int main(int argc, char *argv[]) { cv::Mat src = cv::imread("lena.jpg", cv::IMREAD_GRAYSCALE); cv::Mat dst(src.size(), src.type(), cv::Scalar(0)); cv::cuda::GpuMat d_src(src); cv::cuda::GpuMat d_dst(dst.size(), dst.type()); double f = 1000.0f / cv::getTickFrequency(); int64 start = 0, end = 0; start = cv::getTickCount(); // 自作カーネルの呼び出し launchMyKernel(d_src, d_dst); end = cv::getTickCount(); std::cout << ((end - start) * f) << " ms." << std::endl; d_dst.download(dst); cv::imwrite("dst.png", dst); return 0; }
bool TestTranspose<T>::process() { NCVStatus ncvStat; bool rcode = false; NcvSize32u srcSize(this->width, this->height); NCVMatrixAlloc<T> d_img(*this->allocatorGPU.get(), this->width, this->height); ncvAssertReturn(d_img.isMemAllocated(), false); NCVMatrixAlloc<T> h_img(*this->allocatorCPU.get(), this->width, this->height); ncvAssertReturn(h_img.isMemAllocated(), false); NCVMatrixAlloc<T> d_dst(*this->allocatorGPU.get(), this->height, this->width); ncvAssertReturn(d_dst.isMemAllocated(), false); NCVMatrixAlloc<T> h_dst(*this->allocatorCPU.get(), this->height, this->width); ncvAssertReturn(h_dst.isMemAllocated(), false); NCVMatrixAlloc<T> h_dst_d(*this->allocatorCPU.get(), this->height, this->width); ncvAssertReturn(h_dst_d.isMemAllocated(), false); NCV_SET_SKIP_COND(this->allocatorGPU.get()->isCounting()); NCV_SKIP_COND_BEGIN ncvAssertReturn(this->src.fill(h_img), false); NCV_SKIP_COND_END ncvStat = h_img.copySolid(d_img, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); NCV_SKIP_COND_BEGIN if (sizeof(T) == sizeof(Ncv32u)) { ncvStat = nppiStTranspose_32u_C1R((Ncv32u *)d_img.ptr(), d_img.pitch(), (Ncv32u *)d_dst.ptr(), d_dst.pitch(), NcvSize32u(this->width, this->height)); } else if (sizeof(T) == sizeof(Ncv64u)) { ncvStat = nppiStTranspose_64u_C1R((Ncv64u *)d_img.ptr(), d_img.pitch(), (Ncv64u *)d_dst.ptr(), d_dst.pitch(), NcvSize32u(this->width, this->height)); } else { ncvAssertPrintReturn(false, "Incorrect transpose test instance", false); } ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); NCV_SKIP_COND_END ncvStat = d_dst.copySolid(h_dst_d, 0); ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); NCV_SKIP_COND_BEGIN if (sizeof(T) == sizeof(Ncv32u)) { ncvStat = nppiStTranspose_32u_C1R_host((Ncv32u *)h_img.ptr(), h_img.pitch(), (Ncv32u *)h_dst.ptr(), h_dst.pitch(), NcvSize32u(this->width, this->height)); } else if (sizeof(T) == sizeof(Ncv64u)) { ncvStat = nppiStTranspose_64u_C1R_host((Ncv64u *)h_img.ptr(), h_img.pitch(), (Ncv64u *)h_dst.ptr(), h_dst.pitch(), NcvSize32u(this->width, this->height)); } else { ncvAssertPrintReturn(false, "Incorrect downsample test instance", false); } ncvAssertReturn(ncvStat == NPPST_SUCCESS, false); NCV_SKIP_COND_END //bit-to-bit check bool bLoopVirgin = true; NCV_SKIP_COND_BEGIN //const Ncv64f relEPS = 0.005; for (Ncv32u i=0; bLoopVirgin && i < this->width; i++) { for (Ncv32u j=0; bLoopVirgin && j < this->height; j++) { if (h_dst.ptr()[h_dst.stride()*i+j] != h_dst_d.ptr()[h_dst_d.stride()*i+j]) { bLoopVirgin = false; } } } NCV_SKIP_COND_END if (bLoopVirgin) { rcode = true; } return rcode; }