void gp_ir_visitor::insert_phi(ir_phi* ir, unsigned num_sources) { lima_gp_ir_phi_node_t* phi = lima_gp_ir_phi_node_create(num_sources); lima_gp_ir_reg_t* dest = lima_gp_ir_reg_create(this->prog); dest->size = ir->dest->type->vector_elements; phi->dest = dest; _mesa_hash_table_insert(this->var_to_reg, _mesa_hash_pointer(ir->dest), ir->dest, dest); _mesa_hash_table_insert(this->phi_to_phi, _mesa_hash_pointer(ir), ir, phi); ptrset_add(&this->cur_block->phi_nodes, phi); }
void GLAPIENTRY _mesa_VDPAUGetSurfaceivNV(GLintptr surface, GLenum pname, GLsizei bufSize, GLsizei *length, GLint *values) { struct vdp_surface *surf = (struct vdp_surface *)surface; GET_CURRENT_CONTEXT(ctx); if (!ctx->vdpDevice || !ctx->vdpGetProcAddress || !ctx->vdpSurfaces) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAUGetSurfaceivNV"); return; } if (!_mesa_set_search(ctx->vdpSurfaces, _mesa_hash_pointer(surf), surf)) { _mesa_error(ctx, GL_INVALID_VALUE, "VDPAUGetSurfaceivNV"); return; } if (pname != GL_SURFACE_STATE_NV) { _mesa_error(ctx, GL_INVALID_ENUM, "VDPAUGetSurfaceivNV"); return; } if (bufSize < 1) { _mesa_error(ctx, GL_INVALID_VALUE, "VDPAUGetSurfaceivNV"); return; } values[0] = surf->state; if (length != NULL) *length = 1; }
void GLAPIENTRY _mesa_VDPAUSurfaceAccessNV(GLintptr surface, GLenum access) { struct vdp_surface *surf = (struct vdp_surface *)surface; GET_CURRENT_CONTEXT(ctx); if (!ctx->vdpDevice || !ctx->vdpGetProcAddress || !ctx->vdpSurfaces) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAUSurfaceAccessNV"); return; } if (!_mesa_set_search(ctx->vdpSurfaces, _mesa_hash_pointer(surf), surf)) { _mesa_error(ctx, GL_INVALID_VALUE, "VDPAUSurfaceAccessNV"); return; } if (access != GL_READ_ONLY && access != GL_WRITE_ONLY && access != GL_READ_WRITE) { _mesa_error(ctx, GL_INVALID_VALUE, "VDPAUSurfaceAccessNV"); return; } if (surf->state == GL_SURFACE_MAPPED_NV) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAUSurfaceAccessNV"); return; } surf->access = access; }
void GLAPIENTRY _mesa_VDPAUUnregisterSurfaceNV(GLintptr surface) { struct vdp_surface *surf = (struct vdp_surface *)surface; struct set_entry *entry; int i; GET_CURRENT_CONTEXT(ctx); if (!ctx->vdpDevice || !ctx->vdpGetProcAddress || !ctx->vdpSurfaces) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAUUnregisterSurfaceNV"); return; } /* according to the spec it's ok when this is zero */ if (surface == 0) return; entry = _mesa_set_search(ctx->vdpSurfaces, _mesa_hash_pointer(surf), surf); if (!entry) { _mesa_error(ctx, GL_INVALID_VALUE, "VDPAUUnregisterSurfaceNV"); return; } for (i = 0; i < MAX_TEXTURES; i++) { if (surf->textures[i]) { surf->textures[i]->Immutable = GL_FALSE; _mesa_reference_texobj(&surf->textures[i], NULL); } } _mesa_set_remove(ctx->vdpSurfaces, entry); free(surf); }
ir_variable_refcount_entry * ir_variable_refcount_visitor::get_variable_entry(ir_variable *var) { assert(var); struct hash_entry *e = _mesa_hash_table_search(this->ht, _mesa_hash_pointer(var), var); if (e) return (ir_variable_refcount_entry *)e->data; ir_variable_refcount_entry *entry = new ir_variable_refcount_entry(var); assert(entry->referenced_count == 0); _mesa_hash_table_insert(this->ht, _mesa_hash_pointer(var), var, entry); return entry; }
static int _mesa_validate_sync(struct gl_context *ctx, struct gl_sync_object *syncObj) { return (syncObj != NULL) && _mesa_set_search(ctx->Shared->SyncObjects, _mesa_hash_pointer(syncObj), syncObj) != NULL && (syncObj->Type == GL_SYNC_FENCE) && !syncObj->DeletePending; }
ir_visitor_status gp_ir_visitor::visit_enter(ir_loop* ir) { _mesa_hash_table_insert(this->loop_beginning_to_block, _mesa_hash_pointer(ir), ir, this->cur_block); lima_gp_ir_block_t* loop_header = lima_gp_ir_block_create(); lima_gp_ir_prog_insert(loop_header, this->cur_block); this->cur_block = loop_header; //we create after_loop and append it after loop_header, but we *do not* set //this->cur_block - any additional blocks in the loop will go in between //loop_header and after_loop lima_gp_ir_block_t* after_loop = lima_gp_ir_block_create(); lima_gp_ir_prog_insert(after_loop, this->cur_block); lima_gp_ir_block_t* old_break_block = this->break_block; lima_gp_ir_block_t* old_continue_block = this->continue_block; this->break_block = after_loop; this->continue_block = loop_header; visit_list_elements(this, &ir->begin_phi_nodes, false); visit_list_elements(this, &ir->body_instructions); _mesa_hash_table_insert(this->loop_end_to_block, _mesa_hash_pointer(ir), ir, this->cur_block); lima_gp_ir_branch_node_t* branch = lima_gp_ir_branch_node_create(lima_gp_ir_op_branch_uncond); branch->dest = loop_header; lima_gp_ir_block_insert_end(this->cur_block, &branch->root_node); this->break_block = old_break_block; this->continue_block = old_continue_block; this->cur_block = after_loop; visit_list_elements(this, &ir->end_phi_nodes, false); return visit_continue_with_parent; }
ir_variable_refcount_entry * ir_variable_refcount_visitor::find_variable_entry(ir_variable *var) { assert(var); struct hash_entry *e = _mesa_hash_table_search(this->ht, _mesa_hash_pointer(var), var); if (e) return (ir_variable_refcount_entry *)e->data; return NULL; }
void GLAPIENTRY _mesa_VDPAUMapSurfacesNV(GLsizei numSurfaces, const GLintptr *surfaces) { GET_CURRENT_CONTEXT(ctx); int i; if (!ctx->vdpDevice || !ctx->vdpGetProcAddress || !ctx->vdpSurfaces) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAUUnmapSurfacesNV"); return; } for (i = 0; i < numSurfaces; ++i) { struct vdp_surface *surf = (struct vdp_surface *)surfaces[i]; if (!_mesa_set_search(ctx->vdpSurfaces, _mesa_hash_pointer(surf), surf)) { _mesa_error(ctx, GL_INVALID_VALUE, "VDPAUSurfaceAccessNV"); return; } if (surf->state == GL_SURFACE_MAPPED_NV) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAUSurfaceAccessNV"); return; } } for (i = 0; i < numSurfaces; ++i) { struct vdp_surface *surf = (struct vdp_surface *)surfaces[i]; unsigned numTextureNames = surf->output ? 1 : 4; unsigned j; for (j = 0; j < numTextureNames; ++j) { struct gl_texture_object *tex = surf->textures[j]; struct gl_texture_image *image; _mesa_lock_texture(ctx, tex); image = _mesa_get_tex_image(ctx, tex, surf->target, 0); if (!image) { _mesa_error(ctx, GL_OUT_OF_MEMORY, "VDPAUMapSurfacesNV"); _mesa_unlock_texture(ctx, tex); return; } ctx->Driver.FreeTextureImageBuffer(ctx, image); ctx->Driver.VDPAUMapSurface(ctx, surf->target, surf->access, surf->output, tex, image, surf->vdpSurface, j); _mesa_unlock_texture(ctx, tex); } surf->state = GL_SURFACE_MAPPED_NV; } }
void gp_ir_visitor::rewrite_phi_jump_srcs(lima_gp_ir_phi_node_t* phi, exec_list* srcs, unsigned start) { unsigned i = start; foreach_list(node, srcs) { ir_phi_jump_src* src = (ir_phi_jump_src*) node; struct hash_entry* entry = _mesa_hash_table_search(this->loop_jump_to_block, _mesa_hash_pointer(src->jump), src->jump); lima_gp_ir_block_t* pred = (lima_gp_ir_block_t*) entry->data; this->rewrite_phi_source(&phi->sources[i], pred, src->src); i++; }
ir_visitor_status gp_ir_visitor::visit(ir_loop_jump* ir) { _mesa_hash_table_insert(this->loop_jump_to_block, _mesa_hash_pointer(ir), ir, this->cur_block); lima_gp_ir_branch_node_t* branch = lima_gp_ir_branch_node_create(lima_gp_ir_op_branch_uncond); if (ir->mode == ir_loop_jump::jump_break) branch->dest = this->break_block; else branch->dest = this->continue_block; lima_gp_ir_block_insert_end(this->cur_block, &branch->root_node); return visit_continue; }
void gp_ir_visitor::rewrite_phi_source(lima_gp_ir_phi_node_src_t* src, lima_gp_ir_block_t* block, ir_variable* var) { if (var) { struct hash_entry* entry = _mesa_hash_table_search(this->var_to_reg, _mesa_hash_pointer(var), var); src->reg = (lima_gp_ir_reg_t*) entry->data; } else src->reg = NULL; src->pred = block; }
GLsync GLAPIENTRY _mesa_FenceSync(GLenum condition, GLbitfield flags) { GET_CURRENT_CONTEXT(ctx); struct gl_sync_object *syncObj; ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, 0); if (condition != GL_SYNC_GPU_COMMANDS_COMPLETE) { _mesa_error(ctx, GL_INVALID_ENUM, "glFenceSync(condition=0x%x)", condition); return 0; } if (flags != 0) { _mesa_error(ctx, GL_INVALID_VALUE, "glFenceSync(flags=0x%x)", condition); return 0; } syncObj = ctx->Driver.NewSyncObject(ctx, GL_SYNC_FENCE); if (syncObj != NULL) { syncObj->Type = GL_SYNC_FENCE; /* The name is not currently used, and it is never visible to * applications. If sync support is extended to provide support for * NV_fence, this field will be used. We'll also need to add an object * ID hashtable. */ syncObj->Name = 1; syncObj->RefCount = 1; syncObj->DeletePending = GL_FALSE; syncObj->SyncCondition = condition; syncObj->Flags = flags; syncObj->StatusFlag = 0; ctx->Driver.FenceSync(ctx, syncObj, condition, flags); _glthread_LOCK_MUTEX(ctx->Shared->Mutex); _mesa_set_add(ctx->Shared->SyncObjects, _mesa_hash_pointer(syncObj), syncObj); _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); return (GLsync) syncObj; } return NULL; }
GLboolean GLAPIENTRY _mesa_VDPAUIsSurfaceNV(GLintptr surface) { struct vdp_surface *surf = (struct vdp_surface *)surface; GET_CURRENT_CONTEXT(ctx); if (!ctx->vdpDevice || !ctx->vdpGetProcAddress || !ctx->vdpSurfaces) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAUIsSurfaceNV"); return false; } if (!_mesa_set_search(ctx->vdpSurfaces, _mesa_hash_pointer(surf), surf)) { return false; } return true; }
void _mesa_unref_sync_object(struct gl_context *ctx, struct gl_sync_object *syncObj) { struct set_entry *entry; _glthread_LOCK_MUTEX(ctx->Shared->Mutex); syncObj->RefCount--; if (syncObj->RefCount == 0) { entry = _mesa_set_search(ctx->Shared->SyncObjects, _mesa_hash_pointer(syncObj), syncObj); assert (entry != NULL); _mesa_set_remove(ctx->Shared->SyncObjects, entry); _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); ctx->Driver.DeleteSyncObject(ctx, syncObj); } else { _glthread_UNLOCK_MUTEX(ctx->Shared->Mutex); } }
int iris_bo_busy(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_busy busy = { .handle = bo->gem_handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); if (ret == 0) { bo->idle = !busy.busy; return busy.busy; } return false; } int iris_bo_madvise(struct iris_bo *bo, int state) { struct drm_i915_gem_madvise madv = { .handle = bo->gem_handle, .madv = state, .retained = 1, }; drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); return madv.retained; } /* drop the oldest entries that have been purged by the kernel */ static void iris_bo_cache_purge_bucket(struct iris_bufmgr *bufmgr, struct bo_cache_bucket *bucket) { list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (iris_bo_madvise(bo, I915_MADV_DONTNEED)) break; list_del(&bo->head); bo_free(bo); } } static struct iris_bo * bo_calloc(void) { struct iris_bo *bo = calloc(1, sizeof(*bo)); if (bo) { bo->hash = _mesa_hash_pointer(bo); } return bo; } static struct iris_bo * bo_alloc_internal(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone, unsigned flags, uint32_t tiling_mode, uint32_t stride) { struct iris_bo *bo; unsigned int page_size = getpagesize(); int ret; struct bo_cache_bucket *bucket; bool alloc_from_cache; uint64_t bo_size; bool zeroed = false; if (flags & BO_ALLOC_ZEROED) zeroed = true; if ((flags & BO_ALLOC_COHERENT) && !bufmgr->has_llc) { bo_size = MAX2(ALIGN(size, page_size), page_size); bucket = NULL; goto skip_cache; } /* Round the allocated size up to a power of two number of pages. */ bucket = bucket_for_size(bufmgr, size); /* If we don't have caching at this size, don't actually round the * allocation up. */ if (bucket == NULL) { bo_size = MAX2(ALIGN(size, page_size), page_size); } else { bo_size = bucket->size; } mtx_lock(&bufmgr->lock); /* Get a buffer out of the cache if available */ retry: alloc_from_cache = false; if (bucket != NULL && !list_empty(&bucket->head)) { /* If the last BO in the cache is idle, then reuse it. Otherwise, * allocate a fresh buffer to avoid stalling. */ bo = LIST_ENTRY(struct iris_bo, bucket->head.next, head); if (!iris_bo_busy(bo)) { alloc_from_cache = true; list_del(&bo->head); } if (alloc_from_cache) { if (!iris_bo_madvise(bo, I915_MADV_WILLNEED)) { bo_free(bo); iris_bo_cache_purge_bucket(bufmgr, bucket); goto retry; } if (bo_set_tiling_internal(bo, tiling_mode, stride)) { bo_free(bo); goto retry; } if (zeroed) { void *map = iris_bo_map(NULL, bo, MAP_WRITE | MAP_RAW); if (!map) { bo_free(bo); goto retry; } memset(map, 0, bo_size); } } } if (alloc_from_cache) { /* If the cached BO isn't in the right memory zone, free the old * memory and assign it a new address. */ if (memzone != iris_memzone_for_address(bo->gtt_offset)) { vma_free(bufmgr, bo->gtt_offset, bo->size); bo->gtt_offset = 0ull; } } else { skip_cache: bo = bo_calloc(); if (!bo) goto err; bo->size = bo_size; bo->idle = true; struct drm_i915_gem_create create = { .size = bo_size }; /* All new BOs we get from the kernel are zeroed, so we don't need to * worry about that here. */ ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create); if (ret != 0) { free(bo); goto err; } bo->gem_handle = create.handle; bo->bufmgr = bufmgr; bo->tiling_mode = I915_TILING_NONE; bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; bo->stride = 0; if (bo_set_tiling_internal(bo, tiling_mode, stride)) goto err_free; /* Calling set_domain() will allocate pages for the BO outside of the * struct mutex lock in the kernel, which is more efficient than waiting * to create them during the first execbuf that uses the BO. */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, .write_domain = 0, }; if (drm_ioctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0) goto err_free; } bo->name = name; p_atomic_set(&bo->refcount, 1); bo->reusable = bucket && bufmgr->bo_reuse; bo->cache_coherent = bufmgr->has_llc; bo->index = -1; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; /* By default, capture all driver-internal buffers like shader kernels, * surface states, dynamic states, border colors, and so on. */ if (memzone < IRIS_MEMZONE_OTHER) bo->kflags |= EXEC_OBJECT_CAPTURE; if (bo->gtt_offset == 0ull) { bo->gtt_offset = vma_alloc(bufmgr, memzone, bo->size, 1); if (bo->gtt_offset == 0ull) goto err_free; } mtx_unlock(&bufmgr->lock); if ((flags & BO_ALLOC_COHERENT) && !bo->cache_coherent) { struct drm_i915_gem_caching arg = { .handle = bo->gem_handle, .caching = 1, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &arg) == 0) { bo->cache_coherent = true; bo->reusable = false; } } DBG("bo_create: buf %d (%s) (%s memzone) %llub\n", bo->gem_handle, bo->name, memzone_name(memzone), (unsigned long long) size); return bo; err_free: bo_free(bo); err: mtx_unlock(&bufmgr->lock); return NULL; } struct iris_bo * iris_bo_alloc(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone) { return bo_alloc_internal(bufmgr, name, size, memzone, 0, I915_TILING_NONE, 0); } struct iris_bo * iris_bo_alloc_tiled(struct iris_bufmgr *bufmgr, const char *name, uint64_t size, enum iris_memory_zone memzone, uint32_t tiling_mode, uint32_t pitch, unsigned flags) { return bo_alloc_internal(bufmgr, name, size, memzone, flags, tiling_mode, pitch); } struct iris_bo * iris_bo_create_userptr(struct iris_bufmgr *bufmgr, const char *name, void *ptr, size_t size, enum iris_memory_zone memzone) { struct iris_bo *bo; bo = bo_calloc(); if (!bo) return NULL; struct drm_i915_gem_userptr arg = { .user_ptr = (uintptr_t)ptr, .user_size = size, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_USERPTR, &arg)) goto err_free; bo->gem_handle = arg.handle; /* Check the buffer for validity before we try and use it in a batch */ struct drm_i915_gem_set_domain sd = { .handle = bo->gem_handle, .read_domains = I915_GEM_DOMAIN_CPU, }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd)) goto err_close; bo->name = name; bo->size = size; bo->map_cpu = ptr; bo->bufmgr = bufmgr; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, memzone, size, 1); if (bo->gtt_offset == 0ull) goto err_close; p_atomic_set(&bo->refcount, 1); bo->userptr = true; bo->cache_coherent = true; bo->index = -1; bo->idle = true; return bo; err_close: drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &bo->gem_handle); err_free: free(bo); return NULL; } /** * Returns a iris_bo wrapping the given buffer object handle. * * This can be used when one application needs to pass a buffer object * to another. */ struct iris_bo * iris_bo_gem_create_from_name(struct iris_bufmgr *bufmgr, const char *name, unsigned int handle) { struct iris_bo *bo; /* At the moment most applications only have a few named bo. * For instance, in a DRI client only the render buffers passed * between X and the client are named. And since X returns the * alternating names for the front/back buffer a linear search * provides a sufficiently fast match. */ mtx_lock(&bufmgr->lock); bo = hash_find_bo(bufmgr->name_table, handle); if (bo) { iris_bo_reference(bo); goto out; } struct drm_gem_open open_arg = { .name = handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg); if (ret != 0) { DBG("Couldn't reference %s handle 0x%08x: %s\n", name, handle, strerror(errno)); bo = NULL; goto out; } /* Now see if someone has used a prime handle to get this * object from the kernel before by looking through the list * again for a matching gem_handle */ bo = hash_find_bo(bufmgr->handle_table, open_arg.handle); if (bo) { iris_bo_reference(bo); goto out; } bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); bo->size = open_arg.size; bo->gtt_offset = 0; bo->bufmgr = bufmgr; bo->gem_handle = open_arg.handle; bo->name = name; bo->global_name = handle; bo->reusable = false; bo->external = true; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1); _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling); if (ret != 0) goto err_unref; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name); out: mtx_unlock(&bufmgr->lock); return bo; err_unref: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } static void bo_free(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (bo->map_cpu && !bo->userptr) { VG_NOACCESS(bo->map_cpu, bo->size); munmap(bo->map_cpu, bo->size); } if (bo->map_wc) { VG_NOACCESS(bo->map_wc, bo->size); munmap(bo->map_wc, bo->size); } if (bo->map_gtt) { VG_NOACCESS(bo->map_gtt, bo->size); munmap(bo->map_gtt, bo->size); } if (bo->external) { struct hash_entry *entry; if (bo->global_name) { entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name); _mesa_hash_table_remove(bufmgr->name_table, entry); } entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle); _mesa_hash_table_remove(bufmgr->handle_table, entry); } /* Close this object */ struct drm_gem_close close = { .handle = bo->gem_handle }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close); if (ret != 0) { DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n", bo->gem_handle, bo->name, strerror(errno)); } vma_free(bo->bufmgr, bo->gtt_offset, bo->size); free(bo); } /** Frees all cached buffers significantly older than @time. */ static void cleanup_bo_cache(struct iris_bufmgr *bufmgr, time_t time) { int i; if (bufmgr->time == time) return; for (i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { if (time - bo->free_time <= 1) break; list_del(&bo->head); bo_free(bo); } } bufmgr->time = time; } static void bo_unreference_final(struct iris_bo *bo, time_t time) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct bo_cache_bucket *bucket; DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name); bucket = NULL; if (bo->reusable) bucket = bucket_for_size(bufmgr, bo->size); /* Put the buffer into our internal cache for reuse if we can. */ if (bucket && iris_bo_madvise(bo, I915_MADV_DONTNEED)) { bo->free_time = time; bo->name = NULL; list_addtail(&bo->head, &bucket->head); } else { bo_free(bo); } } void iris_bo_unreference(struct iris_bo *bo) { if (bo == NULL) return; assert(p_atomic_read(&bo->refcount) > 0); if (atomic_add_unless(&bo->refcount, -1, 1)) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct timespec time; clock_gettime(CLOCK_MONOTONIC, &time); mtx_lock(&bufmgr->lock); if (p_atomic_dec_zero(&bo->refcount)) { bo_unreference_final(bo, time.tv_sec); cleanup_bo_cache(bufmgr, time.tv_sec); } mtx_unlock(&bufmgr->lock); } } static void bo_wait_with_stall_warning(struct pipe_debug_callback *dbg, struct iris_bo *bo, const char *action) { bool busy = dbg && !bo->idle; double elapsed = unlikely(busy) ? -get_time() : 0.0; iris_bo_wait_rendering(bo); if (unlikely(busy)) { elapsed += get_time(); if (elapsed > 1e-5) /* 0.01ms */ { perf_debug(dbg, "%s a busy \"%s\" BO stalled and took %.03f ms.\n", action, bo->name, elapsed * 1000); } } } static void print_flags(unsigned flags) { if (flags & MAP_READ) DBG("READ "); if (flags & MAP_WRITE) DBG("WRITE "); if (flags & MAP_ASYNC) DBG("ASYNC "); if (flags & MAP_PERSISTENT) DBG("PERSISTENT "); if (flags & MAP_COHERENT) DBG("COHERENT "); if (flags & MAP_RAW) DBG("RAW "); DBG("\n"); } static void * iris_bo_map_cpu(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* We disallow CPU maps for writing to non-coherent buffers, as the * CPU map can become invalidated when a batch is flushed out, which * can happen at unpredictable times. You should use WC maps instead. */ assert(bo->cache_coherent || !(flags & MAP_WRITE)); if (!bo->map_cpu) { DBG("iris_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_cpu); DBG("iris_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_cpu); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "CPU mapping"); } if (!bo->cache_coherent && !bo->bufmgr->has_llc) { /* If we're reusing an existing CPU mapping, the CPU caches may * contain stale data from the last time we read from that mapping. * (With the BO cache, it might even be data from a previous buffer!) * Even if it's a brand new mapping, the kernel may have zeroed the * buffer via CPU writes. * * We need to invalidate those cachelines so that we see the latest * contents, and so long as we only read from the CPU mmap we do not * need to write those cachelines back afterwards. * * On LLC, the emprical evidence suggests that writes from the GPU * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU * cachelines. (Other reads, such as the display engine, bypass the * LLC entirely requiring us to keep dirty pixels for the scanout * out of any cache.) */ gen_invalidate_range(bo->map_cpu, bo->size); } return bo->map_cpu; } static void * iris_bo_map_wc(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (!bo->map_wc) { DBG("iris_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap mmap_arg = { .handle = bo->gem_handle, .size = bo->size, .flags = I915_MMAP_WC, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } void *map = (void *) (uintptr_t) mmap_arg.addr_ptr; VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_wc); DBG("iris_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "WC mapping"); } return bo->map_wc; } /** * Perform an uncached mapping via the GTT. * * Write access through the GTT is not quite fully coherent. On low power * systems especially, like modern Atoms, we can observe reads from RAM before * the write via GTT has landed. A write memory barrier that flushes the Write * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later * read after the write as the GTT write suffers a small delay through the GTT * indirection. The kernel uses an uncached mmio read to ensure the GTT write * is ordered with reads (either by the GPU, WB or WC) and unconditionally * flushes prior to execbuf submission. However, if we are not informing the * kernel about our GTT writes, it will not flush before earlier access, such * as when using the cmdparser. Similarly, we need to be careful if we should * ever issue a CPU read immediately following a GTT write. * * Telling the kernel about write access also has one more important * side-effect. Upon receiving notification about the write, it cancels any * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by * either SW_FINISH or DIRTYFB. The presumption is that we never write to the * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR * tracking is handled on the buffer exchange instead. */ static void * iris_bo_map_gtt(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* Get a mapping of the buffer if we haven't before. */ if (bo->map_gtt == NULL) { DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name); struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle }; /* Get the fake offset back... */ int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg); if (ret != 0) { DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* and mmap it. */ void *map = mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED, bufmgr->fd, mmap_arg.offset); if (map == MAP_FAILED) { DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno)); return NULL; } /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will * already intercept this mmap call. However, for consistency between * all the mmap paths, we mark the pointer as defined now and mark it * as inaccessible afterwards. */ VG_DEFINED(map, bo->size); if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) { VG_NOACCESS(map, bo->size); munmap(map, bo->size); } } assert(bo->map_gtt); DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt); print_flags(flags); if (!(flags & MAP_ASYNC)) { bo_wait_with_stall_warning(dbg, bo, "GTT mapping"); } return bo->map_gtt; } static bool can_map_cpu(struct iris_bo *bo, unsigned flags) { if (bo->cache_coherent) return true; /* Even if the buffer itself is not cache-coherent (such as a scanout), on * an LLC platform reads always are coherent (as they are performed via the * central system agent). It is just the writes that we need to take special * care to ensure that land in main memory and not stick in the CPU cache. */ if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc) return true; /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid * across batch flushes where the kernel will change cache domains of the * bo, invalidating continued access to the CPU mmap on non-LLC device. * * Similarly, ASYNC typically means that the buffer will be accessed via * both the CPU and the GPU simultaneously. Batches may be executed that * use the BO even while it is mapped. While OpenGL technically disallows * most drawing while non-persistent mappings are active, we may still use * the GPU for blits or other operations, causing batches to happen at * inconvenient times. * * If RAW is set, we expect the caller to be able to handle a WC buffer * more efficiently than the involuntary clflushes. */ if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC | MAP_RAW)) return false; return !(flags & MAP_WRITE); } void * iris_bo_map(struct pipe_debug_callback *dbg, struct iris_bo *bo, unsigned flags) { if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW)) return iris_bo_map_gtt(dbg, bo, flags); void *map; if (can_map_cpu(bo, flags)) map = iris_bo_map_cpu(dbg, bo, flags); else map = iris_bo_map_wc(dbg, bo, flags); /* Allow the attempt to fail by falling back to the GTT where necessary. * * Not every buffer can be mmaped directly using the CPU (or WC), for * example buffers that wrap stolen memory or are imported from other * devices. For those, we have little choice but to use a GTT mmapping. * However, if we use a slow GTT mmapping for reads where we expected fast * access, that order of magnitude difference in throughput will be clearly * expressed by angry users. * * We skip MAP_RAW because we want to avoid map_gtt's fence detiling. */ if (!map && !(flags & MAP_RAW)) { perf_debug(dbg, "Fallback GTT mapping for %s with access flags %x\n", bo->name, flags); map = iris_bo_map_gtt(dbg, bo, flags); } return map; } /** Waits for all GPU rendering with the object to have completed. */ void iris_bo_wait_rendering(struct iris_bo *bo) { /* We require a kernel recent enough for WAIT_IOCTL support. * See intel_init_bufmgr() */ iris_bo_wait(bo, -1); } /** * Waits on a BO for the given amount of time. * * @bo: buffer object to wait for * @timeout_ns: amount of time to wait in nanoseconds. * If value is less than 0, an infinite wait will occur. * * Returns 0 if the wait was successful ie. the last batch referencing the * object has completed within the allotted time. Otherwise some negative return * value describes the error. Of particular interest is -ETIME when the wait has * failed to yield the desired result. * * Similar to iris_bo_wait_rendering except a timeout parameter allows * the operation to give up after a certain amount of time. Another subtle * difference is the internal locking semantics are different (this variant does * not hold the lock for the duration of the wait). This makes the wait subject * to a larger userspace race window. * * The implementation shall wait until the object is no longer actively * referenced within a batch buffer at the time of the call. The wait will * not guarantee that the buffer is re-issued via another thread, or an flinked * handle. Userspace must make sure this race does not occur if such precision * is important. * * Note that some kernels have broken the inifite wait for negative values * promise, upgrade to latest stable kernels if this is the case. */ int iris_bo_wait(struct iris_bo *bo, int64_t timeout_ns) { struct iris_bufmgr *bufmgr = bo->bufmgr; /* If we know it's idle, don't bother with the kernel round trip */ if (bo->idle && !bo->external) return 0; struct drm_i915_gem_wait wait = { .bo_handle = bo->gem_handle, .timeout_ns = timeout_ns, }; int ret = drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); if (ret != 0) return -errno; bo->idle = true; return ret; } void iris_bufmgr_destroy(struct iris_bufmgr *bufmgr) { mtx_destroy(&bufmgr->lock); /* Free any cached buffer objects we were going to reuse */ for (int i = 0; i < bufmgr->num_buckets; i++) { struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i]; list_for_each_entry_safe(struct iris_bo, bo, &bucket->head, head) { list_del(&bo->head); bo_free(bo); } } _mesa_hash_table_destroy(bufmgr->name_table, NULL); _mesa_hash_table_destroy(bufmgr->handle_table, NULL); for (int z = 0; z < IRIS_MEMZONE_COUNT; z++) { if (z != IRIS_MEMZONE_BINDER) util_vma_heap_finish(&bufmgr->vma_allocator[z]); } free(bufmgr); } static int bo_set_tiling_internal(struct iris_bo *bo, uint32_t tiling_mode, uint32_t stride) { struct iris_bufmgr *bufmgr = bo->bufmgr; struct drm_i915_gem_set_tiling set_tiling; int ret; if (bo->global_name == 0 && tiling_mode == bo->tiling_mode && stride == bo->stride) return 0; memset(&set_tiling, 0, sizeof(set_tiling)); do { /* set_tiling is slightly broken and overwrites the * input on the error path, so we have to open code * drm_ioctl. */ set_tiling.handle = bo->gem_handle; set_tiling.tiling_mode = tiling_mode; set_tiling.stride = stride; ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret == -1) return -errno; bo->tiling_mode = set_tiling.tiling_mode; bo->swizzle_mode = set_tiling.swizzle_mode; bo->stride = set_tiling.stride; return 0; } int iris_bo_get_tiling(struct iris_bo *bo, uint32_t *tiling_mode, uint32_t *swizzle_mode) { *tiling_mode = bo->tiling_mode; *swizzle_mode = bo->swizzle_mode; return 0; } struct iris_bo * iris_bo_import_dmabuf(struct iris_bufmgr *bufmgr, int prime_fd) { uint32_t handle; struct iris_bo *bo; mtx_lock(&bufmgr->lock); int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle); if (ret) { DBG("import_dmabuf: failed to obtain handle from fd: %s\n", strerror(errno)); mtx_unlock(&bufmgr->lock); return NULL; } /* * See if the kernel has already returned this buffer to us. Just as * for named buffers, we must not create two bo's pointing at the same * kernel object */ bo = hash_find_bo(bufmgr->handle_table, handle); if (bo) { iris_bo_reference(bo); goto out; } bo = bo_calloc(); if (!bo) goto out; p_atomic_set(&bo->refcount, 1); /* Determine size of bo. The fd-to-handle ioctl really should * return the size, but it doesn't. If we have kernel 3.12 or * later, we can lseek on the prime fd to get the size. Older * kernels will just fail, in which case we fall back to the * provided (estimated or guess size). */ ret = lseek(prime_fd, 0, SEEK_END); if (ret != -1) bo->size = ret; bo->bufmgr = bufmgr; bo->gem_handle = handle; _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo); bo->name = "prime"; bo->reusable = false; bo->external = true; bo->kflags = EXEC_OBJECT_SUPPORTS_48B_ADDRESS | EXEC_OBJECT_PINNED; bo->gtt_offset = vma_alloc(bufmgr, IRIS_MEMZONE_OTHER, bo->size, 1); struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) goto err; bo->tiling_mode = get_tiling.tiling_mode; bo->swizzle_mode = get_tiling.swizzle_mode; /* XXX stride is unknown */ out: mtx_unlock(&bufmgr->lock); return bo; err: bo_free(bo); mtx_unlock(&bufmgr->lock); return NULL; } static void iris_bo_make_external_locked(struct iris_bo *bo) { if (!bo->external) { _mesa_hash_table_insert(bo->bufmgr->handle_table, &bo->gem_handle, bo); bo->external = true; } } static void iris_bo_make_external(struct iris_bo *bo) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (bo->external) return; mtx_lock(&bufmgr->lock); iris_bo_make_external_locked(bo); mtx_unlock(&bufmgr->lock); } int iris_bo_export_dmabuf(struct iris_bo *bo, int *prime_fd) { struct iris_bufmgr *bufmgr = bo->bufmgr; iris_bo_make_external(bo); if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle, DRM_CLOEXEC, prime_fd) != 0) return -errno; bo->reusable = false; return 0; } uint32_t iris_bo_export_gem_handle(struct iris_bo *bo) { iris_bo_make_external(bo); return bo->gem_handle; } int iris_bo_flink(struct iris_bo *bo, uint32_t *name) { struct iris_bufmgr *bufmgr = bo->bufmgr; if (!bo->global_name) { struct drm_gem_flink flink = { .handle = bo->gem_handle }; if (drm_ioctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink)) return -errno; mtx_lock(&bufmgr->lock); if (!bo->global_name) { iris_bo_make_external_locked(bo); bo->global_name = flink.name; _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo); } mtx_unlock(&bufmgr->lock); bo->reusable = false; } *name = bo->global_name; return 0; } static void add_bucket(struct iris_bufmgr *bufmgr, int size) { unsigned int i = bufmgr->num_buckets; assert(i < ARRAY_SIZE(bufmgr->cache_bucket)); list_inithead(&bufmgr->cache_bucket[i].head); bufmgr->cache_bucket[i].size = size; bufmgr->num_buckets++; assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]); assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]); } static void init_cache_buckets(struct iris_bufmgr *bufmgr) { uint64_t size, cache_max_size = 64 * 1024 * 1024; /* OK, so power of two buckets was too wasteful of memory. * Give 3 other sizes between each power of two, to hopefully * cover things accurately enough. (The alternative is * probably to just go for exact matching of sizes, and assume * that for things like composited window resize the tiled * width/height alignment and rounding of sizes to pages will * get us useful cache hit rates anyway) */ add_bucket(bufmgr, PAGE_SIZE); add_bucket(bufmgr, PAGE_SIZE * 2); add_bucket(bufmgr, PAGE_SIZE * 3); /* Initialize the linked lists for BO reuse cache. */ for (size = 4 * PAGE_SIZE; size <= cache_max_size; size *= 2) { add_bucket(bufmgr, size); add_bucket(bufmgr, size + size * 1 / 4); add_bucket(bufmgr, size + size * 2 / 4); add_bucket(bufmgr, size + size * 3 / 4); } }
static GLintptr register_surface(struct gl_context *ctx, GLboolean isOutput, const GLvoid *vdpSurface, GLenum target, GLsizei numTextureNames, const GLuint *textureNames) { struct vdp_surface *surf; int i; if (!ctx->vdpDevice || !ctx->vdpGetProcAddress || !ctx->vdpSurfaces) { _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAURegisterSurfaceNV"); return (GLintptr)NULL; } if (target != GL_TEXTURE_2D && target != GL_TEXTURE_RECTANGLE) { _mesa_error(ctx, GL_INVALID_ENUM, "VDPAURegisterSurfaceNV"); return (GLintptr)NULL; } if (target == GL_TEXTURE_RECTANGLE && !ctx->Extensions.NV_texture_rectangle) { _mesa_error(ctx, GL_INVALID_ENUM, "VDPAURegisterSurfaceNV"); return (GLintptr)NULL; } surf = CALLOC_STRUCT( vdp_surface ); if (surf == NULL) { _mesa_error_no_memory("VDPAURegisterSurfaceNV"); return (GLintptr)NULL; } surf->vdpSurface = vdpSurface; surf->target = target; surf->access = GL_READ_WRITE; surf->state = GL_SURFACE_REGISTERED_NV; surf->output = isOutput; for (i = 0; i < numTextureNames; ++i) { struct gl_texture_object *tex; tex = _mesa_lookup_texture(ctx, textureNames[i]); if (tex == NULL) { free(surf); _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAURegisterSurfaceNV(texture ID not found)"); return (GLintptr)NULL; } _mesa_lock_texture(ctx, tex); if (tex->Immutable) { _mesa_unlock_texture(ctx, tex); free(surf); _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAURegisterSurfaceNV(texture is immutable)"); return (GLintptr)NULL; } if (tex->Target == 0) tex->Target = target; else if (tex->Target != target) { _mesa_unlock_texture(ctx, tex); free(surf); _mesa_error(ctx, GL_INVALID_OPERATION, "VDPAURegisterSurfaceNV(target mismatch)"); return (GLintptr)NULL; } /* This will disallow respecifying the storage. */ tex->Immutable = GL_TRUE; _mesa_unlock_texture(ctx, tex); _mesa_reference_texobj(&surf->textures[i], tex); } _mesa_set_add(ctx->vdpSurfaces, _mesa_hash_pointer(surf), surf); return (GLintptr)surf; }