Esempio n. 1
0
/* Subroutine */ int cerrpo_(char *path, integer *nunit)
{
    /* System generated locals */
    integer i__1;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    complex a[16]	/* was [4][4] */, b[4];
    integer i__, j;
    real r__[4];
    complex w[8], x[4];
    char c2[2];
    real r1[4], r2[4];
    complex af[16]	/* was [4][4] */;
    integer info;
    real anrm, rcond;

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CERRPO tests the error exits for the COMPLEX routines */
/*  for Hermitian positive definite matrices. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    i__1 = i__ + (j << 2) - 5;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    a[i__1].r = q__1.r, a[i__1].i = q__1.i;
	    i__1 = i__ + (j << 2) - 5;
	    r__1 = 1.f / (real) (i__ + j);
	    r__2 = -1.f / (real) (i__ + j);
	    q__1.r = r__1, q__1.i = r__2;
	    af[i__1].r = q__1.r, af[i__1].i = q__1.i;
/* L10: */
	}
	i__1 = j - 1;
	b[i__1].r = 0.f, b[i__1].i = 0.f;
	r1[j - 1] = 0.f;
	r2[j - 1] = 0.f;
	i__1 = j - 1;
	w[i__1].r = 0.f, w[i__1].i = 0.f;
	i__1 = j - 1;
	x[i__1].r = 0.f, x[i__1].i = 0.f;
/* L20: */
    }
    anrm = 1.f;
    infoc_1.ok = TRUE_;

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite matrix. */

    if (lsamen_(&c__2, c2, "PO")) {

/*        CPOTRF */

	s_copy(srnamc_1.srnamt, "CPOTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotrf_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotrf_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotrf_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTF2 */

	s_copy(srnamc_1.srnamt, "CPOTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotf2_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotf2_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotf2_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTRI */

	s_copy(srnamc_1.srnamt, "CPOTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotri_("/", &c__0, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotri_("U", &c_n1, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpotri_("U", &c__2, a, &c__1, &info);
	chkxer_("CPOTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOTRS */

	s_copy(srnamc_1.srnamt, "CPOTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpotrs_("/", &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpotrs_("U", &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpotrs_("U", &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpotrs_("U", &c__2, &c__1, a, &c__1, b, &c__2, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cpotrs_("U", &c__2, &c__1, a, &c__2, b, &c__1, &info);
	chkxer_("CPOTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPORFS */

	s_copy(srnamc_1.srnamt, "CPORFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cporfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cporfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cporfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cporfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__1, x, &c__2, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	cporfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, b, &c__2, x, &c__1, 
		r1, r2, w, r__, &info);
	chkxer_("CPORFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOCON */

	s_copy(srnamc_1.srnamt, "CPOCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpocon_("/", &c__0, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpocon_("U", &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpocon_("U", &c__2, a, &c__1, &anrm, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	r__1 = -anrm;
	cpocon_("U", &c__1, a, &c__1, &r__1, &rcond, w, r__, &info)
		;
	chkxer_("CPOCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPOEQU */

	s_copy(srnamc_1.srnamt, "CPOEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpoequ_(&c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpoequ_(&c__2, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPOEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite packed matrix. */

    } else if (lsamen_(&c__2, c2, "PP")) {

/*        CPPTRF */

	s_copy(srnamc_1.srnamt, "CPPTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptrf_("/", &c__0, a, &info);
	chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptrf_("U", &c_n1, a, &info);
	chkxer_("CPPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPTRI */

	s_copy(srnamc_1.srnamt, "CPPTRI", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptri_("/", &c__0, a, &info);
	chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptri_("U", &c_n1, a, &info);
	chkxer_("CPPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPTRS */

	s_copy(srnamc_1.srnamt, "CPPTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpptrs_("/", &c__0, &c__0, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpptrs_("U", &c_n1, &c__0, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpptrs_("U", &c__0, &c_n1, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpptrs_("U", &c__2, &c__1, a, b, &c__1, &info);
	chkxer_("CPPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPRFS */

	s_copy(srnamc_1.srnamt, "CPPRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpprfs_("/", &c__0, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpprfs_("U", &c_n1, &c__0, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpprfs_("U", &c__0, &c_n1, a, af, b, &c__1, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	cpprfs_("U", &c__2, &c__1, a, af, b, &c__1, x, &c__2, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	cpprfs_("U", &c__2, &c__1, a, af, b, &c__2, x, &c__1, r1, r2, w, r__, 
		&info);
	chkxer_("CPPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPCON */

	s_copy(srnamc_1.srnamt, "CPPCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cppcon_("/", &c__0, a, &anrm, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cppcon_("U", &c_n1, a, &anrm, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	r__1 = -anrm;
	cppcon_("U", &c__1, a, &r__1, &rcond, w, r__, &info);
	chkxer_("CPPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPPEQU */

	s_copy(srnamc_1.srnamt, "CPPEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cppequ_("/", &c__0, a, r1, &rcond, &anrm, &info);
	chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cppequ_("U", &c_n1, a, r1, &rcond, &anrm, &info);
	chkxer_("CPPEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*     Test error exits of the routines that use the Cholesky */
/*     decomposition of a Hermitian positive definite band matrix. */

    } else if (lsamen_(&c__2, c2, "PB")) {

/*        CPBTRF */

	s_copy(srnamc_1.srnamt, "CPBTRF", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtrf_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtrf_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtrf_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbtrf_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("CPBTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBTF2 */

	s_copy(srnamc_1.srnamt, "CPBTF2", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtf2_("/", &c__0, &c__0, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtf2_("U", &c_n1, &c__0, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtf2_("U", &c__1, &c_n1, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbtf2_("U", &c__2, &c__1, a, &c__1, &info);
	chkxer_("CPBTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBTRS */

	s_copy(srnamc_1.srnamt, "CPBTRS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbtrs_("/", &c__0, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbtrs_("U", &c_n1, &c__0, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbtrs_("U", &c__1, &c_n1, &c__0, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpbtrs_("U", &c__0, &c__0, &c_n1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpbtrs_("U", &c__2, &c__1, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	cpbtrs_("U", &c__2, &c__0, &c__1, a, &c__1, b, &c__1, &info);
	chkxer_("CPBTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBRFS */

	s_copy(srnamc_1.srnamt, "CPBRFS", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbrfs_("/", &c__0, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbrfs_("U", &c_n1, &c__0, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbrfs_("U", &c__1, &c_n1, &c__0, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	cpbrfs_("U", &c__0, &c__0, &c_n1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__1, af, &c__2, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	cpbrfs_("U", &c__2, &c__1, &c__1, a, &c__2, af, &c__1, b, &c__2, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__1, x, &
		c__2, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	cpbrfs_("U", &c__2, &c__0, &c__1, a, &c__1, af, &c__1, b, &c__2, x, &
		c__1, r1, r2, w, r__, &info);
	chkxer_("CPBRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBCON */

	s_copy(srnamc_1.srnamt, "CPBCON", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbcon_("/", &c__0, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbcon_("U", &c_n1, &c__0, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbcon_("U", &c__1, &c_n1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbcon_("U", &c__2, &c__1, a, &c__1, &anrm, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	r__1 = -anrm;
	cpbcon_("U", &c__1, &c__0, a, &c__1, &r__1, &rcond, w, r__, &info);
	chkxer_("CPBCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        CPBEQU */

	s_copy(srnamc_1.srnamt, "CPBEQU", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	cpbequ_("/", &c__0, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	cpbequ_("U", &c_n1, &c__0, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	cpbequ_("U", &c__1, &c_n1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	cpbequ_("U", &c__2, &c__1, a, &c__1, r1, &rcond, &anrm, &info);
	chkxer_("CPBEQU", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of CERRPO */

} /* cerrpo_ */
Esempio n. 2
0
/* Subroutine */ int cppsvx_(char *fact, char *uplo, integer *n, integer *
	nrhs, complex *ap, complex *afp, char *equed, real *s, complex *b, 
	integer *ldb, complex *x, integer *ldx, real *rcond, real *ferr, real 
	*berr, complex *work, real *rwork, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2;
    complex q__1;

    /* Local variables */
    integer i__, j;
    real amax, smin, smax;
    real scond, anorm;
    logical equil, rcequ;
    logical nofact;
    real bignum;
    integer infequ;
    real smlnum;

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CPPSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to */
/*  compute the solution to a complex system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N Hermitian positive definite matrix stored in */
/*  packed format and X and B are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'E', real scaling factors are computed to equilibrate */
/*     the system: */
/*        diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
/*     Whether or not the system will be equilibrated depends on the */
/*     scaling of the matrix A, but if equilibration is used, A is */
/*     overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */

/*  2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
/*     factor the matrix A (after equilibration if FACT = 'E') as */
/*        A = U'* U ,  if UPLO = 'U', or */
/*        A = L * L',  if UPLO = 'L', */
/*     where U is an upper triangular matrix, L is a lower triangular */
/*     matrix, and ' indicates conjugate transpose. */

/*  3. If the leading i-by-i principal minor is not positive definite, */
/*     then the routine returns with INFO = i. Otherwise, the factored */
/*     form of A is used to estimate the condition number of the matrix */
/*     A.  If the reciprocal of the condition number is less than machine */
/*     precision, INFO = N+1 is returned as a warning, but the routine */
/*     still goes on to solve for X and compute error bounds as */
/*     described below. */

/*  4. The system of equations is solved for X using the factored form */
/*     of A. */

/*  5. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  6. If equilibration was used, the matrix X is premultiplied by */
/*     diag(S) so that it solves the original system before */
/*     equilibration. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of the matrix A is */
/*          supplied on entry, and if not, whether the matrix A should be */
/*          equilibrated before it is factored. */
/*          = 'F':  On entry, AFP contains the factored form of A. */
/*                  If EQUED = 'Y', the matrix A has been equilibrated */
/*                  with scaling factors given by S.  AP and AFP will not */
/*                  be modified. */
/*          = 'N':  The matrix A will be copied to AFP and factored. */
/*          = 'E':  The matrix A will be equilibrated if necessary, then */
/*                  copied to AFP and factored. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array, except if FACT = 'F' */
/*          and EQUED = 'Y', then A must contain the equilibrated matrix */
/*          diag(S)*A*diag(S).  The j-th column of A is stored in the */
/*          array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details.  A is not modified if */
/*          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */

/*          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/*          diag(S)*A*diag(S). */

/*  AFP     (input or output) COMPLEX array, dimension (N*(N+1)/2) */
/*          If FACT = 'F', then AFP is an input argument and on entry */
/*          contains the triangular factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H, in the same storage */
/*          format as A.  If EQUED .ne. 'N', then AFP is the factored */
/*          form of the equilibrated matrix A. */

/*          If FACT = 'N', then AFP is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H of the original */
/*          matrix A. */

/*          If FACT = 'E', then AFP is an output argument and on exit */
/*          returns the triangular factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H of the equilibrated */
/*          matrix A (see the description of AP for the form of the */
/*          equilibrated matrix). */

/*  EQUED   (input or output) CHARACTER*1 */
/*          Specifies the form of equilibration that was done. */
/*          = 'N':  No equilibration (always true if FACT = 'N'). */
/*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
/*                  diag(S) * A * diag(S). */
/*          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/*          output argument. */

/*  S       (input or output) REAL array, dimension (N) */
/*          The scale factors for A; not accessed if EQUED = 'N'.  S is */
/*          an input argument if FACT = 'F'; otherwise, S is an output */
/*          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
/*          must be positive. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
/*          B is overwritten by diag(S) * B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) COMPLEX array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
/*          the original system of equations.  Note that if EQUED = 'Y', */
/*          A and B are modified on exit, and the solution to the */
/*          equilibrated system is inv(diag(S))*X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) REAL */
/*          The estimate of the reciprocal condition number of the matrix */
/*          A after equilibration (if done).  If RCOND is less than the */
/*          machine precision (in particular, if RCOND = 0), the matrix */
/*          is singular to working precision.  This condition is */
/*          indicated by a return code of INFO > 0. */

/*  FERR    (output) REAL array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) REAL array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) COMPLEX array, dimension (2*N) */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is */
/*                <= N:  the leading minor of order i of A is */
/*                       not positive definite, so the factorization */
/*                       could not be completed, and the solution has not */
/*                       been computed. RCOND = 0 is returned. */
/*                = N+1: U is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the Hermitian matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = conjg(aji)) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

    /* Parameter adjustments */
    --ap;
    --afp;
    --s;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    equil = lsame_(fact, "E");
    if (nofact || equil) {
	*(unsigned char *)equed = 'N';
	rcequ = FALSE_;
    } else {
	rcequ = lsame_(equed, "Y");
	smlnum = slamch_("Safe minimum");
	bignum = 1.f / smlnum;
    }

/*     Test the input parameters. */

    if (! nofact && ! equil && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
	    "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
	    equed, "N"))) {
	*info = -7;
    } else {
	if (rcequ) {
	    smin = bignum;
	    smax = 0.f;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
		r__1 = smin, r__2 = s[j];
		smin = dmin(r__1,r__2);
/* Computing MAX */
		r__1 = smax, r__2 = s[j];
		smax = dmax(r__1,r__2);
	    }
	    if (smin <= 0.f) {
		*info = -8;
	    } else if (*n > 0) {
		scond = dmax(smin,smlnum) / dmin(smax,bignum);
	    } else {
		scond = 1.f;
	    }
	}
	if (*info == 0) {
	    if (*ldb < max(1,*n)) {
		*info = -10;
	    } else if (*ldx < max(1,*n)) {
		*info = -12;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPSVX", &i__1);
	return 0;
    }

    if (equil) {

/*        Compute row and column scalings to equilibrate the matrix A. */

	cppequ_(uplo, n, &ap[1], &s[1], &scond, &amax, &infequ);
	if (infequ == 0) {

/*           Equilibrate the matrix. */

	    claqhp_(uplo, n, &ap[1], &s[1], &scond, &amax, equed);
	    rcequ = lsame_(equed, "Y");
	}
    }

/*     Scale the right-hand side. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		i__3 = i__ + j * b_dim1;
		i__4 = i__;
		i__5 = i__ + j * b_dim1;
		q__1.r = s[i__4] * b[i__5].r, q__1.i = s[i__4] * b[i__5].i;
		b[i__3].r = q__1.r, b[i__3].i = q__1.i;
	    }
	}
    }

    if (nofact || equil) {

/*        Compute the Cholesky factorization A = U'*U or A = L*L'. */

	i__1 = *n * (*n + 1) / 2;
	ccopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
	cpptrf_(uplo, n, &afp[1], info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.f;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = clanhp_("I", uplo, n, &ap[1], &rwork[1]);

/*     Compute the reciprocal of the condition number of A. */

    cppcon_(uplo, n, &afp[1], &anorm, rcond, &work[1], &rwork[1], info);

/*     Compute the solution matrix X. */

    clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    cpptrs_(uplo, n, nrhs, &afp[1], &x[x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solution and */
/*     compute error bounds and backward error estimates for it. */

    cpprfs_(uplo, n, nrhs, &ap[1], &afp[1], &b[b_offset], ldb, &x[x_offset], 
	    ldx, &ferr[1], &berr[1], &work[1], &rwork[1], info);

/*     Transform the solution matrix X to a solution of the original */
/*     system. */

    if (rcequ) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *n;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		i__3 = i__ + j * x_dim1;
		i__4 = i__;
		i__5 = i__ + j * x_dim1;
		q__1.r = s[i__4] * x[i__5].r, q__1.i = s[i__4] * x[i__5].i;
		x[i__3].r = q__1.r, x[i__3].i = q__1.i;
	    }
	}
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] /= scond;
	}
    }

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < slamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of CPPSVX */

} /* cppsvx_ */
Esempio n. 3
0
/* Subroutine */ int cpprfs_(char *uplo, integer *n, integer *nrhs, complex *
	ap, complex *afp, complex *b, integer *ldb, complex *x, integer *ldx, 
	real *ferr, real *berr, complex *work, real *rwork, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
    real r__1, r__2, r__3, r__4;
    complex q__1;

    /* Builtin functions */
    double r_imag(complex *);

    /* Local variables */
    integer i__, j, k;
    real s;
    integer ik, kk;
    real xk;
    integer nz;
    real eps;
    integer kase;
    real safe1, safe2;
    extern logical lsame_(char *, char *);
    integer isave[3];
    extern /* Subroutine */ int ccopy_(integer *, complex *, integer *, 
	    complex *, integer *), chpmv_(char *, integer *, complex *, 
	    complex *, complex *, integer *, complex *, complex *, integer *), caxpy_(integer *, complex *, complex *, integer *, 
	    complex *, integer *);
    integer count;
    logical upper;
    extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real 
	    *, integer *, integer *);
    extern doublereal slamch_(char *);
    real safmin;
    extern /* Subroutine */ int xerbla_(char *, integer *), cpptrs_(
	    char *, integer *, integer *, complex *, complex *, integer *, 
	    integer *);
    real lstres;


/*  -- LAPACK routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  CPPRFS improves the computed solution to a system of linear */
/*  equations when the coefficient matrix is Hermitian positive definite */
/*  and packed, and provides error bounds and backward error estimates */
/*  for the solution. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AP      (input) COMPLEX array, dimension (N*(N+1)/2) */
/*          The upper or lower triangle of the Hermitian matrix A, packed */
/*          columnwise in a linear array.  The j-th column of A is stored */
/*          in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */

/*  AFP     (input) COMPLEX array, dimension (N*(N+1)/2) */
/*          The triangular factor U or L from the Cholesky factorization */
/*          A = U**H*U or A = L*L**H, as computed by SPPTRF/CPPTRF, */
/*          packed columnwise in a linear array in the same format as A */
/*          (see AP). */

/*  B       (input) COMPLEX array, dimension (LDB,NRHS) */
/*          The right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (input/output) COMPLEX array, dimension (LDX,NRHS) */
/*          On entry, the solution matrix X, as computed by CPPTRS. */
/*          On exit, the improved solution matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  FERR    (output) REAL array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) REAL array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) COMPLEX array, dimension (2*N) */

/*  RWORK   (workspace) REAL array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */

/*  Internal Parameters */
/*  =================== */

/*  ITMAX is the maximum number of steps of iterative refinement. */

/*  ==================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Statement Functions .. */
/*     .. */
/*     .. Statement Function definitions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --afp;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --rwork;

    /* Function Body */
    *info = 0;
    upper = lsame_(uplo, "U");
    if (! upper && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    } else if (*ldx < max(1,*n)) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPRFS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *nrhs == 0) {
	i__1 = *nrhs;
	for (j = 1; j <= i__1; ++j) {
	    ferr[j] = 0.f;
	    berr[j] = 0.f;
/* L10: */
	}
	return 0;
    }

/*     NZ = maximum number of nonzero elements in each row of A, plus 1 */

    nz = *n + 1;
    eps = slamch_("Epsilon");
    safmin = slamch_("Safe minimum");
    safe1 = nz * safmin;
    safe2 = safe1 / eps;

/*     Do for each right hand side */

    i__1 = *nrhs;
    for (j = 1; j <= i__1; ++j) {

	count = 1;
	lstres = 3.f;
L20:

/*        Loop until stopping criterion is satisfied. */

/*        Compute residual R = B - A * X */

	ccopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
	q__1.r = -1.f, q__1.i = -0.f;
	chpmv_(uplo, n, &q__1, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &
		work[1], &c__1);

/*        Compute componentwise relative backward error from formula */

/*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */

/*        where abs(Z) is the componentwise absolute value of the matrix */
/*        or vector Z.  If the i-th component of the denominator is less */
/*        than SAFE2, then SAFE1 is added to the i-th components of the */
/*        numerator and denominator before dividing. */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    i__3 = i__ + j * b_dim1;
	    rwork[i__] = (r__1 = b[i__3].r, dabs(r__1)) + (r__2 = r_imag(&b[
		    i__ + j * b_dim1]), dabs(r__2));
/* L30: */
	}

/*        Compute abs(A)*abs(X) + abs(B). */

	kk = 1;
	if (upper) {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		s = 0.f;
		i__3 = k + j * x_dim1;
		xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j 
			* x_dim1]), dabs(r__2));
		ik = kk;
		i__3 = k - 1;
		for (i__ = 1; i__ <= i__3; ++i__) {
		    i__4 = ik;
		    rwork[i__] += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 = 
			    r_imag(&ap[ik]), dabs(r__2))) * xk;
		    i__4 = ik;
		    i__5 = i__ + j * x_dim1;
		    s += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 = r_imag(&
			    ap[ik]), dabs(r__2))) * ((r__3 = x[i__5].r, dabs(
			    r__3)) + (r__4 = r_imag(&x[i__ + j * x_dim1]), 
			    dabs(r__4)));
		    ++ik;
/* L40: */
		}
		i__3 = kk + k - 1;
		rwork[k] = rwork[k] + (r__1 = ap[i__3].r, dabs(r__1)) * xk + 
			s;
		kk += k;
/* L50: */
	    }
	} else {
	    i__2 = *n;
	    for (k = 1; k <= i__2; ++k) {
		s = 0.f;
		i__3 = k + j * x_dim1;
		xk = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = r_imag(&x[k + j 
			* x_dim1]), dabs(r__2));
		i__3 = kk;
		rwork[k] += (r__1 = ap[i__3].r, dabs(r__1)) * xk;
		ik = kk + 1;
		i__3 = *n;
		for (i__ = k + 1; i__ <= i__3; ++i__) {
		    i__4 = ik;
		    rwork[i__] += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 = 
			    r_imag(&ap[ik]), dabs(r__2))) * xk;
		    i__4 = ik;
		    i__5 = i__ + j * x_dim1;
		    s += ((r__1 = ap[i__4].r, dabs(r__1)) + (r__2 = r_imag(&
			    ap[ik]), dabs(r__2))) * ((r__3 = x[i__5].r, dabs(
			    r__3)) + (r__4 = r_imag(&x[i__ + j * x_dim1]), 
			    dabs(r__4)));
		    ++ik;
/* L60: */
		}
		rwork[k] += s;
		kk += *n - k + 1;
/* L70: */
	    }
	}
	s = 0.f;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
/* Computing MAX */
		i__3 = i__;
		r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&work[i__]), dabs(r__2))) / rwork[i__];
		s = dmax(r__3,r__4);
	    } else {
/* Computing MAX */
		i__3 = i__;
		r__3 = s, r__4 = ((r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&work[i__]), dabs(r__2)) + safe1) / (rwork[i__]
			 + safe1);
		s = dmax(r__3,r__4);
	    }
/* L80: */
	}
	berr[j] = s;

/*        Test stopping criterion. Continue iterating if */
/*           1) The residual BERR(J) is larger than machine epsilon, and */
/*           2) BERR(J) decreased by at least a factor of 2 during the */
/*              last iteration, and */
/*           3) At most ITMAX iterations tried. */

	if (berr[j] > eps && berr[j] * 2.f <= lstres && count <= 5) {

/*           Update solution and try again. */

	    cpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info);
	    caxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
	    lstres = berr[j];
	    ++count;
	    goto L20;
	}

/*        Bound error from formula */

/*        norm(X - XTRUE) / norm(X) .le. FERR = */
/*        norm( abs(inv(A))* */
/*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */

/*        where */
/*          norm(Z) is the magnitude of the largest component of Z */
/*          inv(A) is the inverse of A */
/*          abs(Z) is the componentwise absolute value of the matrix or */
/*             vector Z */
/*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
/*          EPS is machine epsilon */

/*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
/*        is incremented by SAFE1 if the i-th component of */
/*        abs(A)*abs(X) + abs(B) is less than SAFE2. */

/*        Use CLACN2 to estimate the infinity-norm of the matrix */
/*           inv(A) * diag(W), */
/*        where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */

	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
	    if (rwork[i__] > safe2) {
		i__3 = i__;
		rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
			i__];
	    } else {
		i__3 = i__;
		rwork[i__] = (r__1 = work[i__3].r, dabs(r__1)) + (r__2 = 
			r_imag(&work[i__]), dabs(r__2)) + nz * eps * rwork[
			i__] + safe1;
	    }
/* L90: */
	}

	kase = 0;
L100:
	clacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
	if (kase != 0) {
	    if (kase == 1) {

/*              Multiply by diag(W)*inv(A'). */

		cpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
			;
		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = i__;
		    q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] 
			    * work[i__5].i;
		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
/* L110: */
		}
	    } else if (kase == 2) {

/*              Multiply by inv(A)*diag(W). */

		i__2 = *n;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    i__3 = i__;
		    i__4 = i__;
		    i__5 = i__;
		    q__1.r = rwork[i__4] * work[i__5].r, q__1.i = rwork[i__4] 
			    * work[i__5].i;
		    work[i__3].r = q__1.r, work[i__3].i = q__1.i;
/* L120: */
		}
		cpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
			;
	    }
	    goto L100;
	}

/*        Normalize error. */

	lstres = 0.f;
	i__2 = *n;
	for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
	    i__3 = i__ + j * x_dim1;
	    r__3 = lstres, r__4 = (r__1 = x[i__3].r, dabs(r__1)) + (r__2 = 
		    r_imag(&x[i__ + j * x_dim1]), dabs(r__2));
	    lstres = dmax(r__3,r__4);
/* L130: */
	}
	if (lstres != 0.f) {
	    ferr[j] /= lstres;
	}

/* L140: */
    }

    return 0;

/*     End of CPPRFS */

} /* cpprfs_ */
Esempio n. 4
0
/* Subroutine */ int cppsv_(char *uplo, integer *n, integer *nrhs, complex *
	ap, complex *b, integer *ldb, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    CPPSV computes the solution to a complex system of linear equations   
       A * X = B,   
    where A is an N-by-N Hermitian positive definite matrix stored in   
    packed format and X and B are N-by-NRHS matrices.   

    The Cholesky decomposition is used to factor A as   
       A = U**H* U,  if UPLO = 'U', or   
       A = L * L**H,  if UPLO = 'L',   
    where U is an upper triangular matrix and L is a lower triangular   
    matrix.  The factored form of A is then used to solve the system of   
    equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AP      (input/output) COMPLEX array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the Hermitian matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

            On exit, if INFO = 0, the factor U or L from the Cholesky   
            factorization A = U**H*U or A = L*L**H, in the same storage   
            format as A.   

    B       (input/output) COMPLEX array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the leading minor of order i of A is not   
                  positive definite, so the factorization could not be   
                  completed, and the solution has not been computed.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the Hermitian matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = conjg(aji))   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), cpptrf_(
	    char *, integer *, complex *, integer *), cpptrs_(char *, 
	    integer *, integer *, complex *, complex *, integer *, integer *);

    --ap;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    cpptrf_(uplo, n, &ap[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	cpptrs_(uplo, n, nrhs, &ap[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of CPPSV */

} /* cppsv_ */
Esempio n. 5
0
/* Subroutine */ int cppsv_(char *uplo, integer *n, integer *nrhs, complex *
	ap, complex *b, integer *ldb, integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1;

    /* Local variables */

/*  -- LAPACK driver routine (version 3.2) -- */
/*     November 2006 */

/*  Purpose */
/*  ======= */

/*  CPPSV computes the solution to a complex system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N Hermitian positive definite matrix stored in */
/*  packed format and X and B are N-by-NRHS matrices. */

/*  The Cholesky decomposition is used to factor A as */
/*     A = U**H* U,  if UPLO = 'U', or */
/*     A = L * L**H,  if UPLO = 'L', */
/*  where U is an upper triangular matrix and L is a lower triangular */
/*  matrix.  The factored form of A is then used to solve the system of */
/*  equations A * X = B. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AP      (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the Hermitian matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details. */

/*          On exit, if INFO = 0, the factor U or L from the Cholesky */
/*          factorization A = U**H*U or A = L*L**H, in the same storage */
/*          format as A. */

/*  B       (input/output) COMPLEX array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, the leading minor of order i of A is not */
/*                positive definite, so the factorization could not be */
/*                completed, and the solution has not been computed. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the Hermitian matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = conjg(aji)) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -6;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CPPSV ", &i__1);
	return 0;
    }

/*     Compute the Cholesky factorization A = U'*U or A = L*L'. */

    cpptrf_(uplo, n, &ap[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	cpptrs_(uplo, n, nrhs, &ap[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of CPPSV */

} /* cppsv_ */
Esempio n. 6
0
int main(void)
{
    /* Local scalars */
    char uplo, uplo_i;
    lapack_int n, n_i;
    lapack_int nrhs, nrhs_i;
    lapack_int ldb, ldb_i;
    lapack_int ldb_r;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    lapack_complex_float *ap = NULL, *ap_i = NULL;
    lapack_complex_float *b = NULL, *b_i = NULL;
    lapack_complex_float *b_save = NULL;
    lapack_complex_float *ap_r = NULL;
    lapack_complex_float *b_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_cpptrs( &uplo, &n, &nrhs, &ldb );
    ldb_r = nrhs+2;
    uplo_i = uplo;
    n_i = n;
    nrhs_i = nrhs;
    ldb_i = ldb;

    /* Allocate memory for the LAPACK routine arrays */
    ap = (lapack_complex_float *)
        LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_float) );
    b = (lapack_complex_float *)
        LAPACKE_malloc( ldb*nrhs * sizeof(lapack_complex_float) );

    /* Allocate memory for the C interface function arrays */
    ap_i = (lapack_complex_float *)
        LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(lapack_complex_float) );
    b_i = (lapack_complex_float *)
        LAPACKE_malloc( ldb*nrhs * sizeof(lapack_complex_float) );

    /* Allocate memory for the backup arrays */
    b_save = (lapack_complex_float *)
        LAPACKE_malloc( ldb*nrhs * sizeof(lapack_complex_float) );

    /* Allocate memory for the row-major arrays */
    ap_r = (lapack_complex_float *)
        LAPACKE_malloc( n*(n+1)/2 * sizeof(lapack_complex_float) );
    b_r = (lapack_complex_float *)
        LAPACKE_malloc( n*(nrhs+2) * sizeof(lapack_complex_float) );

    /* Initialize input arrays */
    init_ap( (n*(n+1)/2), ap );
    init_b( ldb*nrhs, b );

    /* Backup the ouptut arrays */
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_save[i] = b[i];
    }

    /* Call the LAPACK routine */
    cpptrs_( &uplo, &n, &nrhs, ap, b, &ldb, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }
    info_i = LAPACKE_cpptrs_work( LAPACK_COL_MAJOR, uplo_i, n_i, nrhs_i, ap_i,
                                  b_i, ldb_i );

    failed = compare_cpptrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to cpptrs\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to cpptrs\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }
    info_i = LAPACKE_cpptrs( LAPACK_COL_MAJOR, uplo_i, n_i, nrhs_i, ap_i, b_i,
                             ldb_i );

    failed = compare_cpptrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to cpptrs\n" );
    } else {
        printf( "FAILED: column-major high-level interface to cpptrs\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }

    LAPACKE_cpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, nrhs, b_i, ldb, b_r, nrhs+2 );
    info_i = LAPACKE_cpptrs_work( LAPACK_ROW_MAJOR, uplo_i, n_i, nrhs_i, ap_r,
                                  b_r, ldb_r );

    LAPACKE_cge_trans( LAPACK_ROW_MAJOR, n, nrhs, b_r, nrhs+2, b_i, ldb );

    failed = compare_cpptrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to cpptrs\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to cpptrs\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap[i];
    }
    for( i = 0; i < ldb*nrhs; i++ ) {
        b_i[i] = b_save[i];
    }

    /* Init row_major arrays */
    LAPACKE_cpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, nrhs, b_i, ldb, b_r, nrhs+2 );
    info_i = LAPACKE_cpptrs( LAPACK_ROW_MAJOR, uplo_i, n_i, nrhs_i, ap_r, b_r,
                             ldb_r );

    LAPACKE_cge_trans( LAPACK_ROW_MAJOR, n, nrhs, b_r, nrhs+2, b_i, ldb );

    failed = compare_cpptrs( b, b_i, info, info_i, ldb, nrhs );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to cpptrs\n" );
    } else {
        printf( "FAILED: row-major high-level interface to cpptrs\n" );
    }

    /* Release memory */
    if( ap != NULL ) {
        LAPACKE_free( ap );
    }
    if( ap_i != NULL ) {
        LAPACKE_free( ap_i );
    }
    if( ap_r != NULL ) {
        LAPACKE_free( ap_r );
    }
    if( b != NULL ) {
        LAPACKE_free( b );
    }
    if( b_i != NULL ) {
        LAPACKE_free( b_i );
    }
    if( b_r != NULL ) {
        LAPACKE_free( b_r );
    }
    if( b_save != NULL ) {
        LAPACKE_free( b_save );
    }

    return 0;
}