/**Function************************************************************* Synopsis [Transform the logic network into a netlist.] Description [The logic network given to this procedure should have exactly the same structure as the resulting netlist. The COs can only point to CIs if they have identical names. Otherwise, they should have a node between them, even if this node is inverter or buffer.] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkLogicToNetlist( Abc_Ntk_t * pNtk ) { Abc_Ntk_t * pNtkNew; Abc_Obj_t * pObj, * pNet, * pDriver, * pFanin; int i, k; assert( Abc_NtkIsLogic(pNtk) ); // remove dangling nodes Abc_NtkCleanup( pNtk, 0 ); // make sure the CO names are unique Abc_NtkCheckUniqueCiNames( pNtk ); Abc_NtkCheckUniqueCoNames( pNtk ); Abc_NtkCheckUniqueCioNames( pNtk ); // assert( Abc_NtkLogicHasSimpleCos(pNtk) ); if ( !Abc_NtkLogicHasSimpleCos(pNtk) ) { printf( "Abc_NtkLogicToNetlist() warning: The network is converted to have simple COs.\n" ); Abc_NtkLogicMakeSimpleCos( pNtk, 0 ); } // start the netlist by creating PI/PO/Latch objects pNtkNew = Abc_NtkStartFrom( pNtk, ABC_NTK_NETLIST, pNtk->ntkFunc ); // create the CI nets and remember them in the new CI nodes Abc_NtkForEachCi( pNtk, pObj, i ) { pNet = Abc_NtkFindOrCreateNet( pNtkNew, Abc_ObjName(pObj) ); Abc_ObjAddFanin( pNet, pObj->pCopy ); pObj->pCopy->pCopy = pNet; }
/**Function************************************************************* Synopsis [Writes the graph structure of AIG in GML.] Description [Useful for graph visualization using tools such as yEd: http://www.yworks.com/] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteGml( Abc_Ntk_t * pNtk, char * pFileName ) { FILE * pFile; Abc_Obj_t * pObj, * pFanin; int i, k; assert( Abc_NtkIsStrash(pNtk) || Abc_NtkIsLogic(pNtk) ); // start the output stream pFile = fopen( pFileName, "w" ); if ( pFile == NULL ) { fprintf( stdout, "Io_WriteGml(): Cannot open the output file \"%s\".\n", pFileName ); return; } fprintf( pFile, "# GML for \"%s\" written by ABC on %s\n", pNtk->pName, Extra_TimeStamp() ); fprintf( pFile, "graph [\n" ); // output the POs fprintf( pFile, "\n" ); Abc_NtkForEachPo( pNtk, pObj, i ) { fprintf( pFile, " node [ id %5d label \"%s\"\n", pObj->Id, Abc_ObjName(pObj) ); fprintf( pFile, " graphics [ type \"triangle\" fill \"#00FFFF\" ]\n" ); // blue fprintf( pFile, " ]\n" ); }
ABC_NAMESPACE_IMPL_START //////////////////////////////////////////////////////////////////////// /// DECLARATIONS /// //////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// /// FUNCTION DEFINITIONS /// //////////////////////////////////////////////////////////////////////// /**Function************************************************************* Synopsis [Converts old ABC network into new ABC network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Nwk_Man_t * Abc_NtkToNtkNew( Abc_Ntk_t * pNtk ) { Vec_Ptr_t * vNodes; Nwk_Man_t * pNtkNew; Nwk_Obj_t * pObjNew; Abc_Obj_t * pObj, * pFanin; int i, k; if ( !Abc_NtkIsLogic(pNtk) ) { fprintf( stdout, "This is not a logic network.\n" ); return 0; } // convert into the AIG if ( !Abc_NtkToAig(pNtk) ) { fprintf( stdout, "Converting to AIGs has failed.\n" ); return 0; } assert( Abc_NtkHasAig(pNtk) ); // construct the network pNtkNew = Nwk_ManAlloc(); pNtkNew->pName = Extra_UtilStrsav( pNtk->pName ); pNtkNew->pSpec = Extra_UtilStrsav( pNtk->pSpec ); Abc_NtkForEachCi( pNtk, pObj, i ) pObj->pCopy = (Abc_Obj_t *)Nwk_ManCreateCi( pNtkNew, Abc_ObjFanoutNum(pObj) ); vNodes = Abc_NtkDfs( pNtk, 1 ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) { pObjNew = Nwk_ManCreateNode( pNtkNew, Abc_ObjFaninNum(pObj), Abc_ObjFanoutNum(pObj) ); Abc_ObjForEachFanin( pObj, pFanin, k ) Nwk_ObjAddFanin( pObjNew, (Nwk_Obj_t *)pFanin->pCopy ); pObjNew->pFunc = Hop_Transfer( (Hop_Man_t *)pNtk->pManFunc, pNtkNew->pManHop, (Hop_Obj_t *)pObj->pData, Abc_ObjFaninNum(pObj) ); pObj->pCopy = (Abc_Obj_t *)pObjNew; }
/**Function************************************************************* Synopsis [Prints statistics about latches.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkPrintLatch( FILE * pFile, Abc_Ntk_t * pNtk ) { Abc_Obj_t * pLatch, * pFanin; int i, Counter0, Counter1, Counter2; int InitNums[4], Init; assert( !Abc_NtkIsNetlist(pNtk) ); if ( Abc_NtkLatchNum(pNtk) == 0 ) { fprintf( pFile, "The network is combinational.\n" ); return; } for ( i = 0; i < 4; i++ ) InitNums[i] = 0; Counter0 = Counter1 = Counter2 = 0; Abc_NtkForEachLatch( pNtk, pLatch, i ) { Init = Abc_LatchInit( pLatch ); assert( Init < 4 ); InitNums[Init]++; pFanin = Abc_ObjFanin0(Abc_ObjFanin0(pLatch)); if ( Abc_NtkIsLogic(pNtk) ) { if ( !Abc_NodeIsConst(pFanin) ) continue; } else if ( Abc_NtkIsStrash(pNtk) ) { if ( !Abc_AigNodeIsConst(pFanin) ) continue; } else assert( 0 ); // the latch input is a constant node Counter0++; if ( Abc_LatchIsInitDc(pLatch) ) { Counter1++; continue; } // count the number of cases when the constant is equal to the initial value if ( Abc_NtkIsStrash(pNtk) ) { if ( Abc_LatchIsInit1(pLatch) == !Abc_ObjFaninC0(pLatch) ) Counter2++; } else { if ( Abc_LatchIsInit1(pLatch) == Abc_NodeIsConst1(pLatch) ) Counter2++; } }
/**Function************************************************************* Synopsis [Visualizes AIG with choices.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkShow( Abc_Ntk_t * pNtk, int fGateNames, int fSeq, int fUseReverse ) { FILE * pFile; Abc_Obj_t * pNode; Vec_Ptr_t * vNodes; char FileNameDot[200]; int i; assert( Abc_NtkIsStrash(pNtk) || Abc_NtkIsLogic(pNtk) ); if ( Abc_NtkIsStrash(pNtk) && Abc_NtkGetChoiceNum(pNtk) ) { printf( "Temporarily visualization of AIGs with choice nodes is disabled.\n" ); return; } // convert to logic SOP if ( Abc_NtkIsLogic(pNtk) ) Abc_NtkToSop( pNtk, 0 ); // create the file name Abc_ShowGetFileName( pNtk->pName, FileNameDot ); // check that the file can be opened if ( (pFile = fopen( FileNameDot, "w" )) == NULL ) { fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", FileNameDot ); return; } fclose( pFile ); // collect all nodes in the network vNodes = Vec_PtrAlloc( 100 ); Abc_NtkForEachObj( pNtk, pNode, i ) Vec_PtrPush( vNodes, pNode ); // write the DOT file if ( fSeq ) Io_WriteDotSeq( pNtk, vNodes, NULL, FileNameDot, fGateNames, fUseReverse ); else Io_WriteDotNtk( pNtk, vNodes, NULL, FileNameDot, fGateNames, fUseReverse ); Vec_PtrFree( vNodes ); // visualize the file Abc_ShowFile( FileNameDot ); }
/**Function************************************************************* Synopsis [Derives GIA manager using special pins to denote box boundaries.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Gia_Man_t * Abc_NtkTestPinDeriveGia( Abc_Ntk_t * pNtk, int fWhiteBoxOnly, int fVerbose ) { Gia_Man_t * pTemp; Gia_Man_t * pGia = NULL; Vec_Ptr_t * vNodes; Abc_Obj_t * pObj, * pFanin; int i, k, iPinLit = 0; // prepare logic network assert( Abc_NtkIsLogic(pNtk) ); Abc_NtkToAig( pNtk ); // construct GIA Abc_NtkFillTemp( pNtk ); pGia = Gia_ManStart( Abc_NtkObjNumMax(pNtk) ); Gia_ManHashAlloc( pGia ); // create primary inputs Abc_NtkForEachCi( pNtk, pObj, i ) pObj->iTemp = Gia_ManAppendCi(pGia); // create internal nodes in a topologic order from white boxes vNodes = Abc_NtkDfs( pNtk, 0 ); Vec_PtrForEachEntry( Abc_Obj_t *, vNodes, pObj, i ) { // input side if ( !fWhiteBoxOnly || Abc_NodeIsWhiteBox(pObj) ) { // create special pintype for this node iPinLit = Gia_ManAppendPinType( pGia, 1 ); // create input pins Abc_ObjForEachFanin( pObj, pFanin, k ) pFanin->iTemp = Gia_ManAppendAnd( pGia, pFanin->iTemp, iPinLit ); } // perform GIA construction pObj->iTemp = Abc_NtkTestTimNodeStrash( pGia, pObj ); // output side if ( !fWhiteBoxOnly || Abc_NodeIsWhiteBox(pObj) ) { // create special pintype for this node iPinLit = Gia_ManAppendPinType( pGia, 1 ); // create output pins pObj->iTemp = Gia_ManAppendAnd( pGia, pObj->iTemp, iPinLit ); } } Vec_PtrFree( vNodes ); // create primary outputs Abc_NtkForEachCo( pNtk, pObj, i ) pObj->iTemp = Gia_ManAppendCo( pGia, Abc_ObjFanin0(pObj)->iTemp ); // finalize GIA Gia_ManHashStop( pGia ); Gia_ManSetRegNum( pGia, 0 ); // clean up GIA pGia = Gia_ManCleanup( pTemp = pGia ); Gia_ManStop( pTemp ); return pGia; }
/**Function************************************************************* Synopsis [Transform the logic network into a netlist.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_NtkToNetlist( Abc_Ntk_t * pNtk ) { Abc_Ntk_t * pNtkNew, * pNtkTemp; assert( Abc_NtkIsLogic(pNtk) || Abc_NtkIsStrash(pNtk) ); if ( Abc_NtkIsStrash(pNtk) ) { pNtkTemp = Abc_NtkAigToLogicSop(pNtk); pNtkNew = Abc_NtkLogicToNetlist( pNtkTemp ); Abc_NtkDelete( pNtkTemp ); return pNtkNew; } return Abc_NtkLogicToNetlist( pNtk ); }
/**Function************************************************************* Synopsis [Used for automated debugging.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkRetimeDebug( Abc_Ntk_t * pNtk ) { extern int Abc_NtkSecFraig( Abc_Ntk_t * pNtk1, Abc_Ntk_t * pNtk2, int nSeconds, int nFrames, int fVerbose ); Abc_Ntk_t * pNtkRet; assert( Abc_NtkIsLogic(pNtk) ); Abc_NtkToSop( pNtk, 0 ); // if ( !Abc_NtkCheck( pNtk ) ) // fprintf( stdout, "Abc_NtkRetimeDebug(): Network check has failed.\n" ); // Io_WriteBlifLogic( pNtk, "debug_temp.blif", 1 ); pNtkRet = Abc_NtkDup( pNtk ); Abc_NtkRetime( pNtkRet, 3, 0, 1, 0, 0 ); // debugging backward flow return !Abc_NtkSecFraig( pNtk, pNtkRet, 10000, 3, 0 ); }
/**Function************************************************************* Synopsis [Minimizes SOP representations using Espresso.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkEspresso( Abc_Ntk_t * pNtk, int fVerbose ) { Abc_Obj_t * pNode; int i; assert( Abc_NtkIsLogic(pNtk) ); // convert the network to have SOPs if ( Abc_NtkHasMapping(pNtk) ) Abc_NtkMapToSop(pNtk); else if ( Abc_NtkHasBdd(pNtk) ) { if ( !Abc_NtkBddToSop(pNtk, -1, ABC_INFINITY) ) { printf( "Abc_NtkEspresso(): Converting to SOPs has failed.\n" ); return; } } // minimize SOPs of all nodes Abc_NtkForEachNode( pNtk, pNode, i ) if ( i ) Abc_NodeEspresso( pNode ); }
/**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkMfs( Abc_Ntk_t * pNtk, Mfs_Par_t * pPars ) { extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters ); Bdc_Par_t Pars = {0}, * pDecPars = &Pars; ProgressBar * pProgress; Mfs_Man_t * p; Abc_Obj_t * pObj; Vec_Vec_t * vLevels; Vec_Ptr_t * vNodes; int i, k, nNodes, nFaninMax; abctime clk = Abc_Clock(), clk2; int nTotalNodesBeg = Abc_NtkNodeNum(pNtk); int nTotalEdgesBeg = Abc_NtkGetTotalFanins(pNtk); assert( Abc_NtkIsLogic(pNtk) ); nFaninMax = Abc_NtkGetFaninMax(pNtk); if ( pPars->fResub ) { if ( nFaninMax > 8 ) { printf( "Nodes with more than %d fanins will not be processed.\n", 8 ); nFaninMax = 8; } } else { if ( nFaninMax > MFS_FANIN_MAX ) { printf( "Nodes with more than %d fanins will not be processed.\n", MFS_FANIN_MAX ); nFaninMax = MFS_FANIN_MAX; } } // perform the network sweep // Abc_NtkSweep( pNtk, 0 ); // convert into the AIG if ( !Abc_NtkToAig(pNtk) ) { fprintf( stdout, "Converting to AIGs has failed.\n" ); return 0; } assert( Abc_NtkHasAig(pNtk) ); // start the manager p = Mfs_ManAlloc( pPars ); p->pNtk = pNtk; p->nFaninMax = nFaninMax; // precomputer power-aware metrics if ( pPars->fPower ) { extern Vec_Int_t * Abc_NtkPowerEstimate( Abc_Ntk_t * pNtk, int fProbOne ); if ( pPars->fResub ) p->vProbs = Abc_NtkPowerEstimate( pNtk, 0 ); else p->vProbs = Abc_NtkPowerEstimate( pNtk, 1 ); #if 0 printf( "Total switching before = %7.2f.\n", Abc_NtkMfsTotalSwitching(pNtk) ); #else p->TotalSwitchingBeg = Abc_NtkMfsTotalSwitching(pNtk); #endif } if ( pNtk->pExcare ) { Abc_Ntk_t * pTemp; if ( Abc_NtkPiNum((Abc_Ntk_t *)pNtk->pExcare) != Abc_NtkCiNum(pNtk) ) printf( "The PI count of careset (%d) and logic network (%d) differ. Careset is not used.\n", Abc_NtkPiNum((Abc_Ntk_t *)pNtk->pExcare), Abc_NtkCiNum(pNtk) ); else { pTemp = Abc_NtkStrash( (Abc_Ntk_t *)pNtk->pExcare, 0, 0, 0 ); p->pCare = Abc_NtkToDar( pTemp, 0, 0 ); Abc_NtkDelete( pTemp ); p->vSuppsInv = Aig_ManSupportsInverse( p->pCare ); } } if ( p->pCare != NULL ) printf( "Performing optimization with %d external care clauses.\n", Aig_ManCoNum(p->pCare) ); // prepare the BDC manager if ( !pPars->fResub ) { pDecPars->nVarsMax = (nFaninMax < 3) ? 3 : nFaninMax; pDecPars->fVerbose = pPars->fVerbose; p->vTruth = Vec_IntAlloc( 0 ); p->pManDec = Bdc_ManAlloc( pDecPars ); } // label the register outputs if ( p->pCare ) { Abc_NtkForEachCi( pNtk, pObj, i ) pObj->pData = (void *)(ABC_PTRUINT_T)i; } // compute levels Abc_NtkLevel( pNtk ); Abc_NtkStartReverseLevels( pNtk, pPars->nGrowthLevel ); // compute don't-cares for each node nNodes = 0; p->nTotalNodesBeg = nTotalNodesBeg; p->nTotalEdgesBeg = nTotalEdgesBeg; if ( pPars->fResub ) { #if 0 printf( "TotalSwitching (%7.2f --> ", Abc_NtkMfsTotalSwitching(pNtk) ); #endif if (pPars->fPower) { Abc_NtkMfsPowerResub( p, pPars); } else { pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNode( pNtk, pObj, i ) { if ( p->pPars->nDepthMax && (int)pObj->Level > p->pPars->nDepthMax ) continue; if ( Abc_ObjFaninNum(pObj) < 2 || Abc_ObjFaninNum(pObj) > nFaninMax ) continue; if ( !p->pPars->fVeryVerbose ) Extra_ProgressBarUpdate( pProgress, i, NULL ); if ( pPars->fResub ) Abc_NtkMfsResub( p, pObj ); else Abc_NtkMfsNode( p, pObj ); } Extra_ProgressBarStop( pProgress ); #if 0 printf( " %7.2f )\n", Abc_NtkMfsTotalSwitching(pNtk) ); #endif } } else
/**Function************************************************************* Synopsis [Performs minimum-register retiming.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_FlowRetime_MinReg( Abc_Ntk_t * pNtk, int fVerbose, int fComputeInitState, int fGuaranteeInitState, int fBlockConst, int fForwardOnly, int fBackwardOnly, int nMaxIters, int maxDelay, int fFastButConservative ) { int i; Abc_Obj_t *pObj, *pNext; InitConstraint_t *pData; // create manager pManMR = ALLOC( MinRegMan_t, 1 ); pManMR->pNtk = pNtk; pManMR->fVerbose = fVerbose; pManMR->fComputeInitState = fComputeInitState; pManMR->fGuaranteeInitState = fGuaranteeInitState; pManMR->fBlockConst = fBlockConst; pManMR->fForwardOnly = fForwardOnly; pManMR->fBackwardOnly = fBackwardOnly; pManMR->nMaxIters = nMaxIters; pManMR->maxDelay = maxDelay; pManMR->fComputeInitState = fComputeInitState; pManMR->fConservTimingOnly = fFastButConservative; pManMR->vNodes = Vec_PtrAlloc(100); pManMR->vInitConstraints = Vec_PtrAlloc(2); pManMR->pInitNtk = NULL; pManMR->pInitToOrig = NULL; pManMR->sizeInitToOrig = 0; vprintf("Flow-based minimum-register retiming...\n"); if (!Abc_NtkHasOnlyLatchBoxes(pNtk)) { printf("\tERROR: Can not retime with black/white boxes\n"); return pNtk; } if (maxDelay) { vprintf("\tmax delay constraint = %d\n", maxDelay); if (maxDelay < (i = Abc_NtkLevel(pNtk))) { printf("ERROR: max delay constraint (%d) must be > current max delay (%d)\n", maxDelay, i); return pNtk; } } // print info about type of network vprintf("\tnetlist type = "); if (Abc_NtkIsNetlist( pNtk )) { vprintf("netlist/"); } else if (Abc_NtkIsLogic( pNtk )) { vprintf("logic/"); } else if (Abc_NtkIsStrash( pNtk )) { vprintf("strash/"); } else { vprintf("***unknown***/"); } if (Abc_NtkHasSop( pNtk )) { vprintf("sop\n"); } else if (Abc_NtkHasBdd( pNtk )) { vprintf("bdd\n"); } else if (Abc_NtkHasAig( pNtk )) { vprintf("aig\n"); } else if (Abc_NtkHasMapping( pNtk )) { vprintf("mapped\n"); } else { vprintf("***unknown***\n"); } vprintf("\tinitial reg count = %d\n", Abc_NtkLatchNum(pNtk)); vprintf("\tinitial levels = %d\n", Abc_NtkLevel(pNtk)); // remove bubbles from latch boxes if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk); vprintf("\tpushing bubbles out of latch boxes\n"); Abc_NtkForEachLatch( pNtk, pObj, i ) Abc_FlowRetime_RemoveLatchBubbles(pObj); if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk); // check for box inputs/outputs Abc_NtkForEachLatch( pNtk, pObj, i ) { assert(Abc_ObjFaninNum(pObj) == 1); assert(Abc_ObjFanoutNum(pObj) == 1); assert(!Abc_ObjFaninC0(pObj)); pNext = Abc_ObjFanin0(pObj); assert(Abc_ObjIsBi(pNext)); assert(Abc_ObjFaninNum(pNext) <= 1); if(Abc_ObjFaninNum(pNext) == 0) // every Bi should have a fanin Abc_FlowRetime_AddDummyFanin( pNext ); pNext = Abc_ObjFanout0(pObj); assert(Abc_ObjIsBo(pNext)); assert(Abc_ObjFaninNum(pNext) == 1); assert(!Abc_ObjFaninC0(pNext)); }
/**Function************************************************************* Synopsis [Write the network into file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteHie( Abc_Ntk_t * pNtk, char * pBaseName, char * pFileName ) { Abc_Ntk_t * pNtkTemp, * pNtkResult, * pNtkBase = NULL; // check if the current network is available if ( pNtk == NULL ) { fprintf( stdout, "Empty network.\n" ); return; } // read the base network assert( Abc_NtkIsStrash(pNtk) || Abc_NtkIsLogic(pNtk) ); if ( Io_ReadFileType(pBaseName) == IO_FILE_BLIF ) pNtkBase = Io_ReadBlifMv( pBaseName, 0, 1 ); else if ( Io_ReadFileType(pBaseName) == IO_FILE_BLIFMV ) pNtkBase = Io_ReadBlifMv( pBaseName, 1, 1 ); else if ( Io_ReadFileType(pBaseName) == IO_FILE_VERILOG ) pNtkBase = Io_ReadVerilog( pBaseName, 1 ); else fprintf( stderr, "Unknown input file format.\n" ); if ( pNtkBase == NULL ) return; // flatten logic hierarchy if present if ( Abc_NtkWhiteboxNum(pNtkBase) > 0 ) { pNtkBase = Abc_NtkFlattenLogicHierarchy( pNtkTemp = pNtkBase ); if ( pNtkBase == NULL ) return; Abc_NtkDelete( pNtkTemp ); } // reintroduce the boxes into the netlist if ( Io_ReadFileType(pBaseName) == IO_FILE_BLIFMV ) { if ( Abc_NtkBlackboxNum(pNtkBase) > 0 ) { printf( "Hierarchy writer does not support BLIF-MV with blackboxes.\n" ); Abc_NtkDelete( pNtkBase ); return; } // convert the current network to BLIF-MV assert( !Abc_NtkIsNetlist(pNtk) ); pNtkResult = Abc_NtkToNetlist( pNtk ); if ( !Abc_NtkConvertToBlifMv( pNtkResult ) ) return; // reintroduce the network pNtkResult = Abc_NtkInsertBlifMv( pNtkBase, pNtkTemp = pNtkResult ); Abc_NtkDelete( pNtkTemp ); } else if ( Abc_NtkBlackboxNum(pNtkBase) > 0 ) { // derive the netlist pNtkResult = Abc_NtkToNetlist( pNtk ); pNtkResult = Abc_NtkInsertNewLogic( pNtkBase, pNtkTemp = pNtkResult ); Abc_NtkDelete( pNtkTemp ); if ( pNtkResult ) printf( "Hierarchy writer reintroduced %d instances of blackboxes.\n", Abc_NtkBlackboxNum(pNtkBase) ); } else { printf( "Warning: The output network does not contain blackboxes.\n" ); pNtkResult = Abc_NtkToNetlist( pNtk ); } Abc_NtkDelete( pNtkBase ); if ( pNtkResult == NULL ) return; // write the resulting network if ( Io_ReadFileType(pFileName) == IO_FILE_BLIF ) { if ( !Abc_NtkHasSop(pNtkResult) && !Abc_NtkHasMapping(pNtkResult) ) Abc_NtkToSop( pNtkResult, 0 ); Io_WriteBlif( pNtkResult, pFileName, 1 ); } else if ( Io_ReadFileType(pFileName) == IO_FILE_VERILOG ) { if ( !Abc_NtkHasAig(pNtkResult) && !Abc_NtkHasMapping(pNtkResult) ) Abc_NtkToAig( pNtkResult ); Io_WriteVerilog( pNtkResult, pFileName ); } else if ( Io_ReadFileType(pFileName) == IO_FILE_BLIFMV ) { Io_WriteBlifMv( pNtkResult, pFileName ); } else fprintf( stderr, "Unknown output file format.\n" ); Abc_NtkDelete( pNtkResult ); }
/**Function************************************************************* Synopsis [Transfers names from one netlist to the other.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkDress( Abc_Ntk_t * pNtkLogic, char * pFileName, int fVerbose ) { Abc_Ntk_t * pNtkOrig, * pNtkLogicOrig; Abc_Ntk_t * pMiter, * pMiterFraig; stmm_table * tMapping; assert( Abc_NtkIsLogic(pNtkLogic) ); // get the original netlist pNtkOrig = Io_ReadNetlist( pFileName, Io_ReadFileType(pFileName), 1 ); if ( pNtkOrig == NULL ) return; assert( Abc_NtkIsNetlist(pNtkOrig) ); Abc_NtkCleanCopy(pNtkLogic); Abc_NtkCleanCopy(pNtkOrig); // convert it into the logic network pNtkLogicOrig = Abc_NtkToLogic( pNtkOrig ); // check that the networks have the same PIs/POs/latches if ( !Abc_NtkCompareSignals( pNtkLogic, pNtkLogicOrig, 1, 1 ) ) { Abc_NtkDelete( pNtkOrig ); Abc_NtkDelete( pNtkLogicOrig ); return; } // convert the current logic network into an AIG pMiter = Abc_NtkStrash( pNtkLogic, 1, 0, 0 ); // convert it into the AIG and make the netlist point to the AIG Abc_NtkAppend( pMiter, pNtkLogicOrig, 1 ); Abc_NtkTransferCopy( pNtkOrig ); Abc_NtkDelete( pNtkLogicOrig ); if ( fVerbose ) { printf( "After mitering:\n" ); printf( "Logic: Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkLogic), Abc_NtkCountCopy(pNtkLogic) ); printf( "Orig: Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkOrig), Abc_NtkCountCopy(pNtkOrig) ); } // fraig the miter (miter nodes point to the fraiged miter) pMiterFraig = Abc_NtkIvyFraig( pMiter, 100, 1, 0, 1, 0 ); // make netlists point to the fraiged miter Abc_NtkTransferCopy( pNtkLogic ); Abc_NtkTransferCopy( pNtkOrig ); Abc_NtkDelete( pMiter ); if ( fVerbose ) { printf( "After fraiging:\n" ); printf( "Logic: Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkLogic), Abc_NtkCountCopy(pNtkLogic) ); printf( "Orig: Nodes = %5d. Copy = %5d. \n", Abc_NtkNodeNum(pNtkOrig), Abc_NtkCountCopy(pNtkOrig) ); } // derive mapping from the fraiged nodes into their prototype nodes in the original netlist tMapping = Abc_NtkDressDeriveMapping( pNtkOrig ); // transfer the names to the new netlist Abc_NtkDressTransferNames( pNtkLogic, tMapping, fVerbose ); // clean up stmm_free_table( tMapping ); Abc_NtkDelete( pMiterFraig ); Abc_NtkDelete( pNtkOrig ); }
/**Function************************************************************* Synopsis [Writes the graph structure of network for DOT.] Description [Useful for graph visualization using tools such as GraphViz: http://www.graphviz.org/] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteDotNtk( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesShow, char * pFileName, int fGateNames, int fUseReverse ) { FILE * pFile; Abc_Obj_t * pNode, * pFanin; char * pSopString; int LevelMin, LevelMax, fHasCos, Level, i, k, fHasBdds, fCompl; int Limit = 300; assert( Abc_NtkIsStrash(pNtk) || Abc_NtkIsLogic(pNtk) ); if ( vNodes->nSize < 1 ) { printf( "The set has no nodes. DOT file is not written.\n" ); return; } if ( vNodes->nSize > Limit ) { printf( "The set has more than %d nodes. DOT file is not written.\n", Limit ); return; } // start the stream if ( (pFile = fopen( pFileName, "w" )) == NULL ) { fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", pFileName ); return; } // transform logic functions from BDD to SOP if ( fHasBdds = Abc_NtkIsBddLogic(pNtk) ) { if ( !Abc_NtkBddToSop(pNtk, 0) ) { printf( "Io_WriteDotNtk(): Converting to SOPs has failed.\n" ); return; } } // mark the nodes from the set Vec_PtrForEachEntry( vNodes, pNode, i ) pNode->fMarkC = 1; if ( vNodesShow ) Vec_PtrForEachEntry( vNodesShow, pNode, i ) pNode->fMarkB = 1; // get the levels of nodes LevelMax = Abc_NtkLevel( pNtk ); if ( fUseReverse ) { LevelMin = Abc_NtkLevelReverse( pNtk ); assert( LevelMax == LevelMin ); Vec_PtrForEachEntry( vNodes, pNode, i ) if ( Abc_ObjIsNode(pNode) ) pNode->Level = LevelMax - pNode->Level + 1; } // find the largest and the smallest levels LevelMin = 10000; LevelMax = -1; fHasCos = 0; Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( Abc_ObjIsCo(pNode) ) { fHasCos = 1; continue; } if ( LevelMin > (int)pNode->Level ) LevelMin = pNode->Level; if ( LevelMax < (int)pNode->Level ) LevelMax = pNode->Level; } // set the level of the CO nodes if ( fHasCos ) { LevelMax++; Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( Abc_ObjIsCo(pNode) ) pNode->Level = LevelMax; } } // write the DOT header fprintf( pFile, "# %s\n", "Network structure generated by ABC" ); fprintf( pFile, "\n" ); fprintf( pFile, "digraph network {\n" ); fprintf( pFile, "size = \"7.5,10\";\n" ); // fprintf( pFile, "size = \"10,8.5\";\n" ); // fprintf( pFile, "size = \"14,11\";\n" ); // fprintf( pFile, "page = \"8,11\";\n" ); // fprintf( pFile, "ranksep = 0.5;\n" ); // fprintf( pFile, "nodesep = 0.5;\n" ); fprintf( pFile, "center = true;\n" ); // fprintf( pFile, "orientation = landscape;\n" ); // fprintf( pFile, "edge [fontsize = 10];\n" ); // fprintf( pFile, "edge [dir = none];\n" ); fprintf( pFile, "edge [dir = back];\n" ); fprintf( pFile, "\n" ); // labels on the left of the picture fprintf( pFile, "{\n" ); fprintf( pFile, " node [shape = plaintext];\n" ); fprintf( pFile, " edge [style = invis];\n" ); fprintf( pFile, " LevelTitle1 [label=\"\"];\n" ); fprintf( pFile, " LevelTitle2 [label=\"\"];\n" ); // generate node names with labels for ( Level = LevelMax; Level >= LevelMin; Level-- ) { // the visible node name fprintf( pFile, " Level%d", Level ); fprintf( pFile, " [label = " ); // label name fprintf( pFile, "\"" ); fprintf( pFile, "\"" ); fprintf( pFile, "];\n" ); } // genetate the sequence of visible/invisible nodes to mark levels fprintf( pFile, " LevelTitle1 -> LevelTitle2 ->" ); for ( Level = LevelMax; Level >= LevelMin; Level-- ) { // the visible node name fprintf( pFile, " Level%d", Level ); // the connector if ( Level != LevelMin ) fprintf( pFile, " ->" ); else fprintf( pFile, ";" ); } fprintf( pFile, "\n" ); fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); // generate title box on top fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); fprintf( pFile, " LevelTitle1;\n" ); fprintf( pFile, " title1 [shape=plaintext,\n" ); fprintf( pFile, " fontsize=20,\n" ); fprintf( pFile, " fontname = \"Times-Roman\",\n" ); fprintf( pFile, " label=\"" ); fprintf( pFile, "%s", "Network structure visualized by ABC" ); fprintf( pFile, "\\n" ); fprintf( pFile, "Benchmark \\\"%s\\\". ", pNtk->pName ); fprintf( pFile, "Time was %s. ", Extra_TimeStamp() ); fprintf( pFile, "\"\n" ); fprintf( pFile, " ];\n" ); fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); // generate statistics box fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); fprintf( pFile, " LevelTitle2;\n" ); fprintf( pFile, " title2 [shape=plaintext,\n" ); fprintf( pFile, " fontsize=18,\n" ); fprintf( pFile, " fontname = \"Times-Roman\",\n" ); fprintf( pFile, " label=\"" ); if ( Abc_NtkObjNum(pNtk) == Vec_PtrSize(vNodes) ) fprintf( pFile, "The network contains %d logic nodes and %d latches.", Abc_NtkNodeNum(pNtk), Abc_NtkLatchNum(pNtk) ); else fprintf( pFile, "The set contains %d logic nodes and spans %d levels.", Abc_NtkCountLogicNodes(vNodes), LevelMax - LevelMin + 1 ); fprintf( pFile, "\\n" ); fprintf( pFile, "\"\n" ); fprintf( pFile, " ];\n" ); fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); // generate the POs if ( fHasCos ) { fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); // the labeling node of this level fprintf( pFile, " Level%d;\n", LevelMax ); // generate the PO nodes Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( !Abc_ObjIsCo(pNode) ) continue; fprintf( pFile, " Node%d [label = \"%s%s\"", pNode->Id, (Abc_ObjIsBi(pNode)? Abc_ObjName(Abc_ObjFanout0(pNode)):Abc_ObjName(pNode)), (Abc_ObjIsBi(pNode)? "_in":"") ); fprintf( pFile, ", shape = %s", (Abc_ObjIsBi(pNode)? "box":"invtriangle") ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, ", color = coral, fillcolor = coral" ); fprintf( pFile, "];\n" ); } fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); } // generate nodes of each rank for ( Level = LevelMax - fHasCos; Level >= LevelMin && Level > 0; Level-- ) { fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); // the labeling node of this level fprintf( pFile, " Level%d;\n", Level ); Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( (int)pNode->Level != Level ) continue; if ( Abc_ObjFaninNum(pNode) == 0 ) continue; // fprintf( pFile, " Node%d [label = \"%d\"", pNode->Id, pNode->Id ); if ( Abc_NtkIsStrash(pNtk) ) pSopString = ""; else if ( Abc_NtkHasMapping(pNtk) && fGateNames ) pSopString = Mio_GateReadName(pNode->pData); else if ( Abc_NtkHasMapping(pNtk) ) pSopString = Abc_NtkPrintSop(Mio_GateReadSop(pNode->pData)); else pSopString = Abc_NtkPrintSop(pNode->pData); fprintf( pFile, " Node%d [label = \"%d\\n%s\"", pNode->Id, pNode->Id, pSopString ); fprintf( pFile, ", shape = ellipse" ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, "];\n" ); } fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); } // generate the PI nodes if any if ( LevelMin == 0 ) { fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); // the labeling node of this level fprintf( pFile, " Level%d;\n", LevelMin ); // generate the PO nodes Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( !Abc_ObjIsCi(pNode) ) { // check if the costant node is present if ( Abc_ObjFaninNum(pNode) == 0 && Abc_ObjFanoutNum(pNode) > 0 ) { fprintf( pFile, " Node%d [label = \"Const%d\"", pNode->Id, Abc_NtkIsStrash(pNode->pNtk) || Abc_NodeIsConst1(pNode) ); fprintf( pFile, ", shape = ellipse" ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, ", color = coral, fillcolor = coral" ); fprintf( pFile, "];\n" ); } continue; } fprintf( pFile, " Node%d [label = \"%s\"", pNode->Id, (Abc_ObjIsBo(pNode)? Abc_ObjName(Abc_ObjFanin0(pNode)):Abc_ObjName(pNode)) ); fprintf( pFile, ", shape = %s", (Abc_ObjIsBo(pNode)? "box":"triangle") ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, ", color = coral, fillcolor = coral" ); fprintf( pFile, "];\n" ); } fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); }
/**Function************************************************************* Synopsis [Checks the integrity of the network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkDoCheck( Abc_Ntk_t * pNtk ) { Abc_Obj_t * pObj, * pNet, * pNode; int i; // check network types if ( !Abc_NtkIsNetlist(pNtk) && !Abc_NtkIsLogic(pNtk) && !Abc_NtkIsStrash(pNtk) ) { fprintf( stdout, "NetworkCheck: Unknown network type.\n" ); return 0; } if ( !Abc_NtkHasSop(pNtk) && !Abc_NtkHasBdd(pNtk) && !Abc_NtkHasAig(pNtk) && !Abc_NtkHasMapping(pNtk) && !Abc_NtkHasBlifMv(pNtk) && !Abc_NtkHasBlackbox(pNtk) ) { fprintf( stdout, "NetworkCheck: Unknown functionality type.\n" ); return 0; } if ( Abc_NtkHasMapping(pNtk) ) { if ( pNtk->pManFunc != Abc_FrameReadLibGen() ) { fprintf( stdout, "NetworkCheck: The library of the mapped network is not the global library.\n" ); return 0; } } if ( Abc_NtkHasOnlyLatchBoxes(pNtk) ) { // check CI/CO numbers if ( Abc_NtkPiNum(pNtk) + Abc_NtkLatchNum(pNtk) != Abc_NtkCiNum(pNtk) ) { fprintf( stdout, "NetworkCheck: Number of CIs does not match number of PIs and latches.\n" ); fprintf( stdout, "One possible reason is that latches are added twice:\n" ); fprintf( stdout, "in procedure Abc_NtkCreateObj() and in the user's code.\n" ); return 0; } if ( Abc_NtkPoNum(pNtk) + Abc_NtkLatchNum(pNtk) != Abc_NtkCoNum(pNtk) ) { fprintf( stdout, "NetworkCheck: Number of COs does not match number of POs, asserts, and latches.\n" ); fprintf( stdout, "One possible reason is that latches are added twice:\n" ); fprintf( stdout, "in procedure Abc_NtkCreateObj() and in the user's code.\n" ); return 0; } } // check the names if ( !Abc_NtkCheckNames( pNtk ) ) return 0; // check PIs and POs Abc_NtkCleanCopy( pNtk ); if ( !Abc_NtkCheckPis( pNtk ) ) return 0; if ( !Abc_NtkCheckPos( pNtk ) ) return 0; if ( Abc_NtkHasBlackbox(pNtk) ) return 1; // check the connectivity of objects Abc_NtkForEachObj( pNtk, pObj, i ) if ( !Abc_NtkCheckObj( pNtk, pObj ) ) return 0; // if it is a netlist change nets and latches if ( Abc_NtkIsNetlist(pNtk) ) { if ( Abc_NtkNetNum(pNtk) == 0 ) fprintf( stdout, "NetworkCheck: Warning! Netlist has no nets.\n" ); // check the nets Abc_NtkForEachNet( pNtk, pNet, i ) if ( !Abc_NtkCheckNet( pNtk, pNet ) ) return 0; } else { if ( Abc_NtkNetNum(pNtk) != 0 )