Esempio n. 1
0
//--------------------------------------------------------------------------
//Actually draw the map lines points and text.
//--------------------------------------------------------------------------
void
drawmapdata( void ( *mapform )( PLINT, PLFLT *, PLFLT * ), int shapetype, PLINT n, PLFLT *x, PLFLT *y, PLFLT dx, PLFLT dy, PLFLT just, const char *text )
{
    PLINT i;

    //do the transform if needed
    if ( mapform != NULL )
        ( *mapform )( n, x, y );

    if ( shapetype == SHPT_ARC )
        plline( n, x, y );
    else if ( shapetype == SHPT_POINT )
        for ( i = 0; i < n; ++i )
            plptex( x[i], y[i], dx, dy, just, text );
    else if ( shapetype == SHPT_POLYGON )
        plfill( n, x, y );
#ifdef HAVE_SHAPELIB
    else if ( shapetype == SHPT_ARCZ || shapetype == SHPT_ARCM )
        plline( n, x, y );
    else if ( shapetype == SHPT_POLYGON || shapetype == SHPT_POLYGONZ || shapetype == SHPT_POLYGONM )
        plfill( n, x, y );
    else if ( shapetype == SHPT_POINT || shapetype == SHPT_POINTM || shapetype == SHPT_POINTZ )
        for ( i = 0; i < n; ++i )
            plptex( x[i], y[i], dx, dy, just, text );
#endif //HAVE_SHAPELIB
}
Esempio n. 2
0
static void plstrip_legend(PLStrip *mystripc, int first)
{
    int i;
    PLFLT sc, dy;

/* draw legend */

    plgchr(&sc, &dy);
    sc = dy = dy/100;
    plwind(-0.01, 1.01, -0.01, 1.01);
    for (i=0; i<PEN; i++) {
	if (mystripc->npts[i] || first) {
	    plcol(mystripc->colline[i]);
	    pllsty(mystripc->styline[i]);
	    pljoin(mystripc->xlpos, mystripc->ylpos - sc,
		   mystripc->xlpos + 0.1, mystripc->ylpos - sc);
	    plcol(mystripc->collab);
	    plptex(mystripc->xlpos + 0.11, mystripc->ylpos - sc,
		   0., 0., 0, mystripc->legline[i]);
	    sc += dy;
	}
    }
    plwind(mystripc->xmin, mystripc->xmax, mystripc->ymin, mystripc->ymax);
    plflush();
}
Esempio n. 3
0
void plplot_text( plot_driver_type * driver , const plot_text_type * plot_text) {
  double just = 0.0;  // Left justified
  plschr( 0.0 , plot_text_get_font_scale( plot_text ) );
  plcol0( BLACK );
  
  plptex( plot_text_get_x( plot_text ) , 
          plot_text_get_y( plot_text ) , 
          1 , 0 , just , 
          plot_text_get_text( plot_text ));

  plschr( 0.0 , 1.0 );
}
Esempio n. 4
0
static void pl_drawcontlabel(PLFLT tpx, PLFLT tpy, char *flabel, PLFLT *distance, PLINT *lastindex)
{
    PLFLT currx_old, curry_old,	delta_x, delta_y;

    delta_x = plP_pcdcx(plsc->currx)-plP_pcdcx(plP_wcpcx(tpx));
    delta_y = plP_pcdcy(plsc->curry)-plP_pcdcy(plP_wcpcy(tpy));

    currx_old = plsc->currx;
    curry_old = plsc->curry;

    *distance += sqrt(delta_x*delta_x + delta_y*delta_y);

    plP_drawor(tpx, tpy);

    if ((int )(fabs(*distance/contlabel_space)) > *lastindex) {
	PLFLT scale, vec_x, vec_y, mx, my, dev_x, dev_y, off_x, off_y;

	vec_x = tpx-plP_pcwcx(currx_old);
	vec_y = tpy-plP_pcwcy(curry_old);

	/* Ensure labels appear the right way up */
	if (vec_x < 0) {
	    vec_x = -vec_x;
	    vec_y = -vec_y;
	}

	mx = (double )plsc->wpxscl/(double )plsc->phyxlen;
	my = (double )plsc->wpyscl/(double )plsc->phyylen;

	dev_x = -my*vec_y/mx;
	dev_y = mx*vec_x/my;

	scale = sqrt((mx*mx*dev_x*dev_x + my*my*dev_y*dev_y)/
		     (contlabel_offset*contlabel_offset));

	off_x = dev_x/scale;
	off_y = dev_y/scale;

	plptex(tpx+off_x, tpy+off_y, vec_x, vec_y, 0.5, flabel);
	plP_movwor(tpx, tpy);
	(*lastindex)++;

    } else
	plP_movwor(tpx, tpy);
}
Esempio n. 5
0
int
main( int argc, char *argv[] )
{
    int i, j;

    plparseopts( &argc, argv, PL_PARSE_FULL );

    plinit();

    pladv( 0 );
    plvpor( 0.0, 1.0, 0.0, 1.0 );
    plwind( 0.0, 1.0, 0.0, 1.0 );
    plcol0( 0 );
    plbox( "", 1.0, 0, "", 1.0, 0 );

    plscmap0n( 7 );
    plscmap0( red, green, blue, 7 );

    plschr( 0, 4.0 );
    plfont( 1 );

    for ( i = 0; i < 4; i++ )
    {
        plcol0( i + 1 );
        plfill( 4, px, py );

        for ( j = 0; j < 4; j++ )
            py [j] += 1.0 / 4.0;
    }

    plcol0( 0 );
    for ( i = 0; i < 12; i++ )
        plptex( sx [i], sy [i], 1.0, 0.0, 0.5, peace [i] );


    plend();
    exit( 0 );
}
Esempio n. 6
0
int
main( int argc, const char *argv[] )
{
/* Parse and process command line arguments */

    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

/* Initialize plplot */

    plinit();

    pladv( 0 );
    plvpor( 0.0, 1.0, 0.0, 1.0 );
    plwind( 0.0, 1.0, 0.0, 1.0 );
    plbox( "bc", 0.0, 0, "bc", 0.0, 0 );

    plsvpa( 50.0, 150.0, 50.0, 100.0 );
    plwind( 0.0, 1.0, 0.0, 1.0 );
    plbox( "bc", 0.0, 0, "bc", 0.0, 0 );
    plptex( 0.5, 0.5, 1.0, 0.0, 0.5, "BOX at (50,150,50,100)" );
    plend();
    exit( 0 );
}
Esempio n. 7
0
int
main(int argc, char *argv[])
{
    int i, j;
    PLFLT dtr, theta, dx, dy, r;
    char text[4];
    static PLFLT x0[361], y0[361];
    static PLFLT x[361], y[361];

    dtr = PI / 180.0;
    for (i = 0; i <= 360; i++) {
	x0[i] = cos(dtr * i);
	y0[i] = sin(dtr * i);
    }

/* Parse and process command line arguments */

    (void) plparseopts(&argc, argv, PL_PARSE_FULL);

/* Initialize plplot */

    plinit();

/* Set up viewport and window, but do not draw box */

    plenv(-1.3, 1.3, -1.3, 1.3, 1, -2);
    for (i = 1; i <= 10; i++) {
	for (j = 0; j <= 360; j++) {
	    x[j] = 0.1 * i * x0[j];
	    y[j] = 0.1 * i * y0[j];
	}

    /* Draw circles for polar grid */

	plline(361, x, y);
    }

    plcol0(2);
    for (i = 0; i <= 11; i++) {
	theta = 30.0 * i;
	dx = cos(dtr * theta);
	dy = sin(dtr * theta);

    /* Draw radial spokes for polar grid */

	pljoin(0.0, 0.0, dx, dy);
	sprintf(text, "%d", ROUND(theta));

    /* Write labels for angle */

/* Slightly off zero to avoid floating point logic flips at 90 and 270 deg. */
	if (dx >= -0.00001)
	    plptex(dx, dy, dx, dy, -0.15, text);
	else
	    plptex(dx, dy, -dx, -dy, 1.15, text);
    }

/* Draw the graph */

    for (i = 0; i <= 360; i++) {
	r = sin(dtr * (5 * i));
	x[i] = x0[i] * r;
	y[i] = y0[i] * r;
    }
    plcol0(3);
    plline(361, x, y);

    plcol0(4);
    plmtex("t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh");

/* Close the plot at end */

    plend();
    exit(0);
}
Esempio n. 8
0
void
plot1( int type, const char *x_label, const char *y_label, const char *alty_label,
       const char * legend_text[], const char *title_label, const char *line_label )
{
    int          i;
    static PLFLT freql[101], ampl[101], phase[101];
    PLFLT        f0, freq;
    PLINT        nlegend = 2;
    PLINT        opt_array[2];
    PLINT        text_colors[2];
    PLINT        line_colors[2];
    PLINT        line_styles[2];
    PLFLT        line_widths[2];
    PLINT        symbol_numbers[2], symbol_colors[2];
    PLFLT        symbol_scales[2];
    const char   *symbols[2];
    PLFLT        legend_width, legend_height;


    pladv( 0 );

// Set up data for log plot

    f0 = 1.0;
    for ( i = 0; i <= 100; i++ )
    {
        freql[i] = -2.0 + i / 20.0;
        freq     = pow( 10.0, freql[i] );
        ampl[i]  = 20.0 * log10( 1.0 / sqrt( 1.0 + pow( ( freq / f0 ), 2. ) ) );
        phase[i] = -( 180.0 / M_PI ) * atan( freq / f0 );
    }

    plvpor( 0.15, 0.85, 0.1, 0.9 );
    plwind( -2.0, 3.0, -80.0, 0.0 );

// Try different axis and labelling styles.

    plcol0( 1 );
    switch ( type )
    {
    case 0:
        plbox( "bclnst", 0.0, 0, "bnstv", 0.0, 0 );
        break;
    case 1:
        plbox( "bcfghlnst", 0.0, 0, "bcghnstv", 0.0, 0 );
        break;
    }

// Plot ampl vs freq

    plcol0( 2 );
    plline( 101, freql, ampl );
    plcol0( 2 );
    plptex( 1.6, -30.0, 1.0, -20.0, 0.5, line_label );

// Put labels on

    plcol0( 1 );
    plmtex( "b", 3.2, 0.5, 0.5, x_label );
    plmtex( "t", 2.0, 0.5, 0.5, title_label );
    plcol0( 2 );
    plmtex( "l", 5.0, 0.5, 0.5, y_label );

// For the gridless case, put phase vs freq on same plot

    if ( type == 0 )
    {
        plcol0( 1 );
        plwind( -2.0, 3.0, -100.0, 0.0 );
        plbox( "", 0.0, 0, "cmstv", 30.0, 3 );
        plcol0( 3 );
        plline( 101, freql, phase );
        plstring( 101, freql, phase, "#(728)" );
        plcol0( 3 );
        plmtex( "r", 5.0, 0.5, 0.5, alty_label );
    }
    // Draw a legend
    // First legend entry.
    opt_array[0]   = PL_LEGEND_LINE;
    text_colors[0] = 2;
    line_colors[0] = 2;
    line_styles[0] = 1;
    line_widths[0] = 1.;
    // note from the above opt_array the first symbol (and box) indices
    // do not have to be specified

    // Second legend entry.
    opt_array[1]      = PL_LEGEND_LINE | PL_LEGEND_SYMBOL;
    text_colors[1]    = 3;
    line_colors[1]    = 3;
    line_styles[1]    = 1;
    line_widths[1]    = 1.;
    symbol_colors[1]  = 3;
    symbol_scales[1]  = 1.;
    symbol_numbers[1] = 4;
    symbols[1]        = "#(728)";
    // from the above opt_arrays we can completely ignore everything
    // to do with boxes.

    plscol0a( 15, 32, 32, 32, 0.70 );
    pllegend( &legend_width, &legend_height,
        PL_LEGEND_BACKGROUND | PL_LEGEND_BOUNDING_BOX, 0,
        0.0, 0.0, 0.10, 15,
        1, 1, 0, 0,
        nlegend, opt_array,
        1.0, 1.0, 2.0,
        1., text_colors, (const char **) legend_text,
        NULL, NULL, NULL, NULL,
        line_colors, line_styles, line_widths,
        symbol_colors, symbol_scales, symbol_numbers, (const char **) symbols );
}
Esempio n. 9
0
int
main( int argc, const char *argv[] )
{
    int          i;
    PLFLT        dtr, theta, dx, dy, r, offset;
    char         text[4];
    static PLFLT x0[361], y0[361];
    static PLFLT x[361], y[361];

    dtr = M_PI / 180.0;
    for ( i = 0; i <= 360; i++ )
    {
        x0[i] = cos( dtr * i );
        y0[i] = sin( dtr * i );
    }

// Parse and process command line arguments

    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

// Set orientation to portrait - note not all device drivers
// support this, in particular most interactive drivers do not
    plsori( 1 );

// Initialize plplot

    plinit();

// Set up viewport and window, but do not draw box

    plenv( -1.3, 1.3, -1.3, 1.3, 1, -2 );
    // Draw circles for polar grid
    for ( i = 1; i <= 10; i++ )
    {
        plarc( 0.0, 0.0, 0.1 * i, 0.1 * i, 0.0, 360.0, 0.0, 0 );
    }

    plcol0( 2 );
    for ( i = 0; i <= 11; i++ )
    {
        theta = 30.0 * i;
        dx    = cos( dtr * theta );
        dy    = sin( dtr * theta );

        // Draw radial spokes for polar grid

        pljoin( 0.0, 0.0, dx, dy );
        sprintf( text, "%d", ROUND( theta ) );

        // Write labels for angle

        if ( theta < 9.99 )
        {
            offset = 0.45;
        }
        else if ( theta < 99.9 )
        {
            offset = 0.30;
        }
        else
        {
            offset = 0.15;
        }

// Slightly off zero to avoid floating point logic flips at 90 and 270 deg.
        if ( dx >= -0.00001 )
            plptex( dx, dy, dx, dy, -offset, text );
        else
            plptex( dx, dy, -dx, -dy, 1. + offset, text );
    }

// Draw the graph

    for ( i = 0; i <= 360; i++ )
    {
        r    = sin( dtr * ( 5 * i ) );
        x[i] = x0[i] * r;
        y[i] = y0[i] * r;
    }
    plcol0( 3 );
    plline( 361, x, y );

    plcol0( 4 );
    plmtex( "t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh" );

// Close the plot at end

    plend();
    exit( 0 );
}
Esempio n. 10
0
int
main( int argc, const char *argv[] )
{
    int          i, j, dthet, theta0, theta1, theta;
    PLFLT        just, dx, dy;
    static PLFLT x[500], y[500], per[5];

    per[0] = 10.;
    per[1] = 32.;
    per[2] = 12.;
    per[3] = 30.;
    per[4] = 16.;

// Parse and process command line arguments

    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

// Initialize plplot

    plinit();

    pladv( 0 );
    // Ensure window has aspect ratio of one so circle is
    // plotted as a circle.
    plvasp( 1.0 );
    plwind( 0., 10., 0., 10. );
    // plenv(0., 10., 0., 10., 1, -2);
    plcol0( 2 );
    // n.b. all theta quantities scaled by 2*M_PI/500 to be integers to avoid
    // floating point logic problems.
    theta0 = 0;
    dthet  = 1;
    for ( i = 0; i <= 4; i++ )
    {
        j      = 0;
        x[j]   = 5.;
        y[j++] = 5.;
        // n.b. the theta quantities multiplied by 2*M_PI/500 afterward so
        // in fact per is interpreted as a percentage.
        theta1 = (int) ( theta0 + 5 * per[i] );
        if ( i == 4 )
            theta1 = 500;
        for ( theta = theta0; theta <= theta1; theta += dthet )
        {
            x[j]   = 5 + 3 * cos( ( 2. * M_PI / 500. ) * theta );
            y[j++] = 5 + 3 * sin( ( 2. * M_PI / 500. ) * theta );
        }
        plcol0( i + 1 );
        plpsty( ( i + 3 ) % 8 + 1 );
        plfill( j, x, y );
        plcol0( 1 );
        plline( j, x, y );
        just = ( 2. * M_PI / 500. ) * ( theta0 + theta1 ) / 2.;
        dx   = .25 * cos( just );
        dy   = .25 * sin( just );
        if ( ( theta0 + theta1 ) < 250 || ( theta0 + theta1 ) > 750 )
            just = 0.;
        else
            just = 1.;

        plptex( ( x[j / 2] + dx ), ( y[j / 2] + dy ), 1.0, 0.0, just, text[i] );
        theta0 = theta - dthet;
    }
    plfont( 2 );
    plschr( 0., 1.3 );
    plptex( 5.0, 9.0, 1.0, 0.0, 0.5, "Percentage of Sales" );

// Don't forget to call PLEND to finish off!

    plend();
    exit( 0 );
}
Esempio n. 11
0
void
plot4(void)
{
    int i, j;
    PLFLT dtr, theta, dx, dy, r;
    char text[3];
    PLFLT x0[361], y0[361];
    PLFLT x[361], y[361];

    dtr = PI / 180.0;
    for (i = 0; i <= 360; i++) {
	x0[i] = cos(dtr * i);
	y0[i] = sin(dtr * i);
    }

/* Set up viewport and window, but do not draw box */

    plenv(-1.3, 1.3, -1.3, 1.3, 1, -2);
    for (i = 1; i <= 10; i++) {
	for (j = 0; j <= 360; j++) {
	    x[j] = 0.1 * i * x0[j];
	    y[j] = 0.1 * i * y0[j];
	}

/* Draw circles for polar grid */

	plline(361, x, y);
    }

    plcol0(2);
    for (i = 0; i <= 11; i++) {
	theta = 30.0 * i;
	dx = cos(dtr * theta);
	dy = sin(dtr * theta);

/* Draw radial spokes for polar grid */

	pljoin(0.0, 0.0, dx, dy);
	sprintf(text, "%d", ROUND(theta));

/* Write labels for angle */

/* Slightly off zero to avoid floating point logic flips at 90 and 270 deg. */
	if (dx >= -0.00001)
	    plptex(dx, dy, dx, dy, -0.15, text);
	else
	    plptex(dx, dy, -dx, -dy, 1.15, text);
    }

/* Draw the graph */

    for (i = 0; i <= 360; i++) {
	r = sin(dtr * (5 * i));
	x[i] = x0[i] * r;
	y[i] = y0[i] * r;
    }
    plcol0(3);
    plline(361, x, y);

    plcol0(4);
    plmtex("t", 2.0, 0.5, 0.5,
	   "#frPLplot Example 3 - r(#gh)=sin 5#gh");
    plflush();
}
Esempio n. 12
0
int
main( int argc, char **argv )
{
    PLFLT       minx, maxx, miny, maxy;
    PLFLT       x, y;
    //variables for the shapelib example
    const PLINT nbeachareas    = 2;
    const PLINT beachareas[]   = { 23, 24 };
    const PLINT nwoodlandareas = 94;
    PLINT       woodlandareas[94];
    const PLINT nshingleareas  = 22;
    const PLINT shingleareas[] = { 0, 1, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 217, 2424, 2425, 2426, 2427, 2428, 2491, 2577 };
    const PLINT ncragareas     = 2024;
    PLINT       cragareas[2024];
    const PLINT majorroads[] = { 33, 48, 71, 83, 89, 90, 101, 102, 111 };
    int         i;

// Parse and process command line arguments

    (void) plparseopts( &argc, argv, PL_PARSE_FULL );

// Longitude (x) and latitude (y)

    miny = -70;
    maxy = 80;

    plinit();

// Cartesian plots
// Most of world

    minx = -170;
    maxx = minx + 360;

    // Setup a custom latitude and longitude-based scaling function.
    plslabelfunc( geolocation_labeler, NULL );

    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, 70 );
    plmap( NULL, "usaglobe", minx, maxx, miny, maxy );

// The Americas

    minx = 190;
    maxx = 340;

    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, 70 );
    plmap( NULL, "usaglobe", minx, maxx, miny, maxy );

    // Clear the labeling function
    plslabelfunc( NULL, NULL );

// Polar, Northern hemisphere

    minx = 0;
    maxx = 360;

    plenv( -75., 75., -75., 75., 1, -1 );
    plmap( mapform19, "globe", minx, maxx, miny, maxy );

    pllsty( 2 );
    plmeridians( mapform19, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 );

// Polar, Northern hemisphere, this time with a PLplot-wide transform

    minx = 0;
    maxx = 360;

    plstransform( map_transform, NULL );

    pllsty( 1 );
    plenv( -75., 75., -75., 75., 1, -1 );
    // No need to set the map transform here as the global transform will be
    // used.
    plmap( NULL, "globe", minx, maxx, miny, maxy );

    pllsty( 2 );
    plmeridians( NULL, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 );

    // Show Baltimore, MD on the map
    plcol0( 2 );
    plssym( 0.0, 2.0 );
    x = -76.6125;
    y = 39.2902778;
    plpoin( 1, &x, &y, 18 );
    plssym( 0.0, 1.0 );
    plptex( -76.6125, 43.0, 0.0, 0.0, 0.0, "Baltimore, MD" );

    // For C, this is how the global transform is cleared
    plstransform( NULL, NULL );

    // An example using shapefiles. The shapefiles used are from Ordnance Survey, UK.
    // These were chosen because they provide shapefiles for small grid boxes which
    // are easilly manageable for this demo.

    pllsty( 1 );


    minx = 240570;
    maxx = 621109;
    miny = 87822;
    maxy = 722770;
    plscol0( 0, 255, 255, 255 );
    plscol0( 1, 0, 0, 0 );
    plscol0( 2, 150, 150, 150 );
    plscol0( 3, 0, 50, 200 );
    plscol0( 4, 50, 50, 50 );
    plscol0( 5, 150, 0, 0 );
    plscol0( 6, 100, 100, 255 );


    minx = 265000;
    maxx = 270000;
    miny = 145000;
    maxy = 150000;
    plscol0( 0, 255, 255, 255 ); //white
    plscol0( 1, 0, 0, 0 );       //black
    plscol0( 2, 255, 200, 0 );   //yelow for sand
    plscol0( 3, 60, 230, 60 );   // green for woodland
    plscol0( 4, 210, 120, 60 );  //brown for contours
    plscol0( 5, 150, 0, 0 );     //red for major roads
    plscol0( 6, 180, 180, 255 ); //pale blue for water
    plscol0( 7, 100, 100, 100 ); //pale grey for shingle or boulders
    plscol0( 8, 100, 100, 100 ); //dark grey for custom polygons - generally crags


    plcol0( 1 );
    plenv( minx, maxx, miny, maxy, 1, -1 );
    pllab( "", "", "Martinhoe CP, Exmoor National Park, UK (shapelib only)" );


    //Beach
    plcol0( 2 );
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, beachareas, nbeachareas );

    //woodland
    plcol0( 3 );
    for ( i = 0; i < nwoodlandareas; ++i )
        woodlandareas[i] = i + 218;
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, (PLINT_VECTOR) woodlandareas, nwoodlandareas );

    //shingle or boulders
    plcol0( 7 );
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, shingleareas, nshingleareas );

    //crags
    plcol0( 8 );
    for ( i = 0; i < ncragareas; ++i )
        cragareas[i] = i + 325;
    plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, (PLINT_VECTOR) cragareas, ncragareas );

    //draw contours, we need to separate contours from high/low coastline
    //draw_contours(pls, "ss/SS64_line", 433, 20, 4, 3, minx, maxx, miny, maxy );
    plcol0( 4 );
    plmapline( NULL, "ss/ss64ne_Height_Contours", minx, maxx, miny, maxy, NULL, 0 );

    //draw the sea and surface water
    plwidth( 0.0 );
    plcol0( 6 );
    plmapfill( NULL, "ss/ss64ne_Water_Area", minx, maxx, miny, maxy, NULL, 0 );
    plwidth( 2.0 );
    plmapfill( NULL, "ss/ss64ne_Water_Line", minx, maxx, miny, maxy, NULL, 0 );

    //draw the roads, first with black and then thinner with colour to give an
    //an outlined appearance
    plwidth( 5.0 );
    plcol0( 1 );
    plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, NULL, 0 );
    plwidth( 3.0 );
    plcol0( 0 );
    plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, NULL, 0 );
    plcol0( 5 );
    plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, majorroads, 9 );

    //draw buildings
    plwidth( 1.0 );
    plcol0( 1 );
    plmapfill( NULL, "ss/ss64ne_Building_Area", minx, maxx, miny, maxy, NULL, 0 );

    //labels
    plsfci( 0x80000100 );
    plschr( 0, 0.8 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "MARTINHOE CP", minx, maxx, miny, maxy, 202 );
    plschr( 0, 0.7 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Heale\nDown", minx, maxx, miny, maxy, 13 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "South\nDown", minx, maxx, miny, maxy, 34 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Martinhoe\nCommon", minx, maxx, miny, maxy, 42 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Woody Bay", minx, maxx, miny, maxy, 211 );
    plschr( 0, 0.6 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Mill Wood", minx, maxx, miny, maxy, 16 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Heale Wood", minx, maxx, miny, maxy, 17 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 1.0, "Bodley", minx, maxx, miny, maxy, 31 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.0, "Martinhoe", minx, maxx, miny, maxy, 37 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Woolhanger\nCommon", minx, maxx, miny, maxy, 60 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "West Ilkerton\nCommon", minx, maxx, miny, maxy, 61 );
    plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Caffyns\nHeanton\nDown", minx, maxx, miny, maxy, 62 );

    plend();
    exit( 0 );
}