/** * M106: Set Fan Speed * * S<int> Speed between 0-255 * P<index> Fan index, if more than one fan * * With EXTRA_FAN_SPEED enabled: * * T<int> Restore/Use/Set Temporary Speed: * 1 = Restore previous speed after T2 * 2 = Use temporary speed set with T3-255 * 3-255 = Set the speed for use with T2 */ void GcodeSuite::M106() { const uint8_t p = parser.byteval('P'); if (p < FAN_COUNT) { #if ENABLED(EXTRA_FAN_SPEED) const int16_t t = parser.intval('T'); NOMORE(t, 255); if (t > 0) { switch (t) { case 1: fanSpeeds[p] = old_fanSpeeds[p]; break; case 2: old_fanSpeeds[p] = fanSpeeds[p]; fanSpeeds[p] = new_fanSpeeds[p]; break; default: new_fanSpeeds[p] = t; break; } return; } #endif // EXTRA_FAN_SPEED const uint16_t s = parser.ushortval('S', 255); fanSpeeds[p] = min(s, 255); } }
void lcd_mixer_gradient_z_end_edit() { ui.defer_status_screen(true); ui.encoder_direction_normal(); ENCODER_RATE_MULTIPLY(true); if (ui.encoderPosition != 0) { mixer.gradient.end_z += float((int)ui.encoderPosition) * 0.1; ui.encoderPosition = 0; NOLESS(mixer.gradient.end_z, 0); NOMORE(mixer.gradient.end_z, Z_MAX_POS); } if (ui.should_draw()) { char tmp[21]; sprintf_P(tmp, PSTR(MSG_END_Z ": %4d.%d mm"), int(mixer.gradient.end_z), int(mixer.gradient.end_z * 10) % 10); SETCURSOR(2, (LCD_HEIGHT - 1) / 2); LCDPRINT(tmp); } if (ui.lcd_clicked) { if (mixer.gradient.end_z < mixer.gradient.start_z) mixer.gradient.start_z = mixer.gradient.end_z; mixer.refresh_gradient(); ui.goto_previous_screen(); } }
void dac_current_raw(uint8_t channel, uint16_t val) { if (!dac_present) return; NOMORE(val, DAC_STEPPER_MAX); mcp4728_analogWrite(dac_order[channel], val); mcp4728_simpleCommand(UPDATE); }
void dac_current_percent(uint8_t channel, float val) { if (!dac_present) return; NOMORE(val, 100); mcp4728_analogWrite(dac_order[channel], val * 0.01 * (DAC_STEPPER_MAX)); mcp4728_simpleCommand(UPDATE); }
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; NOMORE(step_rate, MAX_STEP_FREQUENCY); if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate = (step_rate >> 2) & 0x3fff; step_loops = 4; }
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { unsigned short timer; NOMORE(step_rate, MAX_STEP_FREQUENCY); if(step_rate > (2 * DOUBLE_STEP_FREQUENCY)) { // If steprate > 2*DOUBLE_STEP_FREQUENCY >> step 4 times step_rate >>= 2; step_loops = 4; }
/** * M113: Get or set Host Keepalive interval (0 to disable) * * S<seconds> Optional. Set the keepalive interval. */ void GcodeSuite::M113() { if (parser.seenval('S')) { host_keepalive_interval = parser.value_byte(); NOMORE(host_keepalive_interval, 60); } else { SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval); } }
void Laser::fire(float intensity/*=100.0*/){ laser.firing = LASER_ON; laser.last_firing = micros(); // microseconds of last laser firing NOMORE(intensity, 100.0); NOLESS(intensity, 0.0); #if ENABLED(LASER_PWM_INVERT) intensity = 100 - intensity; #endif #if LASER_CONTROL == 1 #if LASER_PWR_PIN == 2 OCR3B = PWM_MAPPED_INTENSITY; #elif LASER_PWR_PIN == 3 OCR3C = PWM_MAPPED_INTENSITY; #elif LASER_PWR_PIN == 5 OCR3A = PWM_MAPPED_INTENSITY; #elif LASER_PWR_PIN == 6 OCR4A = PWM_MAPPED_INTENSITY; #elif LASER_PWR_PIN == 7 OCR4B = PWM_MAPPED_INTENSITY; #elif LASER_PWR_PIN == 8 OCR4C = PWM_MAPPED_INTENSITY; #endif #elif LASER_CONTROL == 2 #if LASER_PWM_PIN == 2 OCR3B = PWM_MAPPED_INTENSITY; #elif LASER_PWM_PIN == 3 OCR3C = PWM_MAPPED_INTENSITY; #elif LASER_PWM_PIN == 5 OCR3A = PWM_MAPPED_INTENSITY; #elif LASER_PWM_PIN == 6 OCR4A = PWM_MAPPED_INTENSITY; #elif LASER_PWM_PIN == 7 OCR4B = PWM_MAPPED_INTENSITY; #elif LASER_PWM_PIN == 8 OCR4C = PWM_MAPPED_INTENSITY; #endif WRITE(LASER_PWR_PIN, LASER_ARM); #endif /* LASER_CONTROL */ if (laser.diagnostics) SERIAL_EM("Laser_byte fired"); }
void Mixer::update_gradient_for_z(const float z) { if (z == prev_z) return; prev_z = z; const float slice = gradient.end_z - gradient.start_z; float pct = (z - gradient.start_z) / slice; NOLESS(pct, 0.0f); NOMORE(pct, 1.0f); MIXER_STEPPER_LOOP(i) { const mixer_perc_t sm = gradient.start_mix[i]; mix[i] = sm + (gradient.end_mix[i] - sm) * pct; } copy_mix_to_color(gradient.color); }
/** * Perform a tool-change, which may result in moving the * previous tool out of the way and the new tool into place. */ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) { #if ENABLED(MIXING_EXTRUDER) UNUSED(fr_mm_s); UNUSED(no_move); if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) return invalid_extruder_error(tmp_extruder); #if MIXING_VIRTUAL_TOOLS > 1 // T0-Tnnn: Switch virtual tool by changing the index to the mix mixer.T(tmp_extruder); #endif #elif ENABLED(PRUSA_MMU2) UNUSED(fr_mm_s); UNUSED(no_move); mmu2.toolChange(tmp_extruder); #elif EXTRUDERS < 2 UNUSED(fr_mm_s); UNUSED(no_move); if (tmp_extruder) invalid_extruder_error(tmp_extruder); return; #else // EXTRUDERS > 1 planner.synchronize(); #if ENABLED(DUAL_X_CARRIAGE) // Only T0 allowed if the Printer is in DXC_DUPLICATION_MODE or DXC_MIRRORED_MODE if (tmp_extruder != 0 && dxc_is_duplicating()) return invalid_extruder_error(tmp_extruder); #endif #if HAS_LEVELING // Set current position to the physical position const bool leveling_was_active = planner.leveling_active; set_bed_leveling_enabled(false); #endif if (tmp_extruder >= EXTRUDERS) return invalid_extruder_error(tmp_extruder); if (!no_move && !all_axes_homed()) { no_move = true; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("No move on toolchange"); } #if HAS_LCD_MENU ui.return_to_status(); #endif #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) const bool should_swap = !no_move && toolchange_settings.swap_length; #if ENABLED(PREVENT_COLD_EXTRUSION) const bool too_cold = !DEBUGGING(DRYRUN) && (thermalManager.targetTooColdToExtrude(active_extruder) || thermalManager.targetTooColdToExtrude(tmp_extruder)); #else constexpr bool too_cold = false; #endif if (should_swap) { if (too_cold) { SERIAL_ECHO_MSG(MSG_ERR_HOTEND_TOO_COLD); #if ENABLED(SINGLENOZZLE) active_extruder = tmp_extruder; return; #endif } else { #if ENABLED(ADVANCED_PAUSE_FEATURE) do_pause_e_move(-toolchange_settings.swap_length, MMM_TO_MMS(toolchange_settings.retract_speed)); #else current_position[E_AXIS] -= toolchange_settings.swap_length / planner.e_factor[active_extruder]; planner.buffer_line(current_position, MMM_TO_MMS(toolchange_settings.retract_speed), active_extruder); #endif } } #endif // TOOLCHANGE_FILAMENT_SWAP if (tmp_extruder != active_extruder) { #if SWITCHING_NOZZLE_TWO_SERVOS raise_nozzle(active_extruder); #endif const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s; feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; #if HAS_SOFTWARE_ENDSTOPS && ENABLED(DUAL_X_CARRIAGE) update_software_endstops(X_AXIS, active_extruder, tmp_extruder); #endif set_destination_from_current(); if (!no_move) { #if DISABLED(SWITCHING_NOZZLE) // Do a small lift to avoid the workpiece in the move back (below) #if ENABLED(TOOLCHANGE_PARK) current_position[X_AXIS] = toolchange_settings.change_point.x; current_position[Y_AXIS] = toolchange_settings.change_point.y; #endif current_position[Z_AXIS] += toolchange_settings.z_raise; #if HAS_SOFTWARE_ENDSTOPS NOMORE(current_position[Z_AXIS], soft_endstop[Z_AXIS].max); #endif planner.buffer_line(current_position, feedrate_mm_s, active_extruder); #endif planner.synchronize(); } #if HAS_HOTEND_OFFSET #if ENABLED(DUAL_X_CARRIAGE) constexpr float xdiff = 0; #else const float xdiff = hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder]; #endif const float ydiff = hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder], zdiff = hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; #else constexpr float xdiff = 0, ydiff = 0, zdiff = 0; #endif #if ENABLED(DUAL_X_CARRIAGE) dualx_tool_change(tmp_extruder, no_move); #elif ENABLED(PARKING_EXTRUDER) // Dual Parking extruder parking_extruder_tool_change(tmp_extruder, no_move); #elif ENABLED(MAGNETIC_PARKING_EXTRUDER) // Magnetic Parking extruder magnetic_parking_extruder_tool_change(tmp_extruder); #elif ENABLED(SWITCHING_TOOLHEAD) // Switching Toolhead switching_toolhead_tool_change(tmp_extruder, fr_mm_s, no_move); #elif ENABLED(SWITCHING_NOZZLE) && !SWITCHING_NOZZLE_TWO_SERVOS // Raise by a configured distance to avoid workpiece, except with // SWITCHING_NOZZLE_TWO_SERVOS, as both nozzles will lift instead. current_position[Z_AXIS] += MAX(-zdiff, 0.0) + toolchange_settings.z_raise; #if HAS_SOFTWARE_ENDSTOPS NOMORE(current_position[Z_AXIS], soft_endstop[Z_AXIS].max); #endif if (!no_move) fast_line_to_current(Z_AXIS); move_nozzle_servo(tmp_extruder); #endif if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Offset Tool XY by { ", xdiff, ", ", ydiff, ", ", zdiff, " }"); // The newly-selected extruder XY is actually at... current_position[X_AXIS] += xdiff; current_position[Y_AXIS] += ydiff; current_position[Z_AXIS] += zdiff; // Set the new active extruder if not already done in tool specific function above active_extruder = tmp_extruder; // Tell the planner the new "current position" sync_plan_position(); #if ENABLED(DELTA) //LOOP_XYZ(i) update_software_endstops(i); // or modify the constrain function const bool safe_to_move = current_position[Z_AXIS] < delta_clip_start_height - 1; #else constexpr bool safe_to_move = true; #endif // Return to position and lower again if (safe_to_move && !no_move && IsRunning()) { if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination); #if ENABLED(SINGLENOZZLE) #if FAN_COUNT > 0 singlenozzle_fan_speed[active_extruder] = thermalManager.fan_speed[0]; thermalManager.fan_speed[0] = singlenozzle_fan_speed[tmp_extruder]; #endif singlenozzle_temp[active_extruder] = thermalManager.temp_hotend[0].target; if (singlenozzle_temp[tmp_extruder] && singlenozzle_temp[tmp_extruder] != singlenozzle_temp[active_extruder]) { thermalManager.setTargetHotend(singlenozzle_temp[tmp_extruder], 0); #if EITHER(ULTRA_LCD, EXTENSIBLE_UI) thermalManager.set_heating_message(0); #endif (void)thermalManager.wait_for_hotend(0, false); // Wait for heating or cooling } active_extruder = tmp_extruder; #endif #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) if (should_swap && !too_cold) { #if ENABLED(ADVANCED_PAUSE_FEATURE) do_pause_e_move(toolchange_settings.swap_length + TOOLCHANGE_FIL_EXTRA_PRIME, toolchange_settings.prime_speed); #else current_position[E_AXIS] += (toolchange_settings.swap_length + TOOLCHANGE_FIL_EXTRA_PRIME) / planner.e_factor[tmp_extruder]; planner.buffer_line(current_position, toolchange_settings.prime_speed, tmp_extruder); #endif planner.synchronize(); #if TOOLCHANGE_FIL_EXTRA_PRIME planner.set_e_position_mm((destination[E_AXIS] = current_position[E_AXIS] = current_position[E_AXIS] - (TOOLCHANGE_FIL_EXTRA_PRIME))); #endif } #endif // Prevent a move outside physical bounds apply_motion_limits(destination); // Move back to the original (or tweaked) position do_blocking_move_to(destination); #if ENABLED(DUAL_X_CARRIAGE) active_extruder_parked = false; #endif feedrate_mm_s = old_feedrate_mm_s; } #if ENABLED(SWITCHING_NOZZLE) else { // Move back down. (Including when the new tool is higher.) do_blocking_move_to_z(destination[Z_AXIS], planner.settings.max_feedrate_mm_s[Z_AXIS]); } #endif #if ENABLED(PRUSA_MMU2) mmu2.toolChange(tmp_extruder); #endif #if SWITCHING_NOZZLE_TWO_SERVOS lower_nozzle(active_extruder); #endif #if ENABLED(TOOLCHANGE_FILAMENT_SWAP) && ADVANCED_PAUSE_RESUME_PRIME != 0 if (should_swap && !too_cold) { const float resume_eaxis = current_position[E_AXIS]; #if ENABLED(ADVANCED_PAUSE_FEATURE) do_pause_e_move(toolchange_settings.swap_length, toolchange_settings.prime_speed); #else current_position[E_AXIS] += (ADVANCED_PAUSE_RESUME_PRIME) / planner.e_factor[active_extruder]; planner.buffer_line(current_position, ADVANCED_PAUSE_PURGE_FEEDRATE, active_extruder); #endif planner.synchronize(); planner.set_e_position_mm((destination[E_AXIS] = current_position[E_AXIS] = resume_eaxis)); } #endif } // (tmp_extruder != active_extruder) planner.synchronize(); #if ENABLED(EXT_SOLENOID) && DISABLED(PARKING_EXTRUDER) disable_all_solenoids(); enable_solenoid_on_active_extruder(); #endif #if ENABLED(MK2_MULTIPLEXER) if (tmp_extruder >= E_STEPPERS) return invalid_extruder_error(tmp_extruder); select_multiplexed_stepper(tmp_extruder); #endif #if DO_SWITCH_EXTRUDER planner.synchronize(); move_extruder_servo(active_extruder); #endif #if HAS_FANMUX fanmux_switch(active_extruder); #endif #if HAS_LEVELING // Restore leveling to re-establish the logical position set_bed_leveling_enabled(leveling_was_active); #endif SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, int(active_extruder)); #endif // EXTRUDERS > 1 }
/** * M48: Z probe repeatability measurement function. * * Usage: * M48 <P#> <X#> <Y#> <V#> <E> <L#> <S> * P = Number of sampled points (4-50, default 10) * X = Sample X position * Y = Sample Y position * V = Verbose level (0-4, default=1) * E = Engage Z probe for each reading * L = Number of legs of movement before probe * S = Schizoid (Or Star if you prefer) * * This function requires the machine to be homed before invocation. */ void GcodeSuite::M48() { if (axis_unhomed_error()) return; const int8_t verbose_level = parser.byteval('V', 1); if (!WITHIN(verbose_level, 0, 4)) { SERIAL_ECHOLNPGM("?(V)erbose level is implausible (0-4)."); return; } if (verbose_level > 0) SERIAL_ECHOLNPGM("M48 Z-Probe Repeatability Test"); const int8_t n_samples = parser.byteval('P', 10); if (!WITHIN(n_samples, 4, 50)) { SERIAL_ECHOLNPGM("?Sample size not plausible (4-50)."); return; } const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE; float X_current = current_position[X_AXIS], Y_current = current_position[Y_AXIS]; const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER); if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) { SERIAL_ECHOLNPGM("? (X,Y) out of bounds."); return; } bool seen_L = parser.seen('L'); uint8_t n_legs = seen_L ? parser.value_byte() : 0; if (n_legs > 15) { SERIAL_ECHOLNPGM("?Number of legs in movement not plausible (0-15)."); return; } if (n_legs == 1) n_legs = 2; const bool schizoid_flag = parser.boolval('S'); if (schizoid_flag && !seen_L) n_legs = 7; /** * Now get everything to the specified probe point So we can safely do a * probe to get us close to the bed. If the Z-Axis is far from the bed, * we don't want to use that as a starting point for each probe. */ if (verbose_level > 2) SERIAL_ECHOLNPGM("Positioning the probe..."); // Disable bed level correction in M48 because we want the raw data when we probe #if HAS_LEVELING const bool was_enabled = planner.leveling_active; set_bed_leveling_enabled(false); #endif setup_for_endstop_or_probe_move(); float mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples]; // Move to the first point, deploy, and probe const float t = probe_pt(X_probe_location, Y_probe_location, raise_after, verbose_level); bool probing_good = !isnan(t); if (probing_good) { randomSeed(millis()); for (uint8_t n = 0; n < n_samples; n++) { if (n_legs) { const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise float angle = random(0, 360); const float radius = random( #if ENABLED(DELTA) (int) (0.1250000000 * (DELTA_PRINTABLE_RADIUS)), (int) (0.3333333333 * (DELTA_PRINTABLE_RADIUS)) #else (int) 5.0, (int) (0.125 * MIN(X_BED_SIZE, Y_BED_SIZE)) #endif ); if (verbose_level > 3) { SERIAL_ECHOPAIR("Starting radius: ", radius); SERIAL_ECHOPAIR(" angle: ", angle); SERIAL_ECHOPGM(" Direction: "); if (dir > 0) SERIAL_ECHOPGM("Counter-"); SERIAL_ECHOLNPGM("Clockwise"); } for (uint8_t l = 0; l < n_legs - 1; l++) { float delta_angle; if (schizoid_flag) // The points of a 5 point star are 72 degrees apart. We need to // skip a point and go to the next one on the star. delta_angle = dir * 2.0 * 72.0; else // If we do this line, we are just trying to move further // around the circle. delta_angle = dir * (float) random(25, 45); angle += delta_angle; while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the angle -= 360.0; // Arduino documentation says the trig functions should not be given values while (angle < 0.0) // outside of this range. It looks like they behave correctly with angle += 360.0; // numbers outside of the range, but just to be safe we clamp them. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius; Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius; #if DISABLED(DELTA) X_current = constrain(X_current, X_MIN_POS, X_MAX_POS); Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS); #else // If we have gone out too far, we can do a simple fix and scale the numbers // back in closer to the origin. while (!position_is_reachable_by_probe(X_current, Y_current)) { X_current *= 0.8; Y_current *= 0.8; if (verbose_level > 3) { SERIAL_ECHOPAIR("Pulling point towards center:", X_current); SERIAL_ECHOLNPAIR(", ", Y_current); } } #endif if (verbose_level > 3) { SERIAL_ECHOPGM("Going to:"); SERIAL_ECHOPAIR(" X", X_current); SERIAL_ECHOPAIR(" Y", Y_current); SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]); } do_blocking_move_to_xy(X_current, Y_current); } // n_legs loop } // n_legs // Probe a single point sample_set[n] = probe_pt(X_probe_location, Y_probe_location, raise_after, 0); // Break the loop if the probe fails probing_good = !isnan(sample_set[n]); if (!probing_good) break; /** * Get the current mean for the data points we have so far */ float sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; mean = sum / (n + 1); NOMORE(min, sample_set[n]); NOLESS(max, sample_set[n]); /** * Now, use that mean to calculate the standard deviation for the * data points we have so far */ sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sq(sample_set[j] - mean); sigma = SQRT(sum / (n + 1)); if (verbose_level > 0) { if (verbose_level > 1) { SERIAL_ECHO(n + 1); SERIAL_ECHOPAIR(" of ", (int)n_samples); SERIAL_ECHOPAIR_F(": z: ", sample_set[n], 3); if (verbose_level > 2) { SERIAL_ECHOPAIR_F(" mean: ", mean, 4); SERIAL_ECHOPAIR_F(" sigma: ", sigma, 6); SERIAL_ECHOPAIR_F(" min: ", min, 3); SERIAL_ECHOPAIR_F(" max: ", max, 3); SERIAL_ECHOPAIR_F(" range: ", max-min, 3); } SERIAL_EOL(); } } } // n_samples loop } STOW_PROBE(); if (probing_good) { SERIAL_ECHOLNPGM("Finished!"); if (verbose_level > 0) { SERIAL_ECHOPAIR_F("Mean: ", mean, 6); SERIAL_ECHOPAIR_F(" Min: ", min, 3); SERIAL_ECHOPAIR_F(" Max: ", max, 3); SERIAL_ECHOLNPAIR_F(" Range: ", max-min, 3); } SERIAL_ECHOLNPAIR_F("Standard Deviation: ", sigma, 6); SERIAL_EOL(); } clean_up_after_endstop_or_probe_move(); // Re-enable bed level correction if it had been on #if HAS_LEVELING set_bed_leveling_enabled(was_enabled); #endif report_current_position(); }
/** * M420: Enable/Disable Bed Leveling and/or set the Z fade height. * * S[bool] Turns leveling on or off * Z[height] Sets the Z fade height (0 or none to disable) * V[bool] Verbose - Print the leveling grid * * With AUTO_BED_LEVELING_UBL only: * * L[index] Load UBL mesh from index (0 is default) * T[map] 0:Human-readable 1:CSV 2:"LCD" 4:Compact * * With mesh-based leveling only: * * C Center mesh on the mean of the lowest and highest * * With MARLIN_DEV_MODE: * S2 Create a simple random mesh and enable */ void GcodeSuite::M420() { const bool seen_S = parser.seen('S'), to_enable = seen_S ? parser.value_bool() : planner.leveling_active; #if ENABLED(MARLIN_DEV_MODE) if (parser.intval('S') == 2) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_start[X_AXIS] = MIN_PROBE_X; bilinear_start[Y_AXIS] = MIN_PROBE_Y; bilinear_grid_spacing[X_AXIS] = (MAX_PROBE_X - (MIN_PROBE_X)) / (GRID_MAX_POINTS_X - 1); bilinear_grid_spacing[Y_AXIS] = (MAX_PROBE_Y - (MIN_PROBE_Y)) / (GRID_MAX_POINTS_Y - 1); #endif for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) Z_VALUES(x, y) = 0.001 * random(-200, 200); SERIAL_ECHOPGM("Simulated " STRINGIFY(GRID_MAX_POINTS_X) "x" STRINGIFY(GRID_MAX_POINTS_X) " mesh "); SERIAL_ECHOPAIR(" (", MIN_PROBE_X); SERIAL_CHAR(','); SERIAL_ECHO(MIN_PROBE_Y); SERIAL_ECHOPAIR(")-(", MAX_PROBE_X); SERIAL_CHAR(','); SERIAL_ECHO(MAX_PROBE_Y); SERIAL_ECHOLNPGM(")"); } #endif // If disabling leveling do it right away // (Don't disable for just M420 or M420 V) if (seen_S && !to_enable) set_bed_leveling_enabled(false); const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] }; #if ENABLED(AUTO_BED_LEVELING_UBL) // L to load a mesh from the EEPROM if (parser.seen('L')) { set_bed_leveling_enabled(false); #if ENABLED(EEPROM_SETTINGS) const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot; const int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_ECHOLNPGM("?EEPROM storage not available."); return; } if (!WITHIN(storage_slot, 0, a - 1)) { SERIAL_ECHOLNPGM("?Invalid storage slot."); SERIAL_ECHOLNPAIR("?Use 0 to ", a - 1); return; } settings.load_mesh(storage_slot); ubl.storage_slot = storage_slot; #else SERIAL_ECHOLNPGM("?EEPROM storage not available."); return; #endif } // L or V display the map info if (parser.seen('L') || parser.seen('V')) { ubl.display_map(parser.byteval('T')); SERIAL_ECHOPGM("Mesh is "); if (!ubl.mesh_is_valid()) SERIAL_ECHOPGM("in"); SERIAL_ECHOLNPAIR("valid\nStorage slot: ", ubl.storage_slot); } #endif // AUTO_BED_LEVELING_UBL const bool seenV = parser.seen('V'); #if HAS_MESH if (leveling_is_valid()) { // Subtract the given value or the mean from all mesh values if (parser.seen('C')) { const float cval = parser.value_float(); #if ENABLED(AUTO_BED_LEVELING_UBL) set_bed_leveling_enabled(false); ubl.adjust_mesh_to_mean(true, cval); #else #if ENABLED(M420_C_USE_MEAN) // Get the sum and average of all mesh values float mesh_sum = 0; for (uint8_t x = GRID_MAX_POINTS_X; x--;) for (uint8_t y = GRID_MAX_POINTS_Y; y--;) mesh_sum += Z_VALUES(x, y); const float zmean = mesh_sum / float(GRID_MAX_POINTS); #else // Find the low and high mesh values float lo_val = 100, hi_val = -100; for (uint8_t x = GRID_MAX_POINTS_X; x--;) for (uint8_t y = GRID_MAX_POINTS_Y; y--;) { const float z = Z_VALUES(x, y); NOMORE(lo_val, z); NOLESS(hi_val, z); } // Take the mean of the lowest and highest const float zmean = (lo_val + hi_val) / 2.0 + cval; #endif // If not very close to 0, adjust the mesh if (!NEAR_ZERO(zmean)) { set_bed_leveling_enabled(false); // Subtract the mean from all values for (uint8_t x = GRID_MAX_POINTS_X; x--;) for (uint8_t y = GRID_MAX_POINTS_Y; y--;) Z_VALUES(x, y) -= zmean; #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif } #endif } } else if (to_enable || seenV) { SERIAL_ECHO_MSG("Invalid mesh."); goto EXIT_M420; } #endif // HAS_MESH // V to print the matrix or mesh if (seenV) { #if ABL_PLANAR planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:")); #else if (leveling_is_valid()) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) print_bilinear_leveling_grid(); #if ENABLED(ABL_BILINEAR_SUBDIVISION) print_bilinear_leveling_grid_virt(); #endif #elif ENABLED(MESH_BED_LEVELING) SERIAL_ECHOLNPGM("Mesh Bed Level data:"); mbl.report_mesh(); #endif } #endif } #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units(), false); #endif // Enable leveling if specified, or if previously active set_bed_leveling_enabled(to_enable); #if HAS_MESH EXIT_M420: #endif // Error if leveling failed to enable or reenable if (to_enable && !planner.leveling_active) SERIAL_ERROR_MSG(MSG_ERR_M420_FAILED); SERIAL_ECHO_START(); SERIAL_ECHOPGM("Bed Leveling "); serialprintln_onoff(planner.leveling_active); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_ECHO_START(); SERIAL_ECHOPGM("Fade Height "); if (planner.z_fade_height > 0.0) SERIAL_ECHOLN(planner.z_fade_height); else SERIAL_ECHOLNPGM(MSG_OFF); #endif // Report change in position if (memcmp(oldpos, current_position, sizeof(oldpos))) report_current_position(); }
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) { if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary return true; // did not move, so current_position still accurate const float total[XYZE] = { rtarget[X_AXIS] - current_position[X_AXIS], rtarget[Y_AXIS] - current_position[Y_AXIS], rtarget[Z_AXIS] - current_position[Z_AXIS], rtarget[E_AXIS] - current_position[E_AXIS] }; const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance #if IS_KINEMATIC const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate seglimit = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments) #else uint16_t segments = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length #endif NOLESS(segments, 1U); // must have at least one segment const float inv_segments = 1.0f / segments; // divide once, multiply thereafter #if IS_SCARA // scale the feed rate from mm/s to degrees/s scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate; scara_oldA = planner.get_axis_position_degrees(A_AXIS); scara_oldB = planner.get_axis_position_degrees(B_AXIS); #endif const float diff[XYZE] = { total[X_AXIS] * inv_segments, total[Y_AXIS] * inv_segments, total[Z_AXIS] * inv_segments, total[E_AXIS] * inv_segments }; // Note that E segment distance could vary slightly as z mesh height // changes for each segment, but small enough to ignore. float raw[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] }; // Only compute leveling per segment if ubl active and target below z_fade_height. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling while (--segments) { LOOP_XYZE(i) raw[i] += diff[i]; ubl_buffer_segment_raw(raw, feedrate); } ubl_buffer_segment_raw(rtarget, feedrate); return false; // moved but did not set_current_from_destination(); } // Otherwise perform per-segment leveling #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]); #endif // increment to first segment destination LOOP_XYZE(i) raw[i] += diff[i]; for (;;) { // for each mesh cell encountered during the move // Compute mesh cell invariants that remain constant for all segments within cell. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter) // the bilinear interpolation from the adjacent cell within the mesh will still work. // Inner loop will exit each time (because out of cell bounds) but will come back // in top of loop and again re-find same adjacent cell and use it, just less efficient // for mesh inset area. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0f / (MESH_X_DIST)), cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0f / (MESH_Y_DIST)); cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1); cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1); const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add y0 = mesh_index_to_ypos(cell_yi); float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A) if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell, if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points float cx = raw[X_AXIS] - x0, // cell-relative x and y cy = raw[Y_AXIS] - y0; const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0f / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right) z_xmy1 = (z_x1y1 - z_x0y1) * (1.0f / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right) float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell) const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1 float z_cxym = z_cxyd * (1.0f / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell) // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop) // As subsequent segments step through this cell, the z_cxy0 intercept will change // and the z_cxym slope will change, both as a function of cx within the cell, and // each change by a constant for fixed segment lengths. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0 z_sxym = (z_xmy1 - z_xmy0) * (1.0f / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym for (;;) { // for all segments within this mesh cell if (--segments == 0) // if this is last segment, use rtarget for exact COPY(raw, rtarget); const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) * fade_scaling_factor // apply fade factor to interpolated mesh height #endif ; const float z = raw[Z_AXIS]; raw[Z_AXIS] += z_cxcy; ubl_buffer_segment_raw(raw, feedrate); raw[Z_AXIS] = z; if (segments == 0) // done with last segment return false; // did not set_current_from_destination() LOOP_XYZE(i) raw[i] += diff[i]; cx += diff[X_AXIS]; cy += diff[Y_AXIS]; if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next break; // Next segment still within same mesh cell, adjust the per-segment // slope and intercept to compute next z height. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0 z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym } // segment loop } // cell loop return false; // caller will update current_position }