void GBStackBrain::ExecuteInstruction(GBStackInstruction ins, GBRobot * robot, GBWorld * world) { GBStackInstruction index = ins & kOpcodeIndexMask; switch ( ins >> kOpcodeTypeShift ) { case otPrimitive: ExecutePrimitive(index, robot, world); break; case otConstantRead: Push(spec->ReadConstant(index)); break; case otVariableRead: Push(ReadVariable(index)); break; case otVariableWrite: WriteVariable(index, Pop()); break; case otVectorRead: PushVector(ReadVectorVariable(index)); break; case otVectorWrite: WriteVectorVariable(index, PopVector()); break; case otLabelRead: Push(spec->ReadLabel(index)); break; case otLabelCall: ExecuteCall(spec->ReadLabel(index)); break; case otHardwareRead: Push(ReadHardware(index, robot, world)); break; case otHardwareWrite: WriteHardware(index, Pop(), robot, world); break; case otHardwareVectorRead: PushVector(ReadHardwareVector(index, robot, world)); break; case otHardwareVectorWrite: WriteHardwareVector(index, PopVector(), robot, world); break; default: throw GBUnknownInstructionError(); break; } }
/* * Call a single event handler that was put on the stack with `Setup` and removes it from the stack. * * The caller is responsible for keeping track of how many times this should be called. */ int Eluna::CallOneFunction(int number_of_functions, int number_of_arguments, int number_of_results) { ++number_of_arguments; // Caller doesn't know about `event_id`. ASSERT(number_of_functions > 0 && number_of_arguments > 0 && number_of_results >= 0); // Stack: event_id, [arguments], [functions] int functions_top = lua_gettop(L); int first_function_index = functions_top - number_of_functions + 1; int arguments_top = first_function_index - 1; int first_argument_index = arguments_top - number_of_arguments + 1; // Copy the arguments from the bottom of the stack to the top. for (int argument_index = first_argument_index; argument_index <= arguments_top; ++argument_index) { lua_pushvalue(L, argument_index); } // Stack: event_id, [arguments], [functions], event_id, [arguments] ExecuteCall(number_of_arguments, number_of_results); --functions_top; // Stack: event_id, [arguments], [functions - 1], [results] return functions_top + 1; // Return the location of the first result (if any exist). }
void GBStackBrain::ExecutePrimitive(GBSymbolIndex index, GBRobot * robot, GBWorld * world) { GBStackDatum temp, temp2, temp3; long tempInt; switch ( index ) { case opNop: break; // stack manipulation case opDrop: Pop(); break; case op2Drop: Pop(); Pop(); break; case opNip: temp = Pop(); Pop(); Push(temp); break; case opRDrop: PopReturn(); break; case opDropN: { int n = PopInteger(); if ( n > stackHeight ) throw GBBadArgumentError(); stackHeight -= n; } break; case opSwap: temp = Pop(); temp2 = Pop(); Push(temp); Push(temp2); break; case op2Swap: { GBVector v1 = PopVector(); GBVector v2 = PopVector(); PushVector(v1); PushVector(v2); } break; case opRotate: temp = Pop(); temp2 = Pop(); temp3 = Pop(); Push(temp2); Push(temp); Push(temp3); break; case opReverseRotate: temp = Pop(); temp2 = Pop(); temp3 = Pop(); Push(temp); Push(temp3); Push(temp2); break; case opDup: temp = Peek(); Push(temp); break; case op2Dup: temp = Peek(2); temp2 = Peek(); Push(temp); Push(temp2); break; case opTuck: temp = Pop(); temp2 = Pop(); Push(temp); Push(temp2); Push(temp); break; case opOver: temp = Peek(2); Push(temp); break; case op2Over: temp = Peek(4); temp2 = Peek(3); Push(temp); Push(temp2); break; case opStackHeight: Push(stackHeight); break; case opStackLimit: Push(kStackLimit); break; case opPick: Push(Peek(PopInteger())); break; case opToReturn: PushReturn(ToAddress(Pop())); break; case opFromReturn: Push(PopReturn()); break; // branches case opJump: pc = ToAddress(Pop()); break; case opCall: ExecuteCall(ToAddress(Pop())); break; case opReturn: pc = PopReturn(); break; case opIfGo: temp = Pop(); if ( Pop().Nonzero() ) pc = ToAddress(temp); break; case opIfElseGo: temp = Pop(); temp2 = Pop(); if ( Pop().Nonzero() ) pc = ToAddress(temp2); else pc = ToAddress(temp); break; case opIfCall: temp = Pop(); if ( Pop().Nonzero() ) ExecuteCall(ToAddress(temp)); break; case opIfElseCall: temp = Pop(); temp2 = Pop(); if ( Pop().Nonzero() ) ExecuteCall(ToAddress(temp2)); else ExecuteCall(ToAddress(temp)); break; case opIfReturn: if ( Pop().Nonzero() ) pc = PopReturn(); break; case opNotIfGo: temp = Pop(); if ( ! Pop().Nonzero() ) pc = ToAddress(temp); break; case opNotIfReturn: if ( ! Pop().Nonzero() ) pc = PopReturn(); break; case opNotIfCall: temp = Pop(); if ( ! Pop().Nonzero() ) ExecuteCall(ToAddress(temp)); break; // arithmetic case opAdd: TwoNumberToNumberOp(&GBNumber::operator +); break; case opSubtract: TwoNumberToNumberOp(&GBNumber::operator -); break; case opNegate: NumberToNumberOp(&GBNumber::operator -); break; // mult and divide are written out because of MrCpp internal error case opMultiply: temp = Pop(); Push(Pop() * temp); break; case opDivide: temp = Pop(); Push(Pop() / temp); break; case opReciprocal: Push(GBNumber(1) / Pop()); break; case opMod: TwoNumberToNumberOp(&GBNumber::Mod); break; case opRem: TwoNumberToNumberOp(&GBNumber::Rem); break; case opSqrt: NumberToNumberOp(&GBNumber::Sqrt); break; case opExponent: TwoNumberToNumberOp(&GBNumber::Exponent); break; case opIsInteger: PushBoolean(Pop().IsInteger()); break; case opFloor: Push(Pop().Floor()); break; case opCeiling: Push(Pop().Ceiling()); break; case opRound: Push(Pop().Round()); break; case opMin: TwoNumberToNumberOp(&GBNumber::Min); break; case opMax: TwoNumberToNumberOp(&GBNumber::Max); break; case opAbs: NumberToNumberOp(&GBNumber::Abs); break; case opSignum: NumberToNumberOp(&GBNumber::Signum); break; case opReorient: NumberToNumberOp(&GBNumber::Reorient); break; case opSine: NumberToNumberOp(&GBNumber::Sin); break; case opCosine: NumberToNumberOp(&GBNumber::Cos); break; case opTangent: NumberToNumberOp(&GBNumber::Tan); break; case opArcSine: NumberToNumberOp(&GBNumber::ArcSin); break; case opArcCosine: NumberToNumberOp(&GBNumber::ArcCos); break; case opArcTangent: NumberToNumberOp(&GBNumber::ArcTan); break; case opRandom: temp = Pop(); Push(world->Randoms().InRange(Pop(), temp)); break; case opRandomAngle: Push(world->Randoms().Angle()); break; case opRandomInt: temp = Pop(); Push(world->Randoms().LongInRange(Pop().Ceiling(), temp.Floor())); break; case opRandomBoolean: PushBoolean(world->Randoms().Boolean(Pop())); break; // constants case opPi: Push(GBNumber::pi); break; case op2Pi: Push(GBNumber::pi * 2); break; case opPiOver2: Push(GBNumber::pi / 2); break; case opE: Push(GBNumber::e); break; case opEpsilon: Push(GBNumber::epsilon); break; case opInfinity: Push(GBNumber::infinity); break; // vector operations case opRectToPolar: { GBVector v = PopVector(); Push(v.Norm()); Push(v.Angle()); } break; case opPolarToRect: temp = Pop(); temp2 = Pop(); PushVector(GBFinePoint::MakePolar(temp2, temp)); break; case opVectorAdd: TwoVectorToVectorOp(&GBFinePoint::operator +); break; case opVectorSubtract: TwoVectorToVectorOp(&GBFinePoint::operator -); break; case opVectorNegate: VectorToVectorOp(&GBFinePoint::operator -); break; case opVectorScalarMultiply: temp = Pop(); PushVector(PopVector() * temp); break; case opVectorScalarDivide: temp = Pop(); PushVector(PopVector() / temp); break; case opVectorNorm: VectorToScalarOp(&GBFinePoint::Norm); break; case opVectorAngle: VectorToScalarOp(&GBFinePoint::Angle); break; case opDotProduct: TwoVectorToScalarOp(&GBFinePoint::DotProduct); break; case opProject: TwoVectorToVectorOp(&GBFinePoint::Projection); break; case opCross: TwoVectorToScalarOp(&GBFinePoint::Cross); break; case opUnitize: VectorToVectorOp(&GBFinePoint::Unit); break; case opDistance: Push((PopVector() - PopVector()).Norm()); break; case opInRange: temp = Pop(); PushBoolean(PopVector().InRange(PopVector(), temp)); break; case opRestrictPosition: { temp = Pop(); //wall distance GBVector pos = PopVector(); Push(pos.x.Max(temp).Min(world->Size().x - temp)); Push(pos.y.Max(temp).Min(world->Size().y - temp)); } break; case opVectorEqual: PushBoolean(PopVector() == PopVector()); break; case opVectorNotEqual: PushBoolean(PopVector() != PopVector()); break; // comparisons case opEqual: PushBoolean(Pop() == Pop()); break; case opNotEqual: PushBoolean(Pop() != Pop()); break; case opLessThan: temp = Pop(); PushBoolean(Pop() < temp); break; case opLessThanOrEqual: temp = Pop(); PushBoolean(Pop() <= temp); break; case opGreaterThan: temp = Pop(); PushBoolean(Pop() > temp); break; case opGreaterThanOrEqual: temp = Pop(); PushBoolean(Pop() >= temp); break; // booleans case opNot: PushBoolean(! Pop().Nonzero()); break; case opAnd: temp = Pop(); temp2 = Pop(); PushBoolean(temp.Nonzero() && temp2.Nonzero()); break; case opOr: temp = Pop(); temp2 = Pop(); PushBoolean(temp.Nonzero() || temp2.Nonzero()); break; case opXor: temp = Pop(); temp2 = Pop(); PushBoolean(temp.Nonzero() && ! temp2.Nonzero() || ! temp.Nonzero() && temp2.Nonzero()); break; case opNand: temp = Pop(); temp2 = Pop(); PushBoolean(! (temp.Nonzero() && temp2.Nonzero())); break; case opNor: temp = Pop(); temp2 = Pop(); PushBoolean(! (temp.Nonzero() || temp2.Nonzero())); break; case opValueConditional: temp = Pop(); temp2 = Pop(); if ( Pop().Nonzero() ) Push(temp2); else Push(temp); break; // misc external case opPrint: DoPrint(ToString(Pop())); if ( world->reportPrints ) NonfatalError(robot->Description() + " prints: " + *lastPrint); break; case opPrintVector: DoPrint(ToString(PopVector())); if ( world->reportPrints ) NonfatalError(robot->Description() + " prints: " + *lastPrint); break; case opBeep: StartSound(siBeep); break; case opStop: SetStatus(bsStopped); break; case opPause: if ( world->reportErrors ) world->running = false; break; case opSync: remaining = 0; break; // basic hardware case opSeekLocation: robot->EngineSeek(PopVector(), GBVector(0, 0)); break; case opSeekMovingLocation: { GBVector vel = PopVector(); robot->EngineSeek(PopVector(), vel); } break; case opDie: robot->Die(robot->Owner()); SetStatus(bsStopped); break; case opWriteLocalMemory: tempInt = PopInteger(); WriteLocalMemory(tempInt, Pop(), robot); break; case opReadLocalMemory: tempInt = PopInteger(); Push(ReadLocalMemory(tempInt, robot)); break; case opWriteLocalVector: tempInt = PopInteger(); WriteLocalMemory(tempInt + 1, Pop(), robot); WriteLocalMemory(tempInt, Pop(), robot); break; case opReadLocalVector: tempInt = PopInteger(); Push(ReadLocalMemory(tempInt, robot)); Push(ReadLocalMemory(tempInt + 1, robot)); break; case opWriteSharedMemory: tempInt = PopInteger(); robot->hardware.radio.Write(Pop(), tempInt, robot->Owner()); break; case opReadSharedMemory: Push(robot->hardware.radio.Read(PopInteger(), robot->Owner())); break; case opWriteSharedVector: tempInt = PopInteger(); robot->hardware.radio.Write(Pop(), tempInt + 1, robot->Owner()); robot->hardware.radio.Write(Pop(), tempInt, robot->Owner()); break; case opReadSharedVector: tempInt = PopInteger(); Push(robot->hardware.radio.Read(tempInt, robot->Owner())); Push(robot->hardware.radio.Read(tempInt + 1, robot->Owner())); break; case opMessagesWaiting: Push(robot->hardware.radio.MessagesWaiting(PopInteger(), robot->Owner())); break; case opSendMessage: { GBMessage sendee; tempInt = PopInteger(); //channel int numArgs = ToInteger(Pop()); //number of numbers for ( int i = 0; i < numArgs; i++ ) { sendee.AddDatum(Pop()); //higher indices in message correspond with earlier numbers in stack. :( } if ( numArgs <= 0 ) throw GBGenericError("Cannot send message of non-positive length"); robot->hardware.radio.Send(sendee, tempInt, robot->Owner()); } break; case opReceiveMessage: { tempInt = PopInteger(); const GBMessage * received = robot->hardware.radio.Receive(tempInt, robot->Owner()); if ( received == 0 ) { Push(0); } else { if ( received->Length() <= 0 ) { throw GBGenericError("non-positive length message received"); } for ( int i = received->Length() - 1; i >= 0; i-- ) Push(received->Datum(i)); Push(received->Length()); } } break; case opClearMessages: robot->hardware.radio.ClearChannel(PopInteger(), robot->Owner()); break; case opSkipMessages: tempInt = PopInteger(); robot->hardware.radio.SkipMessages(tempInt, PopInteger(), robot->Owner()); break; case opTypePopulation: { GBRobotType * theType = robot->Owner()->GetType(PopInteger()); if (theType) Push(theType->Population()); else Push(-1); } break; case opAutoConstruct: { GBConstructorState & ctor = robot->hardware.constructor; if ( robot->Energy() > robot->hardware.MaxEnergy() * .9 ) { if ( ! ctor.Type() ) ctor.Start(robot->Type()); ctor.SetRate(ctor.MaxRate()); } else ctor.SetRate(ctor.Type() && robot->Energy() > ctor.Remaining() + 10 ? ctor.MaxRate() : GBNumber(0)); } break; case opBalanceTypes: { // frac type -- GBRobotType * theType = robot->Owner()->GetType(PopInteger()); GBNumber fraction = Pop(); if (theType && GBNumber(theType->Population()) < fraction * robot->Owner()->Scores().Population()) robot->hardware.constructor.Start(theType); //FIXME don't abort? } break; // sensors case opFireRobotSensor: robot->hardware.sensor1.Fire(); break; case opFireFoodSensor: robot->hardware.sensor2.Fire(); break; case opFireShotSensor: robot->hardware.sensor3.Fire(); break; case opRobotSensorNext: Push(robot->hardware.sensor1.NextResult() ? 1 : 0); break; case opFoodSensorNext: Push(robot->hardware.sensor2.NextResult() ? 1 : 0); break; case opShotSensorNext: Push(robot->hardware.sensor3.NextResult() ? 1 : 0); break; case opPeriodicRobotSensor: FirePeriodic(robot->hardware.sensor1, world); break; case opPeriodicFoodSensor: FirePeriodic(robot->hardware.sensor2, world); break; case opPeriodicShotSensor: FirePeriodic(robot->hardware.sensor3, world); break; // weapons case opFireBlaster: robot->hardware.blaster.Fire(Pop()); break; case opFireGrenade: temp = Pop(); robot->hardware.grenades.Fire(Pop(), temp); break; case opLeadBlaster: { //pos vel -- GBVelocity vel = PopVector() - robot->Velocity(); GBPosition pos = PopVector() - robot->Position(); GBPosition target = LeadShot(pos, vel, robot->hardware.blaster.Speed(), robot->Radius()); if ( target.Nonzero() && target.Norm() <= robot->hardware.blaster.MaxRange() + robot->Radius() ) robot->hardware.blaster.Fire(target.Angle()); } break; case opLeadGrenade: { //pos vel -- GBVelocity vel = PopVector() - robot->Velocity(); GBPosition pos = PopVector() - robot->Position(); GBPosition target = LeadShot(pos, vel, robot->hardware.grenades.Speed(), robot->Radius()); if ( target.Nonzero() && target.Norm() <= robot->hardware.grenades.MaxRange() + robot->Radius() ) robot->hardware.grenades.Fire(target.Norm(), target.Angle()); //worry about short range? } break; case opSetForceField: { //pos angle -- temp = Pop(); GBPosition pos = PopVector() - robot->Position(); robot->hardware.forceField.SetDistance(pos.Norm()); robot->hardware.forceField.SetDirection(pos.Angle()); robot->hardware.forceField.SetAngle(temp); robot->hardware.forceField.SetPower(robot->hardware.forceField.MaxPower()); } break; // otherwise... default: throw GBUnknownInstructionError(); break; } }
int main( void ) { WdtInit(); InterruptControllerInit(); EventLogInit(); GpioInit(); // Configure !RSN/NMI pin for NMI mode early ConfigureRstNmi(); ConfigureFll(); V1( EventLogAdd( EVENTLOG_TIMER_INIT ) ); TimerInit(); WdtStartTimer(); V1( EventLogAdd( EVENTLOG_SPI_INIT ) ); SpiInit(); #if !defined( PLATFORM_RIMEVALBOARD ) HostCtrlPmicRegisterReset( RESET_LCD_IO ); #if defined( PROCESSOR_PMU430 ) //resetting the fuel gauge LDO PmicClear( PMIC_VRTC, 1<<7 ); HwDelay(25000000); //25 ms delay PmicSet( PMIC_VRTC, 1<<7 ); #endif #endif ApiInit(); #if defined( DEVID_UPDATER_SUPPORT ) CodeUpdateStateInit( ); #endif V1( EventLogAdd( EVENTLOG_ADC_HW_INIT ) ); AdcInitHw(); V1( EventLogAdd( EVENTLOG_MSGQUE_INIT ) ); CallQueueInit(); V1( EventLogAdd( EVENTLOG_PMIC_INTCTRL_INIT ) ); PmicIntCtrlInit(); // configure charger interrupt handler PmicRegisterIntHandler( INT_CHARGER_IRQ, ChargerHandler ); PmicInterruptEnable( INT_CHARGER_IRQ ); // enable battery insertion/removal interrupts PmicWrite( PMIC_CHG_INT, 0x00 ); PmicClear( PMIC_CHG_INT_MASK, CHGINT_MASK_BAT ); PmicClear( PMIC_MIRQ, INT_MASK_CHARGER ); I2cInitInternalBus(); // Need to enable GIE (PoR default is OFF) __enable_interrupt(); RegisterTimerExpiry( RTC_EXTERNAL_XTAL_TIMER, SwitchToXtal, 0 ); // switch to external xtal after 2 seconds SetTimer( RTC_EXTERNAL_XTAL_TIMER, 0x10000 ); #if defined( PLATFORM_RIMEVALBOARD ) I2cInit(); #else HostCtrlInit(); #endif for (;;) { WdtHit(); if( !ExecuteCall() ) { // if there was nothing to call, enter sleep mode SCSleep(); } } }
void Eluna::RunScripts() { LOCK_ELUNA; if (!IsEnabled()) return; uint32 oldMSTime = ElunaUtil::GetCurrTime(); uint32 count = 0; ScriptList scripts; lua_extensions.sort(ScriptPathComparator); lua_scripts.sort(ScriptPathComparator); scripts.insert(scripts.end(), lua_extensions.begin(), lua_extensions.end()); scripts.insert(scripts.end(), lua_scripts.begin(), lua_scripts.end()); std::unordered_map<std::string, std::string> loaded; // filename, path lua_getglobal(L, "package"); // Stack: package luaL_getsubtable(L, -1, "loaded"); // Stack: package, modules int modules = lua_gettop(L); for (ScriptList::const_iterator it = scripts.begin(); it != scripts.end(); ++it) { // Check that no duplicate names exist if (loaded.find(it->filename) != loaded.end()) { ELUNA_LOG_ERROR("[Eluna]: Error loading `%s`. File with same name already loaded from `%s`, rename either file", it->filepath.c_str(), loaded[it->filename].c_str()); continue; } loaded[it->filename] = it->filepath; lua_getfield(L, modules, it->filename.c_str()); // Stack: package, modules, module if (!lua_isnoneornil(L, -1)) { lua_pop(L, 1); ELUNA_LOG_DEBUG("[Eluna]: `%s` was already loaded or required", it->filepath.c_str()); continue; } lua_pop(L, 1); // Stack: package, modules if (luaL_loadfile(L, it->filepath.c_str())) { // Stack: package, modules, errmsg ELUNA_LOG_ERROR("[Eluna]: Error loading `%s`", it->filepath.c_str()); Report(L); // Stack: package, modules continue; } // Stack: package, modules, filefunc if (ExecuteCall(0, 1)) { // Stack: package, modules, result if (lua_isnoneornil(L, -1) || (lua_isboolean(L, -1) && !lua_toboolean(L, -1))) { // if result evaluates to false, change it to true lua_pop(L, 1); Push(L, true); } lua_setfield(L, modules, it->filename.c_str()); // Stack: package, modules // successfully loaded and ran file ELUNA_LOG_DEBUG("[Eluna]: Successfully loaded `%s`", it->filepath.c_str()); ++count; continue; } } // Stack: package, modules lua_pop(L, 2); ELUNA_LOG_INFO("[Eluna]: Executed %u Lua scripts in %u ms", count, ElunaUtil::GetTimeDiff(oldMSTime)); OnLuaStateOpen(); }