/** \brief Test case: TC_CoreSimd_SatAddSub \details - Check Saturating addition and subtraction: __QADD __QSUB */ void TC_CoreSimd_SatAddSub (void) { #if ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) ) volatile int32_t op1_s32, op2_s32; volatile int32_t res_s32; /* --- __QADD Test ---------------------------------------------- */ op1_s32 = (int32_t)0x80000003; op2_s32 = (int32_t)0x00000004; res_s32 = __QADD(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x80000007); op1_s32 = (int32_t)0x80000000; op2_s32 = (int32_t)0x80000002; res_s32 = __QADD(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x80000000); /* --- __QSUB Test ---------------------------------------------- */ op1_s32 = (int32_t)0x80000003; op2_s32 = (int32_t)0x00000004; res_s32 = __QSUB(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x80000000); op1_s32 = (int32_t)0x80000003; op2_s32 = (int32_t)0x00000002; res_s32 = __QSUB(op1_s32, op2_s32); ASSERT_TRUE(res_s32 == (int32_t)0x80000001); #endif }
void arm_pid_init_q31( arm_pid_instance_q31 * S, int32_t resetStateFlag) { #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Derived coefficient A0 */ S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd); /* Derived coefficient A1 */ S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp); #else /* Run the below code for Cortex-M0 */ q31_t temp; /* Derived coefficient A0 */ temp = clip_q63_to_q31((q63_t) S->Kp + S->Ki); S->A0 = clip_q63_to_q31((q63_t) temp + S->Kd); /* Derived coefficient A1 */ temp = clip_q63_to_q31((q63_t) S->Kd + S->Kd); S->A1 = -clip_q63_to_q31((q63_t) temp + S->Kp); #endif /* #ifndef ARM_MATH_CM0_FAMILY */ /* Derived coefficient A2 */ S->A2 = S->Kd; /* Check whether state needs reset or not */ if(resetStateFlag) { /* Clear the state buffer. The size will be always 3 samples */ memset(S->state, 0, 3u * sizeof(q31_t)); } }
void arm_add_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A + B */ /* Add and then store the results in the destination buffer. */ *pDst++ = __QADD(*pSrcA++, *pSrcB++); *pDst++ = __QADD(*pSrcA++, *pSrcB++); *pDst++ = __QADD(*pSrcA++, *pSrcB++); *pDst++ = __QADD(*pSrcA++, *pSrcB++); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A + B */ /* Add and then store the results in the destination buffer. */ *pDst++ = __QADD(*pSrcA++, *pSrcB++); /* Decrement the loop counter */ blkCnt--; } }
void arm_pid_init_q31( arm_pid_instance_q31 * S, int32_t resetStateFlag) { /* Derived coefficient A0 */ S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd); /* Derived coefficient A1 */ S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp); /* Derived coefficient A2 */ S->A2 = S->Kd; /* Check whether state needs reset or not */ if(resetStateFlag) { /* Clear the state buffer. The size will be always 3 samples */ memset(S->state, 0, 3u * sizeof(q31_t)); } }
void arm_pid_init_q31( arm_pid_instance_q31 * S, int32_t resetStateFlag) { #if defined (ARM_MATH_DSP) /* Derived coefficient A0 */ S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd); /* Derived coefficient A1 */ S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp); #else q31_t temp; /* to store the sum */ /* Derived coefficient A0 */ temp = clip_q63_to_q31((q63_t) S->Kp + S->Ki); S->A0 = clip_q63_to_q31((q63_t) temp + S->Kd); /* Derived coefficient A1 */ temp = clip_q63_to_q31((q63_t) S->Kd + S->Kd); S->A1 = -clip_q63_to_q31((q63_t) temp + S->Kp); #endif /* #if defined (ARM_MATH_DSP) */ /* Derived coefficient A2 */ S->A2 = S->Kd; /* Check whether state needs reset or not */ if (resetStateFlag) { /* Reset state to zero, The size will be always 3 samples */ memset(S->state, 0, 3U * sizeof(q31_t)); } }
arm_status arm_mat_add_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst) { q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ q31_t *pOut = pDst->pData; /* output data matrix pointer */ q31_t inA1, inB1; /* temporary variables */ #ifndef ARM_MATH_CM0_FAMILY q31_t inA2, inB2; /* temporary variables */ q31_t out1, out2; /* temporary variables */ #endif // #ifndef ARM_MATH_CM0_FAMILY uint32_t numSamples; /* total number of elements in the matrix */ uint32_t blkCnt; /* loop counters */ arm_status status; /* status of matrix addition */ #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrcA->numRows != pSrcB->numRows) || (pSrcA->numCols != pSrcB->numCols) || (pSrcA->numRows != pDst->numRows) || (pSrcA->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif { /* Total number of samples in the input matrix */ numSamples = (uint32_t) pSrcA->numRows * pSrcA->numCols; #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ /* Loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add, saturate and then store the results in the destination buffer. */ /* Read values from source A */ inA1 = pIn1[0]; /* Read values from source B */ inB1 = pIn2[0]; /* Read values from source A */ inA2 = pIn1[1]; /* Add and saturate */ out1 = __QADD(inA1, inB1); /* Read values from source B */ inB2 = pIn2[1]; /* Read values from source A */ inA1 = pIn1[2]; /* Add and saturate */ out2 = __QADD(inA2, inB2); /* Read values from source B */ inB1 = pIn2[2]; /* Store result in destination */ pOut[0] = out1; pOut[1] = out2; /* Read values from source A */ inA2 = pIn1[3]; /* Read values from source B */ inB2 = pIn2[3]; /* Add and saturate */ out1 = __QADD(inA1, inB1); out2 = __QADD(inA2, inB2); /* Store result in destination */ pOut[2] = out1; pOut[3] = out2; /* update pointers to process next sampels */ pIn1 += 4u; pIn2 += 4u; pOut += 4u; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = numSamples; #endif /* #ifndef ARM_MATH_CM0_FAMILY */ while(blkCnt > 0u) { /* C(m,n) = A(m,n) + B(m,n) */ /* Add, saturate and then store the results in the destination buffer. */ inA1 = *pIn1++; inB1 = *pIn2++; inA1 = __QADD(inA1, inB1); /* Decrement the loop counter */ blkCnt--; *pOut++ = inA1; } /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); }
void arm_add_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0 /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t inA1, inA2, inA3, inA4; q31_t inB1, inB2, inB3, inB4; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A + B */ /* Add and then store the results in the destination buffer. */ inA1 = *pSrcA++; inA2 = *pSrcA++; inB1 = *pSrcB++; inB2 = *pSrcB++; inA3 = *pSrcA++; inA4 = *pSrcA++; inB3 = *pSrcB++; inB4 = *pSrcB++; *pDst++ = __QADD(inA1, inB1); *pDst++ = __QADD(inA2, inB2); *pDst++ = __QADD(inA3, inB3); *pDst++ = __QADD(inA4, inB4); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A + B */ /* Add and then store the results in the destination buffer. */ *pDst++ = __QADD(*pSrcA++, *pSrcB++); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = A + B */ /* Add and then store the results in the destination buffer. */ *pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ + *pSrcB++); /* Decrement the loop counter */ blkCnt--; } #endif /* #ifndef ARM_MATH_CM0 */ }
void arm_offset_q31( q31_t * pSrc, q31_t offset, q31_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t in1, in2, in3, in4; /*loop Unrolling */ blkCnt = blockSize >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* C = A + offset */ /* Add offset and then store the results in the destination buffer. */ in1 = *pSrc++; in2 = *pSrc++; in3 = *pSrc++; in4 = *pSrc++; *pDst++ = __QADD(in1, offset); *pDst++ = __QADD(in2, offset); *pDst++ = __QADD(in3, offset); *pDst++ = __QADD(in4, offset); /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x4u; while(blkCnt > 0u) { /* C = A + offset */ /* Add offset and then store the result in the destination buffer. */ *pDst++ = __QADD(*pSrc++, offset); /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ /* Initialize blkCnt with number of samples */ blkCnt = blockSize; while(blkCnt > 0u) { /* C = A + offset */ /* Add offset and then store the result in the destination buffer. */ *pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset); /* Decrement the loop counter */ blkCnt--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ }
void arm_add_q31( q31_t * pSrcA, q31_t * pSrcB, q31_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ q31_t inA1, inA2, inA3, inA4; /* temporary input variables */ q31_t inB1, inB2, inB3, inB4; /* temporary input variables */ /*loop Unrolling */ blkCnt = blockSize >> 3u; /* First part of the processing with loop unrolling. Compute 8 outputs at a time. ** a second loop below computes the remaining 1 to 7 samples. */ while(blkCnt > 0u) { /* C = A + B */ /* Add and then store the results in the destination buffer. */ /* read input from soruceA */ inA1 = *pSrcA; /* read input from soruceB */ inB1 = *pSrcB; /* read input from soruceA */ inA2 = *(pSrcA + 1); /* read input from soruceB */ inB2 = *(pSrcB + 1); /* add, saturate and store result to destination */ *pDst = __QADD(inA1, inB1); /* read input from soruceA */ inA3 = *(pSrcA + 2); /* read input from soruceB */ inB3 = *(pSrcB + 2); /* add, saturate and store result to destination */ *(pDst + 1) = __QADD(inA2, inB2); /* read input from soruceA */ inA4 = *(pSrcA + 3); /* read input from soruceB */ inB4 = *(pSrcB + 3); /* add, saturate and store result to destination */ *(pDst + 2) = __QADD(inA3, inB3); /* read input from soruceA */ inA1 = *(pSrcA + 4); /* read input from soruceB */ inB1 = *(pSrcB + 4); /* add, saturate and store result to destination */ *(pDst + 3) = __QADD(inA4, inB4); /* read input from soruceA */ inA2 = *(pSrcA + 5); /* read input from soruceB */ inB2 = *(pSrcB + 5); /* add, saturate and store result to destination */ *(pDst + 4) = __QADD(inA1, inB1); /* read input from soruceA */ inA3 = *(pSrcA + 6); /* read input from soruceB */ inB3 = *(pSrcB + 6); /* add, saturate and store result to destination */ *(pDst + 5) = __QADD(inA2, inB2); /* read input from soruceA */ inA4 = *(pSrcA + 7); /* add, saturate and store result to destination */ *(pDst + 6) = __QADD(inA3, inB3); /* increment sourceA pointer by 8 */ pSrcA += 8u; /* read input from soruceB */ inB4 = *(pSrcB + 7); /* increment sourceB pointer by 8 */ pSrcB += 8u; /* add, saturate and store result to destination */ *(pDst + 7) = __QADD(inA4, inB4); /* increment destination pointer by 8 */ pDst += 8u; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 8, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x8u; while(blkCnt > 0u) { /* C = A + B */ /* Add and then store the results in the destination buffer. */ inA1 = *pSrcA++; inB1 = *pSrcB++; *pDst++ = __QADD(inA1, inB1); /* Decrement the loop counter */ blkCnt--; } }
void arm_offset_q31( q31_t * pSrc, q31_t offset, q31_t * pDst, uint32_t blockSize) { uint32_t blkCnt; /* loop counter */ q31_t in1, in2, in3, in4; /* temporary variables */ /*loop Unrolling */ blkCnt = blockSize >> 3u; /* First part of the processing with loop unrolling. Compute 8 outputs at a time. ** a second loop below computes the remaining 1 to 7 samples. */ while(blkCnt > 0u) { /* C = A + offset */ /* Add offset and then store the results in the destination buffer. */ /* read samples from the source */ in1 = *pSrc; in2 = *(pSrc + 1); /* add offset to the input */ in1 = __QADD(in1, offset); /* read sample from the source */ in3 = *(pSrc + 2); /* add offset to the input */ in2 = __QADD(in2, offset); /* read sample from the source */ in4 = *(pSrc + 3); /* add offset to the input */ in3 = __QADD(in3, offset); /* store result to destination buffer */ *pDst = in1; /* add offset to the input */ in4 = __QADD(in4, offset); /* store result to destination buffer */ *(pDst + 1) = in2; *(pDst + 2) = in3; *(pDst + 3) = in4; /* read samples from the source */ in1 = *(pSrc + 4); in2 = *(pSrc + 5); /* add offset to the input */ in1 = __QADD(in1, offset); /* read sample from the source */ in3 = *(pSrc + 6); /* add offset to the input */ in2 = __QADD(in2, offset); /* read sample from the source */ in4 = *(pSrc + 7); /* store result to destination buffer */ *(pDst + 4) = in1; /* add offset to the input */ in3 = __QADD(in3, offset); /* store result to destination buffer */ *(pDst + 5) = in2; /* add offset to the input */ in4 = __QADD(in4, offset); /* store result to destination buffer */ *(pDst + 6) = in3; /* increment source pointer by 8 to process next samples */ pSrc += 8u; /* store result to destination buffer */ *(pDst + 7) = in4; /* increment destination pointer by 8 */ pDst += 8u; /* Decrement the loop counter */ blkCnt--; } /* If the blockSize is not a multiple of 8, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = blockSize % 0x8u; while(blkCnt > 0u) { /* C = A + offset */ /* Add offset and then store the result in the destination buffer. */ in1 = *pSrc++; *pDst++ = __QADD(in1, offset); /* Decrement the loop counter */ blkCnt--; } }
#define OP_NAME iadd #include <ngl_opcode_begin.c> #ifdef OPCODE_BODY #ifdef NGL_ARM { ngl_val right = ngl_stack_pop(&stack); ngl_val left = ngl_stack_pop(&stack); ngl_stack_push(&stack, ngl_val_uint(__QADD(left.uinteger, right.uinteger))); } #else { ngl_val right = ngl_stack_pop(&stack); ngl_val left = ngl_stack_pop(&stack); int64_t sum = (int64_t)(left.integer) + (int64_t)(right.integer); if (sum > INT_MAX) { sum = INT_MAX; } if (sum < INT_MIN) { sum = INT_MIN; } ngl_stack_push(&stack, ngl_val_int(sum)); } #endif #endif #include <ngl_opcode_end.c>