void Filler::treat_region(GRegion* gr){ int NumSmooth = CTX::instance()->mesh.smoothCrossField; std::cout << "NumSmooth = " << NumSmooth << std::endl ; if(NumSmooth && (gr->dim() == 3)){ double scale = gr->bounds().diag()*1e-2; Frame_field::initRegion(gr,NumSmooth); Frame_field::saveCrossField("cross0.pos",scale); Frame_field::smoothRegion(gr,NumSmooth); Frame_field::saveCrossField("cross1.pos",scale); } #if defined(HAVE_RTREE) unsigned int i; int j; int count; int limit; bool ok2; double x,y,z; SPoint3 point; Node *node,*individual,*parent; MVertex* vertex; MElement* element; MElementOctree* octree; deMeshGRegion deleter; Wrapper wrapper; GFace* gf; std::queue<Node*> fifo; std::vector<Node*> spawns; std::vector<Node*> garbage; std::vector<MVertex*> boundary_vertices; std::set<MVertex*> temp; std::list<GFace*> faces; std::map<MVertex*,int> limits; std::set<MVertex*>::iterator it; std::list<GFace*>::iterator it2; std::map<MVertex*,int>::iterator it3; RTree<Node*,double,3,double> rtree; Frame_field::init_region(gr); Size_field::init_region(gr); Size_field::solve(gr); octree = new MElementOctree(gr->model()); garbage.clear(); boundary_vertices.clear(); temp.clear(); new_vertices.clear(); faces.clear(); limits.clear(); faces = gr->faces(); for(it2=faces.begin();it2!=faces.end();it2++){ gf = *it2; limit = code(gf->tag()); for(i=0;i<gf->getNumMeshElements();i++){ element = gf->getMeshElement(i); for(j=0;j<element->getNumVertices();j++){ vertex = element->getVertex(j); temp.insert(vertex); limits.insert(std::pair<MVertex*,int>(vertex,limit)); } } } /*for(i=0;i<gr->getNumMeshElements();i++){ element = gr->getMeshElement(i); for(j=0;j<element->getNumVertices();j++){ vertex = element->getVertex(j); temp.insert(vertex); } }*/ for(it=temp.begin();it!=temp.end();it++){ if((*it)->onWhat()->dim()==0){ boundary_vertices.push_back(*it); } } for(it=temp.begin();it!=temp.end();it++){ if((*it)->onWhat()->dim()==1){ boundary_vertices.push_back(*it); } } for(it=temp.begin();it!=temp.end();it++){ if((*it)->onWhat()->dim()==2){ boundary_vertices.push_back(*it); } } /*for(it=temp.begin();it!=temp.end();it++){ if((*it)->onWhat()->dim()<3){ boundary_vertices.push_back(*it); } }*/ //std::ofstream file("nodes.pos"); //file << "View \"test\" {\n"; for(i=0;i<boundary_vertices.size();i++){ x = boundary_vertices[i]->x(); y = boundary_vertices[i]->y(); z = boundary_vertices[i]->z(); node = new Node(SPoint3(x,y,z)); compute_parameters(node,gr); node->set_layer(0); it3 = limits.find(boundary_vertices[i]); node->set_limit(it3->second); rtree.Insert(node->min,node->max,node); fifo.push(node); //print_node(node,file); } count = 1; while(!fifo.empty()){ parent = fifo.front(); fifo.pop(); garbage.push_back(parent); if(parent->get_limit()!=-1 && parent->get_layer()>=parent->get_limit()){ continue; } spawns.clear(); spawns.resize(6); for(i=0;i<6;i++){ spawns[i] = new Node(); } create_spawns(gr,octree,parent,spawns); for(i=0;i<6;i++){ ok2 = 0; individual = spawns[i]; point = individual->get_point(); x = point.x(); y = point.y(); z = point.z(); if(inside_domain(octree,x,y,z)){ compute_parameters(individual,gr); individual->set_layer(parent->get_layer()+1); individual->set_limit(parent->get_limit()); if(far_from_boundary(octree,individual)){ wrapper.set_ok(1); wrapper.set_individual(individual); wrapper.set_parent(parent); rtree.Search(individual->min,individual->max,rtree_callback,&wrapper); if(wrapper.get_ok()){ fifo.push(individual); rtree.Insert(individual->min,individual->max,individual); vertex = new MVertex(x,y,z,gr,0); new_vertices.push_back(vertex); ok2 = 1; //print_segment(individual->get_point(),parent->get_point(),file); } } } if(!ok2) delete individual; } if(count%100==0){ printf("%d\n",count); } count++; } //file << "};\n"; int option = CTX::instance()->mesh.algo3d; CTX::instance()->mesh.algo3d = ALGO_3D_DELAUNAY; deleter(gr); std::vector<GRegion*> regions; regions.push_back(gr); meshGRegion mesher(regions); //? mesher(gr); //? MeshDelaunayVolume(regions); CTX::instance()->mesh.algo3d = option; for(i=0;i<garbage.size();i++) delete garbage[i]; for(i=0;i<new_vertices.size();i++) delete new_vertices[i]; new_vertices.clear(); delete octree; rtree.RemoveAll(); Size_field::clear(); Frame_field::clear(); #endif }
/* *************************** * * Main computational kernel * * *************************** */ int correlationKernel(int rank, int size, double* dataMatrixX, double* dataMatrixY, int columns, int rows, char *out_filename, int distance_flag) { int local_check = 0, global_check = 0; int i = 0, j, taskNo; int err, count = 0; unsigned long long fair_chunk = 0, coeff_count = 0; unsigned int init_and_cleanup_loop_iter=0; unsigned long long cor_cur_size = 0; double start_time, end_time; // Variables needed by the Indexed Datatype MPI_Datatype coeff_index_dt; MPI_File fh; int *blocklens, *indices; MPI_Status stat; MPI_Comm comm = MPI_COMM_WORLD; // Master processor keeps track of tasks if (rank == 0) { // Make sure everything will work fine even if there are // less genes than available workers (there are size-1 workers // master does not count) if ( (size-1) > rows ) init_and_cleanup_loop_iter = rows+1; else init_and_cleanup_loop_iter = size; // Start timer start_time = MPI_Wtime(); // Send out initial tasks (remember you have size-1 workers, master does not count) for (i=1; i<init_and_cleanup_loop_iter; i++) { taskNo = i-1; err = MPI_Send(&taskNo, 1, MPI_INT, i, 0, comm); } // Terminate any processes that were not working due to the fact // that the number of rows where less than the actual available workers for(i=init_and_cleanup_loop_iter; i < size; i++) { PROF(rank, "\nPROF_idle : Worker %d terminated due to insufficient work load", i); err = -1; err = MPI_Send(&err, 1, MPI_INT, i, 0, comm); } // Wait for workers to finish their work assignment and ask for more for (i=init_and_cleanup_loop_iter-1; i<rows; i++) { err = MPI_Recv(&taskNo, 1, MPI_INT, MPI_ANY_SOURCE, 0, comm, &stat); // Check taskNo to make sure everything is ok. Negative means there is problem // thus terminate gracefully all remaining working workers if ( taskNo < 0 ) { // Reduce by one because one worker is already terminated init_and_cleanup_loop_iter--; // Break and cleanup break; } // The sending processor is ready to work: // It's ID is in stat.MPI_SOURCE // Send it the current task (i) err = MPI_Send(&i, 1, MPI_INT, stat.MPI_SOURCE, 0, comm); } // Clean up processors for (i=1; i<init_and_cleanup_loop_iter; i++) { // All tasks complete - shutdown workers err = MPI_Recv(&taskNo, 1, MPI_INT, MPI_ANY_SOURCE, 0, comm, &stat); // If process failed then it will not be waiting to receive anything // We have to ignore the send because it will deadlock if ( taskNo < 0 ) continue; err = -1; err = MPI_Send(&err, 1, MPI_INT, stat.MPI_SOURCE, 0, comm); } // Master is *always* OK local_check = 0; MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); // Check failed, abort if ( global_check != 0 ) { return -1; } // Stop timer end_time = MPI_Wtime(); PROF(rank, "\nPROF_comp (workers=%d) : Time taken by correlation coefficients computations : %g\n", size-1, end_time - start_time); // Start timer start_time = MPI_Wtime(); // Master process must call MPI_File_set_view as well, it's a collective call // Open the file handler MPI_File_open(comm, out_filename, MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh); // Create the file view MPI_File_set_view(fh, 0, MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL); // Write data to disk MPI_File_write_all(fh, &cor[0], 0, MPI_DOUBLE, &stat); // Stop timer end_time = MPI_Wtime(); PROF(rank, "\nPROF_write (workers=%d) : Time taken for global write-file : %g\n", size-1, end_time - start_time); } else { // Compute how many workers will share the work load // Two scenarios exist: // (1) more OR equal number of workers and rows exist // (2) more rows than workers if ( (size-1) > rows ) { // For this scenario each worker will get exaclty one work asssignment. // There is not going to be any other work so it only compute "rows" number // of coefficients fair_chunk = rows; cor_cur_size = fair_chunk; } else { // For this scenario we are going to allocate space equal to a fair // distribution of work assignments *plus* an extra amount of space to // cover any load imbalancing. This amount is expressed as a percentage // of the fair work distribution (see on top, 20% for now) // Plus 1 to round it up or just add some extra space, both are fine fair_chunk = (rows / (size-1)) + 1; DEBUG("fair_chunk %d \n", fair_chunk); // We can use "j" as temporary variable. // Plus 1 to avoid getting 0 from the multiplication. j = (fair_chunk * MEM_PERC) + 1; cor_cur_size = (fair_chunk + j) * rows; DEBUG("cor_cur_size %lld \n", cor_cur_size); } // Allocate memory DEBUG("cor_cur_size %lld \n", cor_cur_size); long long double_size = sizeof(double); DEBUG("malloc size %lld \n", (double_size * cor_cur_size)); cor = (double *)malloc(double_size * cor_cur_size); blocklens = (int *)malloc(sizeof(int) * rows); indices = (int *)malloc(sizeof(int) * rows); mean_value_vectorX = (double *)malloc(sizeof(double) * rows); Sxx_vector = (double *)malloc(sizeof(double) * rows); mean_value_vectorY = (double *)malloc(sizeof(double) * rows); Syy_vector = (double *)malloc(sizeof(double) * rows); // Check that all memory is successfully allocated if ( ( cor == NULL ) || ( blocklens == NULL ) || ( indices == NULL ) || ( mean_value_vectorX == NULL ) || ( Sxx_vector == NULL ) || ( mean_value_vectorY == NULL ) || ( Syy_vector == NULL ) ) { ERR("**ERROR** : Memory allocation failed on worker process %d. Aborting.\n", rank); // Free allocated memory free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector); // Let the master process know its aborting in order to terminate // the rest of the working workers // We have to receive a work assignment first and then terminate // otherwise the master will deadlock trying to give work to this worker err = MPI_Recv(&taskNo, 1, MPI_INT, 0, 0, comm, &stat); taskNo = -1; err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm); // This worker failed local_check = 1; MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); return -1; } // Compute necessary parameters for Pearson method // (this will transform the values of the input array to more meaningful data // and save us from a lot of redundant computations) compute_parameters(dataMatrixX, dataMatrixY, rows, columns); // Main loop for workers. They get work from master, compute coefficients, // save them to their *local* vector and ask for more work for(;;) { // Get work err = 0; err = MPI_Recv(&taskNo, 1, MPI_INT, 0, 0, comm, &stat); // If received task is -1, function is terminated if ( taskNo == -1 ) break; // Check if there is enough memory to store the new coefficients, if not reallocate // the current memory and expand it by MEM_PERC of the approximated size if ( cor_cur_size < (coeff_count + rows) ) { PROF(0, "\n**WARNING** : Worker process %3d run out of memory and reallocates. Potential work imbalancing\n", rank); DEBUG("\n**WARNING** : Worker process %3d run out of memory and reallocates. Potential work imbalancing\n", rank); // Use j as temporary again. Add two (or any other value) to avoid 0. // (two is just a random value, you can put any value really...) j = (fair_chunk * MEM_PERC) + 2; cor_cur_size += (j * rows); // Reallocate and check cor = (double *)realloc(cor, sizeof(double) * cor_cur_size); if ( cor == NULL ) { ERR("**ERROR** : Memory re-allocation failed on worker process %d. Aborting.\n", rank); // Let the master process know its aborting in order to terminate // the rest of the working workers taskNo = -1; err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm); // This worker failed local_check = 1; MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); // Free all allocated memory free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector); return -1; } } // Compute the correlation coefficients if(dataMatrixY != NULL) { for (j=0; j < rows; j++) { cor[coeff_count] = pearson_XY(dataMatrixX, dataMatrixY, j, taskNo, columns); coeff_count++; } } else { for (j=0; j < rows; j++) { // Set main diagonal to 1 if ( j == taskNo ) { cor[coeff_count] = 1.0; coeff_count++; continue; } cor[coeff_count] = pearson(dataMatrixX, taskNo, j, columns); coeff_count++; } } // The value of blocklens[] represents the number of coefficients on each // row of the corellation array blocklens[count] = rows; // The value of indices[] represents the offset of each row in the data file indices[count] = (taskNo * rows); count++; // Give the master the taskID err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm); } // There are two possibilities // (a) everything went well and all workers finished ok // (b) some processes finished ok but one or more of the remaining working workers failed // To make sure all is well an all-reduce will be performed to sync all workers and guarantee success // before moving on to write the output file // This worker is OK local_check = 0; MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); // Check failed if ( global_check != 0 ) { // Free all allocated memory free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector); return -1; } PROF(0, "\nPROF_stats (thread %3d) : Fair chunk of work : %d \t\t Allocated : %d \t\t Computed : %d\n", rank, fair_chunk, cor_cur_size, coeff_count); // If the distance_flag is set, then transform all correlation coefficients to distances if ( distance_flag == 1 ) { for(j=0; j < coeff_count; j++) { cor[j] = 1 - cor[j]; } } // Create and commit the Indexed datatype *ONLY* if there are data available if ( coeff_count != 0 ) { MPI_Type_indexed(count, blocklens, indices, MPI_DOUBLE, &coeff_index_dt); MPI_Type_commit(&coeff_index_dt); } // Open the file handler MPI_File_open(comm, out_filename, MPI_MODE_CREATE | MPI_MODE_WRONLY, MPI_INFO_NULL, &fh); // Create the file view if ( coeff_count != 0 ) { MPI_File_set_view(fh, 0, MPI_DOUBLE, coeff_index_dt, "native", MPI_INFO_NULL); } else { MPI_File_set_view(fh, 0, MPI_DOUBLE, MPI_DOUBLE, "native", MPI_INFO_NULL); } // Write data to disk // TODO coeff_count cannot be greater than max int (for use in the MPI_File_write_all call). // A better fix should be possible, for now throw error. DEBUG("\ncoeff_count is %lld\n", coeff_count); DEBUG("\INT_MAX is %d\n", INT_MAX); if(coeff_count>INT_MAX) { ERR("**ERROR** : Could not run as the chunks of data are too large. Try running again with more MPI processes.\n"); // Free allocated memory free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector); // Let the master process know its aborting in order to terminate // the rest of the working workers // We have to receive a work assignment first and then terminate // otherwise the master will deadlock trying to give work to this worker err = MPI_Recv(&taskNo, 1, MPI_INT, 0, 0, comm, &stat); taskNo = -1; err = MPI_Send(&taskNo, 1, MPI_INT, 0, 0, comm); // This worker failed local_check = 1; MPI_Allreduce(&local_check, &global_check, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); return -1; } DEBUG("\nWriting %d to disk\n", coeff_count); MPI_File_write_all(fh, &cor[0], coeff_count, MPI_DOUBLE, &stat); if (coeff_count != 0 ) MPI_Type_free(&coeff_index_dt); // Free all allocated memory free_all(cor, blocklens, indices, mean_value_vectorX, Sxx_vector, mean_value_vectorY, Syy_vector); } DEBUG("\nAbout to write to disk %d\n", rank); MPI_File_sync( fh ) ; // Causes all previous writes to be transferred to the storage device DEBUG("\nWritten to disk %d\n",rank); // MPI_Barrier( MPI_COMM_WORLD ) ; // Blocks until all processes in the communicator have reached this routine. DEBUG("\nAfter barrier \n", rank); // Close file handler MPI_File_close(&fh); DEBUG("\nAfter file closed /n"); // MPI_Barrier( MPI_COMM_WORLD ) ; // Blocks until all processes in the communicator have reached this routine. DEBUG("\nAbout to return from kernel /n"); return 0; }