == Abc_NtkPiNum(pNtkNew) );
    assert( Abc_NtkPoNum(pNtk) == Abc_NtkPoNum(pNtkNew) );
    return pNtkNew;
}
Esempio n. 6
0
File: abcSense.c Progetto: mrkj/abc
/**Function*************************************************************

  Synopsis    [Creates miter for the sensitivity analysis.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t * Abc_NtkSensitivityMiter( Abc_Ntk_t * pNtk, int iVar )
{
    Abc_Ntk_t * pMiter;
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pObj, * pNext, * pFanin, * pOutput, * pObjNew;
    int i;
    assert( Abc_NtkIsStrash(pNtk) );
    assert( iVar < Abc_NtkCiNum(pNtk) );

    // duplicate the network
    pMiter = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
    pMiter->pName = Extra_UtilStrsav(pNtk->pName);
    pMiter->pSpec = Extra_UtilStrsav(pNtk->pSpec);

    // assign the PIs
    Abc_NtkCleanCopy( pNtk );
    Abc_AigConst1(pNtk)->pCopy = Abc_AigConst1(pMiter);
    Abc_AigConst1(pNtk)->pData = Abc_AigConst1(pMiter);
    Abc_NtkForEachCi( pNtk, pObj, i )
    {
        pObj->pCopy = Abc_NtkCreatePi( pMiter );
        pObj->pData = pObj->pCopy;
    }
Esempio n. 7
0
ABC_NAMESPACE_IMPL_START


////////////////////////////////////////////////////////////////////////
///                        DECLARATIONS                              ///
////////////////////////////////////////////////////////////////////////
 
////////////////////////////////////////////////////////////////////////
///                     FUNCTION DEFINITIONS                         ///
////////////////////////////////////////////////////////////////////////

/**Function*************************************************************

  Synopsis    []

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Vec_Ptr_t * Abc_NtkAssignIDs( Abc_Ntk_t * pNtk )
{
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pObj;
    int i;
    vNodes = Abc_NtkDfs( pNtk, 0 );
    Abc_NtkCleanCopy( pNtk );
    Abc_NtkForEachCi( pNtk, pObj, i )
        pObj->iTemp = i;
    Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i )
        pObj->iTemp = Abc_NtkCiNum(pNtk) + i;
    Abc_NtkForEachCo( pNtk, pObj, i )
        pObj->iTemp = Abc_NtkCiNum(pNtk) + Vec_PtrSize(vNodes) + i;
    return vNodes;
}
Esempio n. 8
0
Mini_Aig_t * Abc_NtkToMiniAig( Abc_Ntk_t * pNtk )
{
    Mini_Aig_t * p;
    Abc_Obj_t * pObj;
    int i;
    assert( Abc_NtkIsStrash(pNtk) );
    // create the manager
    p = Mini_AigStart();
    // create mapping from MiniAIG into ABC objects
    Abc_NtkCleanCopy( pNtk );
    Abc_AigConst1(pNtk)->iTemp = Mini_AigLitConst1();
    // create primary inputs
    Abc_NtkForEachCi( pNtk, pObj, i )
        pObj->iTemp = Mini_AigCreatePi(p);
    // create internal nodes
    Abc_NtkForEachNode( pNtk, pObj, i )
        pObj->iTemp = Mini_AigAnd( p, Abc_NodeFanin0Copy2(pObj), Abc_NodeFanin1Copy2(pObj) );
    // create primary outputs
    Abc_NtkForEachCo( pNtk, pObj, i )
        pObj->iTemp = Mini_AigCreatePo( p, Abc_NodeFanin0Copy2(pObj) );
    // set registers
    Mini_AigSetRegNum( p, Abc_NtkLatchNum(pNtk) );
    return p;
}
Esempio n. 9
0
/**Function*************************************************************

  Synopsis    [Load the network into FPGA manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Fpga_Man_t * Abc_NtkToFpga( Abc_Ntk_t * pNtk, int fRecovery, float * pSwitching, int fLatchPaths, int fVerbose )
{
    Fpga_Man_t * pMan;
    ProgressBar * pProgress;
    Fpga_Node_t * pNodeFpga;
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pNode, * pFanin, * pPrev;
    float * pfArrivals;
    int i;

    assert( Abc_NtkIsStrash(pNtk) );

    // start the mapping manager and set its parameters
    pMan = Fpga_ManCreate( Abc_NtkCiNum(pNtk), Abc_NtkCoNum(pNtk), fVerbose );
    if ( pMan == NULL )
        return NULL;
    Fpga_ManSetAreaRecovery( pMan, fRecovery );
    Fpga_ManSetOutputNames( pMan, Abc_NtkCollectCioNames(pNtk, 1) );
    pfArrivals = Abc_NtkGetCiArrivalFloats(pNtk);
    if ( fLatchPaths )
    {
        for ( i = 0; i < Abc_NtkPiNum(pNtk); i++ )
            pfArrivals[i] = -FPGA_FLOAT_LARGE;
    }
    Fpga_ManSetInputArrivals( pMan, pfArrivals );

    // create PIs and remember them in the old nodes
    Abc_NtkCleanCopy( pNtk );
    Abc_AigConst1(pNtk)->pCopy = (Abc_Obj_t *)Fpga_ManReadConst1(pMan);
    Abc_NtkForEachCi( pNtk, pNode, i )
    {
        pNodeFpga = Fpga_ManReadInputs(pMan)[i];
        pNode->pCopy = (Abc_Obj_t *)pNodeFpga;
        if ( pSwitching )
            Fpga_NodeSetSwitching( pNodeFpga, pSwitching[pNode->Id] );
    }
Esempio n. 10
0
/**Function*************************************************************

  Synopsis    [Load the network into manager.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Map_Man_t * Abc_NtkToMap( Abc_Ntk_t * pNtk, double DelayTarget, int fRecovery, float * pSwitching, int fVerbose )
{
    Map_Man_t * pMan;
    Map_Node_t * pNodeMap;
    Vec_Ptr_t * vNodes;
    Abc_Obj_t * pNode, * pFanin, * pPrev;
    int i;

    assert( Abc_NtkIsStrash(pNtk) );

    // start the mapping manager and set its parameters
    pMan = Map_ManCreate( Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) - pNtk->nBarBufs, Abc_NtkPoNum(pNtk) + Abc_NtkLatchNum(pNtk) - pNtk->nBarBufs, fVerbose );
    if ( pMan == NULL )
        return NULL;
    Map_ManSetAreaRecovery( pMan, fRecovery );
    Map_ManSetOutputNames( pMan, Abc_NtkCollectCioNames(pNtk, 1) );
    Map_ManSetDelayTarget( pMan, (float)DelayTarget );
    Map_ManSetInputArrivals( pMan, Abc_NtkMapCopyCiArrival(pNtk, Abc_NtkGetCiArrivalTimes(pNtk)) );
    Map_ManSetOutputRequireds( pMan, Abc_NtkMapCopyCoRequired(pNtk, Abc_NtkGetCoRequiredTimes(pNtk)) );

    // create PIs and remember them in the old nodes
    Abc_NtkCleanCopy( pNtk );
    Abc_AigConst1(pNtk)->pCopy = (Abc_Obj_t *)Map_ManReadConst1(pMan);
    Abc_NtkForEachCi( pNtk, pNode, i )
    {
        if ( i == Abc_NtkCiNum(pNtk) - pNtk->nBarBufs )
            break;
        pNodeMap = Map_ManReadInputs(pMan)[i];
        pNode->pCopy = (Abc_Obj_t *)pNodeMap;
        if ( pSwitching )
            Map_NodeSetSwitching( pNodeMap, pSwitching[pNode->Id] );
    }

    // load the AIG into the mapper
    vNodes = Abc_AigDfsMap( pNtk );
    Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pNode, i )
    {
        if ( Abc_ObjIsLatch(pNode) )
        {
            pFanin = Abc_ObjFanin0(pNode);
            pNodeMap = Map_NodeBuf( pMan, Map_NotCond( Abc_ObjFanin0(pFanin)->pCopy, (int)Abc_ObjFaninC0(pFanin) ) );
            Abc_ObjFanout0(pNode)->pCopy = (Abc_Obj_t *)pNodeMap;
            continue;
        }
        assert( Abc_ObjIsNode(pNode) );
        // add the node to the mapper
        pNodeMap = Map_NodeAnd( pMan, 
            Map_NotCond( Abc_ObjFanin0(pNode)->pCopy, (int)Abc_ObjFaninC0(pNode) ),
            Map_NotCond( Abc_ObjFanin1(pNode)->pCopy, (int)Abc_ObjFaninC1(pNode) ) );
        assert( pNode->pCopy == NULL );
        // remember the node
        pNode->pCopy = (Abc_Obj_t *)pNodeMap;
        if ( pSwitching )
            Map_NodeSetSwitching( pNodeMap, pSwitching[pNode->Id] );
        // set up the choice node
        if ( Abc_AigNodeIsChoice( pNode ) )
            for ( pPrev = pNode, pFanin = (Abc_Obj_t *)pNode->pData; pFanin; pPrev = pFanin, pFanin = (Abc_Obj_t *)pFanin->pData )
            {
                Map_NodeSetNextE( (Map_Node_t *)pPrev->pCopy, (Map_Node_t *)pFanin->pCopy );
                Map_NodeSetRepr( (Map_Node_t *)pFanin->pCopy, (Map_Node_t *)pNode->pCopy );
            }
    }
    assert( Map_ManReadBufNum(pMan) == pNtk->nBarBufs );
    Vec_PtrFree( vNodes );

    // set the primary outputs in the required phase
    Abc_NtkForEachCo( pNtk, pNode, i )
    {
        if ( i == Abc_NtkCoNum(pNtk) - pNtk->nBarBufs )
            break;
        Map_ManReadOutputs(pMan)[i] = Map_NotCond( (Map_Node_t *)Abc_ObjFanin0(pNode)->pCopy, (int)Abc_ObjFaninC0(pNode) );
    }
    return pMan;
}
Esempio n. 11
0
/**Function*************************************************************

  Synopsis    [Transfers names from one netlist to the other.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkDress( Abc_Ntk_t * pNtkLogic, char * pFileName, int fVerbose )
{
    Abc_Ntk_t * pNtkOrig, * pNtkLogicOrig;
    Abc_Ntk_t * pMiter, * pMiterFraig;
    stmm_table * tMapping;

    assert( Abc_NtkIsLogic(pNtkLogic) );

    // get the original netlist
    pNtkOrig = Io_ReadNetlist( pFileName, Io_ReadFileType(pFileName), 1 );
    if ( pNtkOrig == NULL )
        return;
    assert( Abc_NtkIsNetlist(pNtkOrig) );

    Abc_NtkCleanCopy(pNtkLogic);
    Abc_NtkCleanCopy(pNtkOrig);

    // convert it into the logic network
    pNtkLogicOrig = Abc_NtkToLogic( pNtkOrig );
    // check that the networks have the same PIs/POs/latches
    if ( !Abc_NtkCompareSignals( pNtkLogic, pNtkLogicOrig, 1, 1 ) )
    {
        Abc_NtkDelete( pNtkOrig );
        Abc_NtkDelete( pNtkLogicOrig );
        return;
    }

    // convert the current logic network into an AIG
    pMiter = Abc_NtkStrash( pNtkLogic, 1, 0, 0 );

    // convert it into the AIG and make the netlist point to the AIG
    Abc_NtkAppend( pMiter, pNtkLogicOrig, 1 );
    Abc_NtkTransferCopy( pNtkOrig );
    Abc_NtkDelete( pNtkLogicOrig );

if ( fVerbose ) 
{
printf( "After mitering:\n" );
printf( "Logic:  Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkLogic), Abc_NtkCountCopy(pNtkLogic) );
printf( "Orig:   Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkOrig),  Abc_NtkCountCopy(pNtkOrig) );
}

    // fraig the miter (miter nodes point to the fraiged miter)
    pMiterFraig = Abc_NtkIvyFraig( pMiter, 100, 1, 0, 1, 0 );
    // make netlists point to the fraiged miter
    Abc_NtkTransferCopy( pNtkLogic );
    Abc_NtkTransferCopy( pNtkOrig );
    Abc_NtkDelete( pMiter );

if ( fVerbose ) 
{
printf( "After fraiging:\n" );
printf( "Logic:  Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkLogic), Abc_NtkCountCopy(pNtkLogic) );
printf( "Orig:   Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkOrig),  Abc_NtkCountCopy(pNtkOrig) );
}

    // derive mapping from the fraiged nodes into their prototype nodes in the original netlist
    tMapping = Abc_NtkDressDeriveMapping( pNtkOrig );

    // transfer the names to the new netlist
    Abc_NtkDressTransferNames( pNtkLogic, tMapping, fVerbose );

    // clean up
    stmm_free_table( tMapping );
    Abc_NtkDelete( pMiterFraig );
    Abc_NtkDelete( pNtkOrig );
}
Esempio n. 12
0
/**Function*************************************************************

  Synopsis    [Starts the record for the given network.]

  Description []

  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkRecStart( Abc_Ntk_t * pNtk, int nVars, int nCuts )
{
    Abc_ManRec_t * p;
    Abc_Obj_t * pObj, ** ppSpot;
    char Buffer[10];
    unsigned * pTruth;
    int i, RetValue;
    int clkTotal = clock(), clk;

    assert( s_pMan == NULL );
    if ( pNtk == NULL )
    {
        assert( nVars > 2 && nVars <= 16 );
        pNtk = Abc_NtkAlloc( ABC_NTK_STRASH, ABC_FUNC_AIG, 1 );
        pNtk->pName = Extra_UtilStrsav( "record" );
    }
    else
    {
        if ( Abc_NtkGetChoiceNum(pNtk) > 0 )
        {
            printf( "The starting record should be a network without choice nodes.\n" );
            return;
        }
        if ( Abc_NtkPiNum(pNtk) > 16 )
        {
            printf( "The starting record should be a network with no more than %d primary inputs.\n", 16 );
            return;
        }
        if ( Abc_NtkPiNum(pNtk) > nVars )
            printf( "The starting record has %d inputs (warning only).\n", Abc_NtkPiNum(pNtk) );
        pNtk = Abc_NtkDup( pNtk );
    }
    // create the primary inputs
    for ( i = Abc_NtkPiNum(pNtk); i < nVars; i++ )
    {
        pObj = Abc_NtkCreatePi( pNtk );
        Buffer[0] = 'a' + i;
        Buffer[1] = 0;
        Abc_ObjAssignName( pObj, Buffer, NULL );
    }
    Abc_NtkCleanCopy( pNtk );
    Abc_NtkCleanEquiv( pNtk );

    // start the manager
    p = ABC_ALLOC( Abc_ManRec_t, 1 );
    memset( p, 0, sizeof(Abc_ManRec_t) );
    p->pNtk = pNtk;
    p->nVars = Abc_NtkPiNum(pNtk);
    p->nWords = Kit_TruthWordNum( p->nVars );
    p->nCuts = nCuts;
    p->nVarsInit = nVars;

    // create elementary truth tables
    p->vTtElems = Vec_PtrAlloc( 0 );
    assert( p->vTtElems->pArray == NULL );
    p->vTtElems->nSize = p->nVars;
    p->vTtElems->nCap = p->nVars;
    p->vTtElems->pArray = (void *)Extra_TruthElementary( p->nVars );

    // allocate room for node truth tables
    if ( Abc_NtkObjNum(pNtk) > (1<<14) )
        p->vTtNodes = Vec_PtrAllocSimInfo( 2 * Abc_NtkObjNum(pNtk), p->nWords );
    else
        p->vTtNodes = Vec_PtrAllocSimInfo( 1<<14, p->nWords );

    // create hash table
    p->nBins = 50011;
    p->pBins = ABC_ALLOC( Abc_Obj_t *, p->nBins );
    memset( p->pBins, 0, sizeof(Abc_Obj_t *) * p->nBins );

    // set elementary tables
    Kit_TruthFill( Vec_PtrEntry(p->vTtNodes, 0), p->nVars );
    Abc_NtkForEachPi( pNtk, pObj, i )
    Kit_TruthCopy( Vec_PtrEntry(p->vTtNodes, pObj->Id), Vec_PtrEntry(p->vTtElems, i), p->nVars );

    // compute the tables
    clk = clock();
    Abc_AigForEachAnd( pNtk, pObj, i )
    {
        RetValue = Abc_NtkRecComputeTruth( pObj, p->vTtNodes, p->nVars );
        assert( RetValue );
    }
Esempio n. 13
0
File: abcCheck.c Progetto: mrkj/abc
/**Function*************************************************************

  Synopsis    [Checks the integrity of the network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkDoCheck( Abc_Ntk_t * pNtk )
{
    Abc_Obj_t * pObj, * pNet, * pNode;
    int i;

    // check network types
    if ( !Abc_NtkIsNetlist(pNtk) && !Abc_NtkIsLogic(pNtk) && !Abc_NtkIsStrash(pNtk) )
    {
        fprintf( stdout, "NetworkCheck: Unknown network type.\n" );
        return 0;
    }
    if ( !Abc_NtkHasSop(pNtk) && !Abc_NtkHasBdd(pNtk) && !Abc_NtkHasAig(pNtk) && !Abc_NtkHasMapping(pNtk) && !Abc_NtkHasBlifMv(pNtk) && !Abc_NtkHasBlackbox(pNtk) )
    {
        fprintf( stdout, "NetworkCheck: Unknown functionality type.\n" );
        return 0;
    }
    if ( Abc_NtkHasMapping(pNtk) )
    {
        if ( pNtk->pManFunc != Abc_FrameReadLibGen() )
        {
            fprintf( stdout, "NetworkCheck: The library of the mapped network is not the global library.\n" );
            return 0;
        }
    }

    if ( Abc_NtkHasOnlyLatchBoxes(pNtk) )
    {
        // check CI/CO numbers
        if ( Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) != Abc_NtkCiNum(pNtk) )
        {
            fprintf( stdout, "NetworkCheck: Number of CIs does not match number of PIs and latches.\n" );
            fprintf( stdout, "One possible reason is that latches are added twice:\n" );
            fprintf( stdout, "in procedure Abc_NtkCreateObj() and in the user's code.\n" );
            return 0;
        }
        if ( Abc_NtkPoNum(pNtk) + Abc_NtkLatchNum(pNtk) != Abc_NtkCoNum(pNtk) )
        {
            fprintf( stdout, "NetworkCheck: Number of COs does not match number of POs, asserts, and latches.\n" );
            fprintf( stdout, "One possible reason is that latches are added twice:\n" );
            fprintf( stdout, "in procedure Abc_NtkCreateObj() and in the user's code.\n" );
            return 0;
        }
    }

    // check the names
    if ( !Abc_NtkCheckNames( pNtk ) )
        return 0;

    // check PIs and POs
    Abc_NtkCleanCopy( pNtk );
    if ( !Abc_NtkCheckPis( pNtk ) )
        return 0;
    if ( !Abc_NtkCheckPos( pNtk ) )
        return 0;

    if ( Abc_NtkHasBlackbox(pNtk) )
        return 1;

    // check the connectivity of objects
    Abc_NtkForEachObj( pNtk, pObj, i )
        if ( !Abc_NtkCheckObj( pNtk, pObj ) )
            return 0;

    // if it is a netlist change nets and latches
    if ( Abc_NtkIsNetlist(pNtk) )
    {
        if ( Abc_NtkNetNum(pNtk) == 0 )
            fprintf( stdout, "NetworkCheck: Warning! Netlist has no nets.\n" );
        // check the nets
        Abc_NtkForEachNet( pNtk, pNet, i )
            if ( !Abc_NtkCheckNet( pNtk, pNet ) )
                return 0;
    }
    else
    {
        if ( Abc_NtkNetNum(pNtk) != 0 )