示例#1
0
void GBStackBrain::ExecuteInstruction(GBStackInstruction ins, GBRobot * robot, GBWorld * world) {
	GBStackInstruction index = ins & kOpcodeIndexMask;
	switch ( ins >> kOpcodeTypeShift ) {
		case otPrimitive:
			ExecutePrimitive(index, robot, world);
			break;
		case otConstantRead:
			Push(spec->ReadConstant(index));
			break;
		case otVariableRead:
			Push(ReadVariable(index));
			break;
		case otVariableWrite:
			WriteVariable(index, Pop());
			break;
		case otVectorRead:
			PushVector(ReadVectorVariable(index));
			break;
		case otVectorWrite:
			WriteVectorVariable(index, PopVector());
			break;
		case otLabelRead:
			Push(spec->ReadLabel(index));
			break;
		case otLabelCall:
			ExecuteCall(spec->ReadLabel(index));
			break;
		case otHardwareRead:
			Push(ReadHardware(index, robot, world));
			break;
		case otHardwareWrite:
			WriteHardware(index, Pop(), robot, world);
			break;
		case otHardwareVectorRead:
			PushVector(ReadHardwareVector(index, robot, world));
			break;
		case otHardwareVectorWrite:
			WriteHardwareVector(index, PopVector(), robot, world);
			break;
		default:	
			throw GBUnknownInstructionError();
			break;
	}
}
示例#2
0
/*
 * Call a single event handler that was put on the stack with `Setup` and removes it from the stack.
 *
 * The caller is responsible for keeping track of how many times this should be called.
 */
int Eluna::CallOneFunction(int number_of_functions, int number_of_arguments, int number_of_results)
{
    ++number_of_arguments; // Caller doesn't know about `event_id`.
    ASSERT(number_of_functions > 0 && number_of_arguments > 0 && number_of_results >= 0);
    // Stack: event_id, [arguments], [functions]

    int functions_top        = lua_gettop(L);
    int first_function_index = functions_top - number_of_functions + 1;
    int arguments_top        = first_function_index - 1;
    int first_argument_index = arguments_top - number_of_arguments + 1;

    // Copy the arguments from the bottom of the stack to the top.
    for (int argument_index = first_argument_index; argument_index <= arguments_top; ++argument_index)
    {
        lua_pushvalue(L, argument_index);
    }
    // Stack: event_id, [arguments], [functions], event_id, [arguments]

    ExecuteCall(number_of_arguments, number_of_results);
    --functions_top;
    // Stack: event_id, [arguments], [functions - 1], [results]

    return functions_top + 1; // Return the location of the first result (if any exist).
}
示例#3
0
void GBStackBrain::ExecutePrimitive(GBSymbolIndex index, GBRobot * robot, GBWorld * world) {
	GBStackDatum temp, temp2, temp3;
	long tempInt;
	switch ( index ) {
		case opNop: break;
	// stack manipulation
		case opDrop: Pop(); break;
		case op2Drop: Pop(); Pop(); break;
		case opNip: temp = Pop(); Pop(); Push(temp); break;
		case opRDrop: PopReturn(); break;
		case opDropN: {
			int n = PopInteger();
			if ( n > stackHeight ) throw GBBadArgumentError();
			stackHeight -= n;
		} break;
		case opSwap: temp = Pop(); temp2 = Pop(); Push(temp); Push(temp2); break;
		case op2Swap: { GBVector v1 = PopVector(); GBVector v2 = PopVector();
			PushVector(v1); PushVector(v2); } break;
		case opRotate: temp = Pop(); temp2 = Pop(); temp3 = Pop(); Push(temp2); Push(temp); Push(temp3); break;
		case opReverseRotate: temp = Pop(); temp2 = Pop(); temp3 = Pop(); Push(temp); Push(temp3); Push(temp2); break;
		case opDup: temp = Peek(); Push(temp); break;
		case op2Dup: temp = Peek(2); temp2 = Peek(); Push(temp); Push(temp2); break;
		case opTuck: temp = Pop(); temp2 = Pop(); Push(temp); Push(temp2); Push(temp); break;
		case opOver: temp = Peek(2); Push(temp); break;
		case op2Over: temp = Peek(4); temp2 = Peek(3); Push(temp); Push(temp2); break;
		case opStackHeight: Push(stackHeight); break;
		case opStackLimit: Push(kStackLimit); break;
		case opPick: Push(Peek(PopInteger())); break;
		case opToReturn: PushReturn(ToAddress(Pop())); break;
		case opFromReturn: Push(PopReturn()); break;
	// branches
		case opJump: pc = ToAddress(Pop()); break;
		case opCall: ExecuteCall(ToAddress(Pop())); break;
		case opReturn: pc = PopReturn(); break;
		case opIfGo: temp = Pop(); if ( Pop().Nonzero() ) pc = ToAddress(temp); break;
		case opIfElseGo: temp = Pop(); temp2 = Pop();
			if ( Pop().Nonzero() ) pc = ToAddress(temp2); else pc = ToAddress(temp); break;
		case opIfCall: temp = Pop(); if ( Pop().Nonzero() ) ExecuteCall(ToAddress(temp)); break;
		case opIfElseCall: temp = Pop(); temp2 = Pop();
			if ( Pop().Nonzero() ) ExecuteCall(ToAddress(temp2)); else ExecuteCall(ToAddress(temp)); break;
		case opIfReturn: if ( Pop().Nonzero() ) pc = PopReturn(); break;
		case opNotIfGo: temp = Pop(); if ( ! Pop().Nonzero() ) pc = ToAddress(temp); break;
		case opNotIfReturn: if ( ! Pop().Nonzero() ) pc = PopReturn(); break;
		case opNotIfCall: temp = Pop(); if ( ! Pop().Nonzero() ) ExecuteCall(ToAddress(temp)); break;
	// arithmetic
		case opAdd: TwoNumberToNumberOp(&GBNumber::operator +); break;
		case opSubtract: TwoNumberToNumberOp(&GBNumber::operator -); break;
		case opNegate: NumberToNumberOp(&GBNumber::operator -); break;
		// mult and divide are written out because of MrCpp internal error
		case opMultiply: temp = Pop(); Push(Pop() * temp); break;
		case opDivide: temp = Pop(); Push(Pop() / temp); break;
		case opReciprocal: Push(GBNumber(1) / Pop()); break;
		case opMod: TwoNumberToNumberOp(&GBNumber::Mod); break;
		case opRem: TwoNumberToNumberOp(&GBNumber::Rem); break;
		case opSqrt: NumberToNumberOp(&GBNumber::Sqrt); break;
		case opExponent: TwoNumberToNumberOp(&GBNumber::Exponent); break;
		case opIsInteger: PushBoolean(Pop().IsInteger()); break;
		case opFloor: Push(Pop().Floor()); break;
		case opCeiling: Push(Pop().Ceiling()); break;
		case opRound: Push(Pop().Round()); break;
		case opMin: TwoNumberToNumberOp(&GBNumber::Min); break;
		case opMax: TwoNumberToNumberOp(&GBNumber::Max); break;
		case opAbs: NumberToNumberOp(&GBNumber::Abs); break;
		case opSignum: NumberToNumberOp(&GBNumber::Signum); break;
		case opReorient: NumberToNumberOp(&GBNumber::Reorient); break;
		case opSine: NumberToNumberOp(&GBNumber::Sin); break;
		case opCosine: NumberToNumberOp(&GBNumber::Cos); break;
		case opTangent: NumberToNumberOp(&GBNumber::Tan); break;
		case opArcSine: NumberToNumberOp(&GBNumber::ArcSin); break;
		case opArcCosine: NumberToNumberOp(&GBNumber::ArcCos); break;
		case opArcTangent: NumberToNumberOp(&GBNumber::ArcTan); break;
		case opRandom: temp = Pop(); Push(world->Randoms().InRange(Pop(), temp)); break;
		case opRandomAngle: Push(world->Randoms().Angle()); break;
		case opRandomInt: temp = Pop(); Push(world->Randoms().LongInRange(Pop().Ceiling(), temp.Floor())); break;
		case opRandomBoolean: PushBoolean(world->Randoms().Boolean(Pop())); break;
	// constants
		case opPi: Push(GBNumber::pi); break;
		case op2Pi: Push(GBNumber::pi * 2); break;
		case opPiOver2: Push(GBNumber::pi / 2); break;
		case opE: Push(GBNumber::e); break;
		case opEpsilon: Push(GBNumber::epsilon); break;
		case opInfinity: Push(GBNumber::infinity); break;
	// vector operations
		case opRectToPolar: { GBVector v = PopVector(); Push(v.Norm()); Push(v.Angle()); } break;
		case opPolarToRect: temp = Pop(); temp2 = Pop(); PushVector(GBFinePoint::MakePolar(temp2, temp)); break;
		case opVectorAdd: TwoVectorToVectorOp(&GBFinePoint::operator +); break;
		case opVectorSubtract: TwoVectorToVectorOp(&GBFinePoint::operator -); break;
		case opVectorNegate: VectorToVectorOp(&GBFinePoint::operator -); break;
		case opVectorScalarMultiply: temp = Pop(); PushVector(PopVector() * temp); break;
		case opVectorScalarDivide: temp = Pop(); PushVector(PopVector() / temp); break;
		case opVectorNorm: VectorToScalarOp(&GBFinePoint::Norm); break;
		case opVectorAngle: VectorToScalarOp(&GBFinePoint::Angle); break;
		case opDotProduct: TwoVectorToScalarOp(&GBFinePoint::DotProduct);  break;
		case opProject: TwoVectorToVectorOp(&GBFinePoint::Projection); break;
		case opCross: TwoVectorToScalarOp(&GBFinePoint::Cross); break;
		case opUnitize: VectorToVectorOp(&GBFinePoint::Unit); break;
		case opDistance: Push((PopVector() - PopVector()).Norm()); break;
		case opInRange: temp = Pop(); PushBoolean(PopVector().InRange(PopVector(), temp)); break;
		case opRestrictPosition: {
			temp = Pop(); //wall distance
			GBVector pos = PopVector();
			Push(pos.x.Max(temp).Min(world->Size().x - temp));
			Push(pos.y.Max(temp).Min(world->Size().y - temp));
			} break;
		case opVectorEqual: PushBoolean(PopVector() == PopVector()); break;
		case opVectorNotEqual: PushBoolean(PopVector() != PopVector()); break;
	// comparisons
		case opEqual: PushBoolean(Pop() == Pop()); break;
		case opNotEqual: PushBoolean(Pop() != Pop()); break;
		case opLessThan: temp = Pop(); PushBoolean(Pop() < temp); break;
		case opLessThanOrEqual: temp = Pop(); PushBoolean(Pop() <= temp); break;
		case opGreaterThan: temp = Pop(); PushBoolean(Pop() > temp); break;
		case opGreaterThanOrEqual: temp = Pop(); PushBoolean(Pop() >= temp); break;
	// booleans
		case opNot: PushBoolean(! Pop().Nonzero()); break;
		case opAnd: temp = Pop(); temp2 = Pop(); PushBoolean(temp.Nonzero() && temp2.Nonzero()); break;
		case opOr: temp = Pop(); temp2 = Pop(); PushBoolean(temp.Nonzero() || temp2.Nonzero()); break;
		case opXor: temp = Pop(); temp2 = Pop();
			PushBoolean(temp.Nonzero() && ! temp2.Nonzero() || ! temp.Nonzero() && temp2.Nonzero()); break;
		case opNand: temp = Pop(); temp2 = Pop(); PushBoolean(! (temp.Nonzero() && temp2.Nonzero())); break;
		case opNor: temp = Pop(); temp2 = Pop(); PushBoolean(! (temp.Nonzero() || temp2.Nonzero())); break;
		case opValueConditional: temp = Pop(); temp2 = Pop();
			if ( Pop().Nonzero() ) Push(temp2); else Push(temp);
			break;
	// misc external
		case opPrint:
			DoPrint(ToString(Pop()));
			if ( world->reportPrints )
				NonfatalError(robot->Description() + " prints: " + *lastPrint);
			break;
		case opPrintVector:
			DoPrint(ToString(PopVector()));
			if ( world->reportPrints )
				NonfatalError(robot->Description() + " prints: " + *lastPrint);
			break;
		case opBeep: StartSound(siBeep); break;
		case opStop: SetStatus(bsStopped); break;
		case opPause: if ( world->reportErrors ) world->running = false; break;
		case opSync: remaining = 0; break;
	// basic hardware
		case opSeekLocation: robot->EngineSeek(PopVector(), GBVector(0, 0)); break;
		case opSeekMovingLocation: {
			GBVector vel = PopVector();
			robot->EngineSeek(PopVector(), vel);
			} break;
		case opDie: robot->Die(robot->Owner()); SetStatus(bsStopped); break;
		case opWriteLocalMemory:
			tempInt = PopInteger();
			WriteLocalMemory(tempInt, Pop(), robot);
			break;
		case opReadLocalMemory:
			tempInt = PopInteger();
			Push(ReadLocalMemory(tempInt, robot));
			break;
		case opWriteLocalVector:
			tempInt = PopInteger();
			WriteLocalMemory(tempInt + 1, Pop(), robot);
			WriteLocalMemory(tempInt, Pop(), robot);
			break;
		case opReadLocalVector:
			tempInt = PopInteger();
			Push(ReadLocalMemory(tempInt, robot));
			Push(ReadLocalMemory(tempInt + 1, robot));
			break;
		case opWriteSharedMemory:
			tempInt = PopInteger();
			robot->hardware.radio.Write(Pop(), tempInt, robot->Owner());
			break;
		case opReadSharedMemory:
			Push(robot->hardware.radio.Read(PopInteger(), robot->Owner()));
			break;
		case opWriteSharedVector:
			tempInt = PopInteger();
			robot->hardware.radio.Write(Pop(), tempInt + 1, robot->Owner());
			robot->hardware.radio.Write(Pop(), tempInt, robot->Owner());
			break;
		case opReadSharedVector:
			tempInt = PopInteger();
			Push(robot->hardware.radio.Read(tempInt, robot->Owner()));
			Push(robot->hardware.radio.Read(tempInt + 1, robot->Owner()));
			break;
		case opMessagesWaiting:
			Push(robot->hardware.radio.MessagesWaiting(PopInteger(), robot->Owner()));
			break;
		case opSendMessage: {
				GBMessage sendee;
				tempInt = PopInteger(); //channel
				int numArgs = ToInteger(Pop()); //number of numbers
				for ( int i = 0; i < numArgs; i++ ) {
					sendee.AddDatum(Pop()); //higher indices in message correspond with earlier numbers in stack. :(
				}
				if ( numArgs <= 0 )
					throw GBGenericError("Cannot send message of non-positive length");
				robot->hardware.radio.Send(sendee, tempInt, robot->Owner());
			} break;
		case opReceiveMessage: {
				tempInt = PopInteger();
				const GBMessage * received = robot->hardware.radio.Receive(tempInt, robot->Owner());
				if ( received == 0 ) {
					Push(0);
				} else {
					if ( received->Length() <= 0 ) {
						throw GBGenericError("non-positive length message received");
					}
					for ( int i = received->Length() - 1; i >= 0; i-- )
						Push(received->Datum(i));
					Push(received->Length());
				}
			} break;
		case opClearMessages:
			robot->hardware.radio.ClearChannel(PopInteger(), robot->Owner());
			break;
		case opSkipMessages:
			tempInt = PopInteger();
			robot->hardware.radio.SkipMessages(tempInt, PopInteger(), robot->Owner());
			break;
		case opTypePopulation: {
				GBRobotType * theType = robot->Owner()->GetType(PopInteger());
				if (theType)
					Push(theType->Population());
				else
					Push(-1);
			} break;
		case opAutoConstruct: {
			GBConstructorState & ctor = robot->hardware.constructor;
			if ( robot->Energy() > robot->hardware.MaxEnergy() * .9 ) {
				if ( ! ctor.Type() ) ctor.Start(robot->Type());
				ctor.SetRate(ctor.MaxRate());
			} else
				ctor.SetRate(ctor.Type() && robot->Energy() > ctor.Remaining() + 10 ? ctor.MaxRate() : GBNumber(0));
			} break;
		case opBalanceTypes: { // frac type --
				GBRobotType * theType = robot->Owner()->GetType(PopInteger());
				GBNumber fraction = Pop();
				if (theType && GBNumber(theType->Population()) < fraction * robot->Owner()->Scores().Population())
					robot->hardware.constructor.Start(theType); //FIXME don't abort?
			} break;
	// sensors
		case opFireRobotSensor: robot->hardware.sensor1.Fire(); break;
		case opFireFoodSensor: robot->hardware.sensor2.Fire(); break;
		case opFireShotSensor: robot->hardware.sensor3.Fire(); break;
		case opRobotSensorNext: Push(robot->hardware.sensor1.NextResult() ? 1 : 0); break;
		case opFoodSensorNext: Push(robot->hardware.sensor2.NextResult() ? 1 : 0); break;
		case opShotSensorNext: Push(robot->hardware.sensor3.NextResult() ? 1 : 0); break;
		case opPeriodicRobotSensor:
			FirePeriodic(robot->hardware.sensor1, world);
			break;
		case opPeriodicFoodSensor:
			FirePeriodic(robot->hardware.sensor2, world);
			break;
		case opPeriodicShotSensor:
			FirePeriodic(robot->hardware.sensor3, world);
			break;
	// weapons
		case opFireBlaster: robot->hardware.blaster.Fire(Pop()); break;
		case opFireGrenade: temp = Pop(); robot->hardware.grenades.Fire(Pop(), temp); break;
		case opLeadBlaster: { //pos vel --
			GBVelocity vel = PopVector() - robot->Velocity();
			GBPosition pos = PopVector() - robot->Position();
			GBPosition target = LeadShot(pos, vel, robot->hardware.blaster.Speed(), robot->Radius());
			if ( target.Nonzero() && target.Norm() <= robot->hardware.blaster.MaxRange() + robot->Radius() )
				robot->hardware.blaster.Fire(target.Angle());
			} break;
		case opLeadGrenade: { //pos vel --
			GBVelocity vel = PopVector() - robot->Velocity();
			GBPosition pos = PopVector() - robot->Position();
			GBPosition target = LeadShot(pos, vel, robot->hardware.grenades.Speed(), robot->Radius());
			if ( target.Nonzero() && target.Norm() <= robot->hardware.grenades.MaxRange() + robot->Radius() )
				robot->hardware.grenades.Fire(target.Norm(), target.Angle()); //worry about short range?
			} break;
		case opSetForceField: { //pos angle --
			temp = Pop();
			GBPosition pos = PopVector() - robot->Position();
			robot->hardware.forceField.SetDistance(pos.Norm());
			robot->hardware.forceField.SetDirection(pos.Angle());
			robot->hardware.forceField.SetAngle(temp);
			robot->hardware.forceField.SetPower(robot->hardware.forceField.MaxPower());
			} break;
	// otherwise...
		default:	
			throw GBUnknownInstructionError();
			break;
	}
}
示例#4
0
文件: init.c 项目: rmmiranda/PmicMpu
int main( void )
{
    WdtInit();

    InterruptControllerInit();

    EventLogInit();

    GpioInit();

    // Configure !RSN/NMI pin for NMI mode early
    ConfigureRstNmi();

    ConfigureFll();

    V1( EventLogAdd( EVENTLOG_TIMER_INIT ) );
    TimerInit();

    WdtStartTimer();

    V1( EventLogAdd( EVENTLOG_SPI_INIT ) );
    SpiInit();

#if !defined( PLATFORM_RIMEVALBOARD )
    HostCtrlPmicRegisterReset( RESET_LCD_IO );

#if defined( PROCESSOR_PMU430 )
    //resetting the fuel gauge LDO
    PmicClear( PMIC_VRTC, 1<<7 );
    HwDelay(25000000); //25 ms delay
    PmicSet( PMIC_VRTC, 1<<7 );
#endif

#endif

    ApiInit();

#if defined( DEVID_UPDATER_SUPPORT )
    CodeUpdateStateInit( );
#endif

    V1( EventLogAdd( EVENTLOG_ADC_HW_INIT ) );
    AdcInitHw();

    V1( EventLogAdd( EVENTLOG_MSGQUE_INIT ) );
    CallQueueInit();

    V1( EventLogAdd( EVENTLOG_PMIC_INTCTRL_INIT ) );
    PmicIntCtrlInit();

    // configure charger interrupt handler
    PmicRegisterIntHandler( INT_CHARGER_IRQ, ChargerHandler );
    PmicInterruptEnable( INT_CHARGER_IRQ );

    // enable battery insertion/removal interrupts
	PmicWrite( PMIC_CHG_INT, 0x00 );
    PmicClear( PMIC_CHG_INT_MASK, CHGINT_MASK_BAT );
    PmicClear( PMIC_MIRQ, INT_MASK_CHARGER );


    I2cInitInternalBus();

    // Need to enable GIE (PoR default is OFF)
    __enable_interrupt();

    RegisterTimerExpiry( RTC_EXTERNAL_XTAL_TIMER, SwitchToXtal, 0 );
    // switch to external xtal after 2 seconds
    SetTimer( RTC_EXTERNAL_XTAL_TIMER, 0x10000 );

#if defined( PLATFORM_RIMEVALBOARD )
    I2cInit();
#else
    HostCtrlInit();
#endif

    for (;;) {
        WdtHit();

        if( !ExecuteCall() ) {
            // if there was nothing to call, enter sleep mode
            SCSleep();
        }
    }
}
示例#5
0
void Eluna::RunScripts()
{
    LOCK_ELUNA;
    if (!IsEnabled())
        return;

    uint32 oldMSTime = ElunaUtil::GetCurrTime();
    uint32 count = 0;

    ScriptList scripts;
    lua_extensions.sort(ScriptPathComparator);
    lua_scripts.sort(ScriptPathComparator);
    scripts.insert(scripts.end(), lua_extensions.begin(), lua_extensions.end());
    scripts.insert(scripts.end(), lua_scripts.begin(), lua_scripts.end());

    std::unordered_map<std::string, std::string> loaded; // filename, path

    lua_getglobal(L, "package");
    // Stack: package
    luaL_getsubtable(L, -1, "loaded");
    // Stack: package, modules
    int modules = lua_gettop(L);
    for (ScriptList::const_iterator it = scripts.begin(); it != scripts.end(); ++it)
    {
        // Check that no duplicate names exist
        if (loaded.find(it->filename) != loaded.end())
        {
            ELUNA_LOG_ERROR("[Eluna]: Error loading `%s`. File with same name already loaded from `%s`, rename either file", it->filepath.c_str(), loaded[it->filename].c_str());
            continue;
        }
        loaded[it->filename] = it->filepath;

        lua_getfield(L, modules, it->filename.c_str());
        // Stack: package, modules, module
        if (!lua_isnoneornil(L, -1))
        {
            lua_pop(L, 1);
            ELUNA_LOG_DEBUG("[Eluna]: `%s` was already loaded or required", it->filepath.c_str());
            continue;
        }
        lua_pop(L, 1);
        // Stack: package, modules

        if (luaL_loadfile(L, it->filepath.c_str()))
        {
            // Stack: package, modules, errmsg
            ELUNA_LOG_ERROR("[Eluna]: Error loading `%s`", it->filepath.c_str());
            Report(L);
            // Stack: package, modules
            continue;
        }
        // Stack: package, modules, filefunc

        if (ExecuteCall(0, 1))
        {
            // Stack: package, modules, result
            if (lua_isnoneornil(L, -1) || (lua_isboolean(L, -1) && !lua_toboolean(L, -1)))
            {
                // if result evaluates to false, change it to true
                lua_pop(L, 1);
                Push(L, true);
            }
            lua_setfield(L, modules, it->filename.c_str());
            // Stack: package, modules

            // successfully loaded and ran file
            ELUNA_LOG_DEBUG("[Eluna]: Successfully loaded `%s`", it->filepath.c_str());
            ++count;
            continue;
        }
    }
    // Stack: package, modules
    lua_pop(L, 2);
    ELUNA_LOG_INFO("[Eluna]: Executed %u Lua scripts in %u ms", count, ElunaUtil::GetTimeDiff(oldMSTime));

    OnLuaStateOpen();
}