Esempio n. 1
0
void Filler::treat_region(GRegion* gr){

  int NumSmooth = CTX::instance()->mesh.smoothCrossField;
  std::cout << "NumSmooth = " << NumSmooth << std::endl ;
  if(NumSmooth && (gr->dim() == 3)){
    double scale = gr->bounds().diag()*1e-2;
    Frame_field::initRegion(gr,NumSmooth);
    Frame_field::saveCrossField("cross0.pos",scale);

    Frame_field::smoothRegion(gr,NumSmooth);
    Frame_field::saveCrossField("cross1.pos",scale);
  }

#if defined(HAVE_RTREE)
  unsigned int i;
  int j;
  int count;
  int limit;
  bool ok2;
  double x,y,z;
  SPoint3 point;
  Node *node,*individual,*parent;
  MVertex* vertex;
  MElement* element;
  MElementOctree* octree;
  deMeshGRegion deleter;
  Wrapper wrapper;
  GFace* gf;
  std::queue<Node*> fifo;
  std::vector<Node*> spawns;
  std::vector<Node*> garbage;
  std::vector<MVertex*> boundary_vertices;
  std::set<MVertex*> temp;
  std::list<GFace*> faces;
  std::map<MVertex*,int> limits;
  std::set<MVertex*>::iterator it;
  std::list<GFace*>::iterator it2;
  std::map<MVertex*,int>::iterator it3;
  RTree<Node*,double,3,double> rtree;
  
  Frame_field::init_region(gr);
  Size_field::init_region(gr);
  Size_field::solve(gr);
  octree = new MElementOctree(gr->model());
  garbage.clear();
  boundary_vertices.clear();
  temp.clear();
  new_vertices.clear();
  faces.clear();
  limits.clear();

  faces = gr->faces();	
  for(it2=faces.begin();it2!=faces.end();it2++){
    gf = *it2;
	limit = code(gf->tag());
	for(i=0;i<gf->getNumMeshElements();i++){
	  element = gf->getMeshElement(i);
      for(j=0;j<element->getNumVertices();j++){
	    vertex = element->getVertex(j);
		temp.insert(vertex);
		limits.insert(std::pair<MVertex*,int>(vertex,limit));
	  }
	}
  }
		
  /*for(i=0;i<gr->getNumMeshElements();i++){
    element = gr->getMeshElement(i);
    for(j=0;j<element->getNumVertices();j++){
      vertex = element->getVertex(j);
      temp.insert(vertex);
    }
  }*/

  for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()==0){
	  boundary_vertices.push_back(*it);
	}
  }
	
  for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()==1){
	  boundary_vertices.push_back(*it);
	}
  }
	
  for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()==2){
	  boundary_vertices.push_back(*it);
	}
  }
	
  /*for(it=temp.begin();it!=temp.end();it++){
    if((*it)->onWhat()->dim()<3){
      boundary_vertices.push_back(*it);
    }
  }*/
  //std::ofstream file("nodes.pos");
  //file << "View \"test\" {\n";	

  for(i=0;i<boundary_vertices.size();i++){
    x = boundary_vertices[i]->x();
    y = boundary_vertices[i]->y();
    z = boundary_vertices[i]->z();
    
    node = new Node(SPoint3(x,y,z));
    compute_parameters(node,gr);
	node->set_layer(0);
	
	it3 = limits.find(boundary_vertices[i]);
	node->set_limit(it3->second);
	
	rtree.Insert(node->min,node->max,node);
	fifo.push(node);
    //print_node(node,file);
  }
  
  count = 1;
  while(!fifo.empty()){
    parent = fifo.front();
	fifo.pop();
	garbage.push_back(parent);
	  
	if(parent->get_limit()!=-1 && parent->get_layer()>=parent->get_limit()){
	  continue;
	}
	  
	spawns.clear();
	spawns.resize(6);
	  
	for(i=0;i<6;i++){
	  spawns[i] = new Node();
	}
	
	create_spawns(gr,octree,parent,spawns);
	
	for(i=0;i<6;i++){
	  ok2 = 0;
	  individual = spawns[i];
	  point = individual->get_point();
	  x = point.x();
	  y = point.y();
	  z = point.z();
	  
	  if(inside_domain(octree,x,y,z)){
		compute_parameters(individual,gr);
		individual->set_layer(parent->get_layer()+1);
		individual->set_limit(parent->get_limit());
		
		if(far_from_boundary(octree,individual)){
		  wrapper.set_ok(1);
		  wrapper.set_individual(individual);
		  wrapper.set_parent(parent);
		  rtree.Search(individual->min,individual->max,rtree_callback,&wrapper);
			
		  if(wrapper.get_ok()){
		    fifo.push(individual);
		    rtree.Insert(individual->min,individual->max,individual);
			vertex = new MVertex(x,y,z,gr,0);
			new_vertices.push_back(vertex);
			ok2 = 1;
			//print_segment(individual->get_point(),parent->get_point(),file);
		  }
	    }
	  }
		
	  if(!ok2) delete individual;
	}
	
	if(count%100==0){
	  printf("%d\n",count);
	}
	count++;
  }
  
  //file << "};\n";

  int option = CTX::instance()->mesh.algo3d;
  CTX::instance()->mesh.algo3d = ALGO_3D_DELAUNAY;

  deleter(gr);
  std::vector<GRegion*> regions;
  regions.push_back(gr);
  meshGRegion mesher(regions); //?
  mesher(gr); //?
  MeshDelaunayVolume(regions);

  CTX::instance()->mesh.algo3d = option;
	
  for(i=0;i<garbage.size();i++) delete garbage[i];
  for(i=0;i<new_vertices.size();i++) delete new_vertices[i];
  new_vertices.clear();
  delete octree;
  rtree.RemoveAll();
  Size_field::clear();
  Frame_field::clear();
#endif
}
/* *************************** *
 *  Main computational kernel  *
 * *************************** */
int correlationKernel(int rank,
                      int size,
                      double* dataMatrixX,
                      double* dataMatrixY,
                      int columns,
                      int rows,
                      char *out_filename,
                      int distance_flag) {

    int local_check = 0, global_check = 0;
    int i = 0, j, taskNo;
    int err, count = 0;
    unsigned long long fair_chunk = 0, coeff_count = 0;
    unsigned int init_and_cleanup_loop_iter=0;
    unsigned long long cor_cur_size = 0;
    
    double start_time, end_time;

    // Variables needed by the Indexed Datatype
    MPI_Datatype coeff_index_dt;
    MPI_File fh;
    int *blocklens, *indices;

    MPI_Status stat;
    MPI_Comm comm = MPI_COMM_WORLD;

    // Master processor keeps track of tasks
    if (rank == 0) {

        // Make sure everything will work fine even if there are
        // less genes than available workers (there are size-1 workers
        // master does not count)
        if ( (size-1) > rows )
            init_and_cleanup_loop_iter = rows+1;
        else
            init_and_cleanup_loop_iter = size;

        // Start timer
        start_time = MPI_Wtime();

        // Send out initial tasks (remember you have size-1 workers, master does not count)
        for (i=1; i<init_and_cleanup_loop_iter; i++) {
            taskNo = i-1;
            err = MPI_Send(&taskNo, 1, MPI_INT, i, 0, comm);
        }        

        // Terminate any processes that were not working due to the fact
        // that the number of rows where less than the actual available workers
        for(i=init_and_cleanup_loop_iter; i < size; i++) {
            PROF(rank, "\nPROF_idle : Worker %d terminated due to insufficient work load", i);
            err = -1;
            err = MPI_Send(&err, 1, MPI_INT, i, 0, comm);
        }

        // Wait for workers to finish their work assignment and ask for more
        for (i=init_and_cleanup_loop_iter-1; i<rows; i++) {
            err = MPI_Recv(&taskNo, 1, MPI_INT, MPI_ANY_SOURCE, 0, comm, &stat);

            // Check taskNo to make sure everything is ok. Negative means there is problem
            // thus terminate gracefully all remaining working workers
            if ( taskNo < 0 ) {
                // Reduce by one because one worker is already terminated
                init_and_cleanup_loop_iter--;
                // Break and cleanup
                break;
            }

            // The sending processor is ready to work:
            // It's ID is in stat.MPI_SOURCE
            // Send it the current task (i)
            err = MPI_Send(&i, 1, MPI_INT, stat.MPI_SOURCE, 0, comm);
        }

        // Clean up processors
        for (i=1; i<init_and_cleanup_loop_iter; i++) {
            // All tasks complete - shutdown workers
            err = MPI_Recv(&taskNo, 1, MPI_INT, MPI_ANY_SOURCE, 0, comm, &stat);
            // If process failed then it will not be waiting to receive anything
            // We have to ignore the send because it will deadlock
            if ( taskNo < 0 )
                continue;
            err = -1;
            err = MPI_Send(&err, 1, MPI_INT, stat.MPI_SOURCE, 0, comm);
        }

        // Master is *always* OK
        local_check = 0;
        MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

        // Check failed, abort
        if ( global_check != 0 ) {
            return -1;
        }
        
        // Stop timer
        end_time = MPI_Wtime();
        PROF(rank, "\nPROF_comp (workers=%d) : Time taken by correlation coefficients computations : %g\n", size-1, end_time - start_time);

        // Start timer
        start_time = MPI_Wtime();

        // Master process must call MPI_File_set_view as well, it's a collective call
        // Open the file handler
        MPI_File_open(comm, out_filename, MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

        // Create the file view
        MPI_File_set_view(fh, 0, MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL);

        // Write data to disk
        MPI_File_write_all(fh, &cor[0], 0, MPI_DOUBLE, &stat);

        // Stop timer
        end_time = MPI_Wtime();
        PROF(rank, "\nPROF_write (workers=%d) : Time taken for global write-file : %g\n",  size-1, end_time - start_time);

    } else {

        // Compute how many workers will share the work load
        // Two scenarios exist:
        // (1) more OR equal number of workers and rows exist
        // (2) more rows than workers
        if ( (size-1) > rows ) {
            // For this scenario each worker will get exaclty one work asssignment.
            // There is not going to be any other work so it only compute "rows" number
            // of coefficients
            fair_chunk = rows;
            cor_cur_size = fair_chunk;
        } else {
            // For this scenario we are going to allocate space equal to a fair
            // distribution of work assignments *plus* an extra amount of space to
            // cover any load imbalancing. This amount is expressed as a percentage
            // of the fair work distribution (see on top, 20% for now)

            // Plus 1 to round it up or just add some extra space, both are fine
            fair_chunk = (rows / (size-1)) + 1;
            DEBUG("fair_chunk %d \n", fair_chunk);

            // We can use "j" as temporary variable.
            // Plus 1 to avoid getting 0 from the multiplication.
            j = (fair_chunk * MEM_PERC) + 1;

            cor_cur_size = (fair_chunk + j) * rows;
            DEBUG("cor_cur_size %lld \n", cor_cur_size);
        }

        // Allocate memory
        DEBUG("cor_cur_size %lld \n", cor_cur_size);
        long long double_size = sizeof(double);
        DEBUG("malloc size %lld \n", (double_size * cor_cur_size));
        cor = (double *)malloc(double_size * cor_cur_size);

        blocklens = (int *)malloc(sizeof(int) * rows);
        indices = (int *)malloc(sizeof(int) * rows);

        mean_value_vectorX = (double *)malloc(sizeof(double) * rows);
        Sxx_vector = (double *)malloc(sizeof(double) * rows);
        mean_value_vectorY = (double *)malloc(sizeof(double) * rows);
        Syy_vector = (double *)malloc(sizeof(double) * rows);

        // Check that all memory is successfully allocated
        if ( ( cor == NULL ) || ( blocklens == NULL ) || ( indices == NULL ) || 
             ( mean_value_vectorX == NULL ) || ( Sxx_vector == NULL ) ||
             ( mean_value_vectorY == NULL ) || ( Syy_vector == NULL ) ) {
            ERR("**ERROR** : Memory allocation failed on worker process %d. Aborting.\n", rank);

            // Free allocated memory
            free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector);

            // Let the master process know its aborting in order to terminate
            // the rest of the working workers
            // We have to receive a work assignment first and then terminate
            // otherwise the master will deadlock trying to give work to this worker
            err = MPI_Recv(&taskNo, 1, MPI_INT, 0, 0, comm, &stat);
            taskNo = -1;
            err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm);

            // This worker failed
            local_check = 1;
            MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

            return -1;
        }

        // Compute necessary parameters for Pearson method
        // (this will transform the values of the input array to more meaningful data
        //  and save us from a lot of redundant computations)
        compute_parameters(dataMatrixX, dataMatrixY, rows, columns);

        // Main loop for workers. They get work from master, compute coefficients,
        // save them to their *local* vector and ask for more work
        for(;;) {
            // Get work
            err = 0;
            err = MPI_Recv(&taskNo, 1, MPI_INT, 0, 0, comm, &stat);

            // If received task is -1, function is terminated
            if ( taskNo == -1 )  break;

            // Check if there is enough memory to store the new coefficients, if not reallocate
            // the current memory and expand it by MEM_PERC of the approximated size
            if ( cor_cur_size < (coeff_count + rows) ) {
                PROF(0, "\n**WARNING** : Worker process %3d run out of memory and reallocates. Potential work imbalancing\n", rank);
                DEBUG("\n**WARNING** : Worker process %3d run out of memory and reallocates. Potential work imbalancing\n", rank);

                // Use j as temporary again. Add two (or any other value) to avoid 0.
                // (two is just a random value, you can put any value really...)
                j = (fair_chunk * MEM_PERC) + 2;
                cor_cur_size += (j * rows);

                // Reallocate and check
                cor = (double *)realloc(cor, sizeof(double) * cor_cur_size);
                if ( cor == NULL ) {
                    ERR("**ERROR** : Memory re-allocation failed on worker process %d. Aborting.\n", rank);

                    // Let the master process know its aborting in order to terminate
                    // the rest of the working workers
                    taskNo = -1;
                    err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm);

                    // This worker failed
                    local_check = 1;
                    MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

                    // Free all allocated memory
                    free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector);

                    return -1;
                }
            }

            // Compute the correlation coefficients
            if(dataMatrixY != NULL) {
              for (j=0; j < rows; j++) {
                cor[coeff_count] = pearson_XY(dataMatrixX, dataMatrixY, j, taskNo, columns);
                coeff_count++;
              }

            } else {
              for (j=0; j < rows; j++) {
                // Set main diagonal to 1
                if ( j == taskNo ) {
                  cor[coeff_count] = 1.0;
                  coeff_count++;
                  continue;
                }
                cor[coeff_count] = pearson(dataMatrixX, taskNo, j, columns);
                coeff_count++;
              }
            }

            // The value of blocklens[] represents the number of coefficients on each
            // row of the corellation array
            blocklens[count] = rows;

            // The value of indices[] represents the offset of each row in the data file
            indices[count] = (taskNo * rows);
            count++;

            // Give the master the taskID
            err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm);
        }

        // There are two possibilities
        //   (a) everything went well and all workers finished ok
        //   (b) some processes finished ok but one or more of the remaining working workers failed
        // To make sure all is well an all-reduce will be performed to sync all workers and guarantee success
        // before moving on to write the output file
        // This worker is OK
        local_check = 0;
        MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

        // Check failed
        if ( global_check != 0 ) {
            // Free all allocated memory
          free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector);
            return -1;
        }

        PROF(0, "\nPROF_stats (thread %3d) : Fair chunk of work : %d \t\t Allocated : %d \t\t Computed : %d\n",
                rank, fair_chunk, cor_cur_size, coeff_count);

        // If the distance_flag is set, then transform all correlation coefficients to distances
        if ( distance_flag == 1 ) {
            for(j=0; j < coeff_count; j++) {
                cor[j] = 1 - cor[j];
            }
        }

        // Create and commit the Indexed datatype *ONLY* if there are data available
        if ( coeff_count != 0 ) {
            MPI_Type_indexed(count, blocklens, indices, MPI_DOUBLE, &coeff_index_dt);
            MPI_Type_commit(&coeff_index_dt);
        }

        // Open the file handler
        MPI_File_open(comm, out_filename, MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh);

        // Create the file view
        if ( coeff_count != 0 ) {
            MPI_File_set_view(fh, 0, MPI_DOUBLE, coeff_index_dt, "native", MPI_INFO_NULL);
        } else {
            MPI_File_set_view(fh, 0, MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL);
        }

        // Write data to disk
        // TODO coeff_count cannot be greater than max int (for use in the MPI_File_write_all call). 
        // A better fix should be possible, for now throw error.
        
        DEBUG("\ncoeff_count is %lld\n", coeff_count);
        DEBUG("\INT_MAX is %d\n", INT_MAX);
        if(coeff_count>INT_MAX)
        {
            ERR("**ERROR** : Could not run as the chunks of data are too large. Try running again with more MPI processes.\n");

            // Free allocated memory
            free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector);

            // Let the master process know its aborting in order to terminate
            // the rest of the working workers
            // We have to receive a work assignment first and then terminate
            // otherwise the master will deadlock trying to give work to this worker
            err = MPI_Recv(&taskNo, 1, MPI_INT, 0, 0, comm, &stat);
            taskNo = -1;
            err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm);

            // This worker failed
            local_check = 1;
            MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);

            return -1;
        }

        
        
        DEBUG("\nWriting %d to disk\n", coeff_count);

        MPI_File_write_all(fh, &cor[0], coeff_count, MPI_DOUBLE, &stat);

        if (coeff_count != 0 )
            MPI_Type_free(&coeff_index_dt);

        // Free all allocated memory
        free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector);
    }

         DEBUG("\nAbout to write to disk %d\n", rank);
    MPI_File_sync( fh ) ;   		// Causes all previous writes to be transferred to the storage device
         DEBUG("\nWritten to disk %d\n",rank);
  //  MPI_Barrier( MPI_COMM_WORLD ) ; 	// Blocks until all processes in the communicator have reached this routine.
         DEBUG("\nAfter barrier \n", rank);

    // Close file handler
    MPI_File_close(&fh);
  DEBUG("\nAfter file closed /n");
   // MPI_Barrier( MPI_COMM_WORLD ) ; 	// Blocks until all processes in the communicator have reached this routine.
      DEBUG("\nAbout to return from kernel /n");
      return 0;
}