//-------------------------------------------------------------------------- //Actually draw the map lines points and text. //-------------------------------------------------------------------------- void drawmapdata( void ( *mapform )( PLINT, PLFLT *, PLFLT * ), int shapetype, PLINT n, PLFLT *x, PLFLT *y, PLFLT dx, PLFLT dy, PLFLT just, const char *text ) { PLINT i; //do the transform if needed if ( mapform != NULL ) ( *mapform )( n, x, y ); if ( shapetype == SHPT_ARC ) plline( n, x, y ); else if ( shapetype == SHPT_POINT ) for ( i = 0; i < n; ++i ) plptex( x[i], y[i], dx, dy, just, text ); else if ( shapetype == SHPT_POLYGON ) plfill( n, x, y ); #ifdef HAVE_SHAPELIB else if ( shapetype == SHPT_ARCZ || shapetype == SHPT_ARCM ) plline( n, x, y ); else if ( shapetype == SHPT_POLYGON || shapetype == SHPT_POLYGONZ || shapetype == SHPT_POLYGONM ) plfill( n, x, y ); else if ( shapetype == SHPT_POINT || shapetype == SHPT_POINTM || shapetype == SHPT_POINTZ ) for ( i = 0; i < n; ++i ) plptex( x[i], y[i], dx, dy, just, text ); #endif //HAVE_SHAPELIB }
static void plstrip_legend(PLStrip *mystripc, int first) { int i; PLFLT sc, dy; /* draw legend */ plgchr(&sc, &dy); sc = dy = dy/100; plwind(-0.01, 1.01, -0.01, 1.01); for (i=0; i<PEN; i++) { if (mystripc->npts[i] || first) { plcol(mystripc->colline[i]); pllsty(mystripc->styline[i]); pljoin(mystripc->xlpos, mystripc->ylpos - sc, mystripc->xlpos + 0.1, mystripc->ylpos - sc); plcol(mystripc->collab); plptex(mystripc->xlpos + 0.11, mystripc->ylpos - sc, 0., 0., 0, mystripc->legline[i]); sc += dy; } } plwind(mystripc->xmin, mystripc->xmax, mystripc->ymin, mystripc->ymax); plflush(); }
void plplot_text( plot_driver_type * driver , const plot_text_type * plot_text) { double just = 0.0; // Left justified plschr( 0.0 , plot_text_get_font_scale( plot_text ) ); plcol0( BLACK ); plptex( plot_text_get_x( plot_text ) , plot_text_get_y( plot_text ) , 1 , 0 , just , plot_text_get_text( plot_text )); plschr( 0.0 , 1.0 ); }
static void pl_drawcontlabel(PLFLT tpx, PLFLT tpy, char *flabel, PLFLT *distance, PLINT *lastindex) { PLFLT currx_old, curry_old, delta_x, delta_y; delta_x = plP_pcdcx(plsc->currx)-plP_pcdcx(plP_wcpcx(tpx)); delta_y = plP_pcdcy(plsc->curry)-plP_pcdcy(plP_wcpcy(tpy)); currx_old = plsc->currx; curry_old = plsc->curry; *distance += sqrt(delta_x*delta_x + delta_y*delta_y); plP_drawor(tpx, tpy); if ((int )(fabs(*distance/contlabel_space)) > *lastindex) { PLFLT scale, vec_x, vec_y, mx, my, dev_x, dev_y, off_x, off_y; vec_x = tpx-plP_pcwcx(currx_old); vec_y = tpy-plP_pcwcy(curry_old); /* Ensure labels appear the right way up */ if (vec_x < 0) { vec_x = -vec_x; vec_y = -vec_y; } mx = (double )plsc->wpxscl/(double )plsc->phyxlen; my = (double )plsc->wpyscl/(double )plsc->phyylen; dev_x = -my*vec_y/mx; dev_y = mx*vec_x/my; scale = sqrt((mx*mx*dev_x*dev_x + my*my*dev_y*dev_y)/ (contlabel_offset*contlabel_offset)); off_x = dev_x/scale; off_y = dev_y/scale; plptex(tpx+off_x, tpy+off_y, vec_x, vec_y, 0.5, flabel); plP_movwor(tpx, tpy); (*lastindex)++; } else plP_movwor(tpx, tpy); }
int main( int argc, char *argv[] ) { int i, j; plparseopts( &argc, argv, PL_PARSE_FULL ); plinit(); pladv( 0 ); plvpor( 0.0, 1.0, 0.0, 1.0 ); plwind( 0.0, 1.0, 0.0, 1.0 ); plcol0( 0 ); plbox( "", 1.0, 0, "", 1.0, 0 ); plscmap0n( 7 ); plscmap0( red, green, blue, 7 ); plschr( 0, 4.0 ); plfont( 1 ); for ( i = 0; i < 4; i++ ) { plcol0( i + 1 ); plfill( 4, px, py ); for ( j = 0; j < 4; j++ ) py [j] += 1.0 / 4.0; } plcol0( 0 ); for ( i = 0; i < 12; i++ ) plptex( sx [i], sy [i], 1.0, 0.0, 0.5, peace [i] ); plend(); exit( 0 ); }
int main( int argc, const char *argv[] ) { /* Parse and process command line arguments */ (void) plparseopts( &argc, argv, PL_PARSE_FULL ); /* Initialize plplot */ plinit(); pladv( 0 ); plvpor( 0.0, 1.0, 0.0, 1.0 ); plwind( 0.0, 1.0, 0.0, 1.0 ); plbox( "bc", 0.0, 0, "bc", 0.0, 0 ); plsvpa( 50.0, 150.0, 50.0, 100.0 ); plwind( 0.0, 1.0, 0.0, 1.0 ); plbox( "bc", 0.0, 0, "bc", 0.0, 0 ); plptex( 0.5, 0.5, 1.0, 0.0, 0.5, "BOX at (50,150,50,100)" ); plend(); exit( 0 ); }
int main(int argc, char *argv[]) { int i, j; PLFLT dtr, theta, dx, dy, r; char text[4]; static PLFLT x0[361], y0[361]; static PLFLT x[361], y[361]; dtr = PI / 180.0; for (i = 0; i <= 360; i++) { x0[i] = cos(dtr * i); y0[i] = sin(dtr * i); } /* Parse and process command line arguments */ (void) plparseopts(&argc, argv, PL_PARSE_FULL); /* Initialize plplot */ plinit(); /* Set up viewport and window, but do not draw box */ plenv(-1.3, 1.3, -1.3, 1.3, 1, -2); for (i = 1; i <= 10; i++) { for (j = 0; j <= 360; j++) { x[j] = 0.1 * i * x0[j]; y[j] = 0.1 * i * y0[j]; } /* Draw circles for polar grid */ plline(361, x, y); } plcol0(2); for (i = 0; i <= 11; i++) { theta = 30.0 * i; dx = cos(dtr * theta); dy = sin(dtr * theta); /* Draw radial spokes for polar grid */ pljoin(0.0, 0.0, dx, dy); sprintf(text, "%d", ROUND(theta)); /* Write labels for angle */ /* Slightly off zero to avoid floating point logic flips at 90 and 270 deg. */ if (dx >= -0.00001) plptex(dx, dy, dx, dy, -0.15, text); else plptex(dx, dy, -dx, -dy, 1.15, text); } /* Draw the graph */ for (i = 0; i <= 360; i++) { r = sin(dtr * (5 * i)); x[i] = x0[i] * r; y[i] = y0[i] * r; } plcol0(3); plline(361, x, y); plcol0(4); plmtex("t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh"); /* Close the plot at end */ plend(); exit(0); }
void plot1( int type, const char *x_label, const char *y_label, const char *alty_label, const char * legend_text[], const char *title_label, const char *line_label ) { int i; static PLFLT freql[101], ampl[101], phase[101]; PLFLT f0, freq; PLINT nlegend = 2; PLINT opt_array[2]; PLINT text_colors[2]; PLINT line_colors[2]; PLINT line_styles[2]; PLFLT line_widths[2]; PLINT symbol_numbers[2], symbol_colors[2]; PLFLT symbol_scales[2]; const char *symbols[2]; PLFLT legend_width, legend_height; pladv( 0 ); // Set up data for log plot f0 = 1.0; for ( i = 0; i <= 100; i++ ) { freql[i] = -2.0 + i / 20.0; freq = pow( 10.0, freql[i] ); ampl[i] = 20.0 * log10( 1.0 / sqrt( 1.0 + pow( ( freq / f0 ), 2. ) ) ); phase[i] = -( 180.0 / M_PI ) * atan( freq / f0 ); } plvpor( 0.15, 0.85, 0.1, 0.9 ); plwind( -2.0, 3.0, -80.0, 0.0 ); // Try different axis and labelling styles. plcol0( 1 ); switch ( type ) { case 0: plbox( "bclnst", 0.0, 0, "bnstv", 0.0, 0 ); break; case 1: plbox( "bcfghlnst", 0.0, 0, "bcghnstv", 0.0, 0 ); break; } // Plot ampl vs freq plcol0( 2 ); plline( 101, freql, ampl ); plcol0( 2 ); plptex( 1.6, -30.0, 1.0, -20.0, 0.5, line_label ); // Put labels on plcol0( 1 ); plmtex( "b", 3.2, 0.5, 0.5, x_label ); plmtex( "t", 2.0, 0.5, 0.5, title_label ); plcol0( 2 ); plmtex( "l", 5.0, 0.5, 0.5, y_label ); // For the gridless case, put phase vs freq on same plot if ( type == 0 ) { plcol0( 1 ); plwind( -2.0, 3.0, -100.0, 0.0 ); plbox( "", 0.0, 0, "cmstv", 30.0, 3 ); plcol0( 3 ); plline( 101, freql, phase ); plstring( 101, freql, phase, "#(728)" ); plcol0( 3 ); plmtex( "r", 5.0, 0.5, 0.5, alty_label ); } // Draw a legend // First legend entry. opt_array[0] = PL_LEGEND_LINE; text_colors[0] = 2; line_colors[0] = 2; line_styles[0] = 1; line_widths[0] = 1.; // note from the above opt_array the first symbol (and box) indices // do not have to be specified // Second legend entry. opt_array[1] = PL_LEGEND_LINE | PL_LEGEND_SYMBOL; text_colors[1] = 3; line_colors[1] = 3; line_styles[1] = 1; line_widths[1] = 1.; symbol_colors[1] = 3; symbol_scales[1] = 1.; symbol_numbers[1] = 4; symbols[1] = "#(728)"; // from the above opt_arrays we can completely ignore everything // to do with boxes. plscol0a( 15, 32, 32, 32, 0.70 ); pllegend( &legend_width, &legend_height, PL_LEGEND_BACKGROUND | PL_LEGEND_BOUNDING_BOX, 0, 0.0, 0.0, 0.10, 15, 1, 1, 0, 0, nlegend, opt_array, 1.0, 1.0, 2.0, 1., text_colors, (const char **) legend_text, NULL, NULL, NULL, NULL, line_colors, line_styles, line_widths, symbol_colors, symbol_scales, symbol_numbers, (const char **) symbols ); }
int main( int argc, const char *argv[] ) { int i; PLFLT dtr, theta, dx, dy, r, offset; char text[4]; static PLFLT x0[361], y0[361]; static PLFLT x[361], y[361]; dtr = M_PI / 180.0; for ( i = 0; i <= 360; i++ ) { x0[i] = cos( dtr * i ); y0[i] = sin( dtr * i ); } // Parse and process command line arguments (void) plparseopts( &argc, argv, PL_PARSE_FULL ); // Set orientation to portrait - note not all device drivers // support this, in particular most interactive drivers do not plsori( 1 ); // Initialize plplot plinit(); // Set up viewport and window, but do not draw box plenv( -1.3, 1.3, -1.3, 1.3, 1, -2 ); // Draw circles for polar grid for ( i = 1; i <= 10; i++ ) { plarc( 0.0, 0.0, 0.1 * i, 0.1 * i, 0.0, 360.0, 0.0, 0 ); } plcol0( 2 ); for ( i = 0; i <= 11; i++ ) { theta = 30.0 * i; dx = cos( dtr * theta ); dy = sin( dtr * theta ); // Draw radial spokes for polar grid pljoin( 0.0, 0.0, dx, dy ); sprintf( text, "%d", ROUND( theta ) ); // Write labels for angle if ( theta < 9.99 ) { offset = 0.45; } else if ( theta < 99.9 ) { offset = 0.30; } else { offset = 0.15; } // Slightly off zero to avoid floating point logic flips at 90 and 270 deg. if ( dx >= -0.00001 ) plptex( dx, dy, dx, dy, -offset, text ); else plptex( dx, dy, -dx, -dy, 1. + offset, text ); } // Draw the graph for ( i = 0; i <= 360; i++ ) { r = sin( dtr * ( 5 * i ) ); x[i] = x0[i] * r; y[i] = y0[i] * r; } plcol0( 3 ); plline( 361, x, y ); plcol0( 4 ); plmtex( "t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh" ); // Close the plot at end plend(); exit( 0 ); }
int main( int argc, const char *argv[] ) { int i, j, dthet, theta0, theta1, theta; PLFLT just, dx, dy; static PLFLT x[500], y[500], per[5]; per[0] = 10.; per[1] = 32.; per[2] = 12.; per[3] = 30.; per[4] = 16.; // Parse and process command line arguments (void) plparseopts( &argc, argv, PL_PARSE_FULL ); // Initialize plplot plinit(); pladv( 0 ); // Ensure window has aspect ratio of one so circle is // plotted as a circle. plvasp( 1.0 ); plwind( 0., 10., 0., 10. ); // plenv(0., 10., 0., 10., 1, -2); plcol0( 2 ); // n.b. all theta quantities scaled by 2*M_PI/500 to be integers to avoid // floating point logic problems. theta0 = 0; dthet = 1; for ( i = 0; i <= 4; i++ ) { j = 0; x[j] = 5.; y[j++] = 5.; // n.b. the theta quantities multiplied by 2*M_PI/500 afterward so // in fact per is interpreted as a percentage. theta1 = (int) ( theta0 + 5 * per[i] ); if ( i == 4 ) theta1 = 500; for ( theta = theta0; theta <= theta1; theta += dthet ) { x[j] = 5 + 3 * cos( ( 2. * M_PI / 500. ) * theta ); y[j++] = 5 + 3 * sin( ( 2. * M_PI / 500. ) * theta ); } plcol0( i + 1 ); plpsty( ( i + 3 ) % 8 + 1 ); plfill( j, x, y ); plcol0( 1 ); plline( j, x, y ); just = ( 2. * M_PI / 500. ) * ( theta0 + theta1 ) / 2.; dx = .25 * cos( just ); dy = .25 * sin( just ); if ( ( theta0 + theta1 ) < 250 || ( theta0 + theta1 ) > 750 ) just = 0.; else just = 1.; plptex( ( x[j / 2] + dx ), ( y[j / 2] + dy ), 1.0, 0.0, just, text[i] ); theta0 = theta - dthet; } plfont( 2 ); plschr( 0., 1.3 ); plptex( 5.0, 9.0, 1.0, 0.0, 0.5, "Percentage of Sales" ); // Don't forget to call PLEND to finish off! plend(); exit( 0 ); }
void plot4(void) { int i, j; PLFLT dtr, theta, dx, dy, r; char text[3]; PLFLT x0[361], y0[361]; PLFLT x[361], y[361]; dtr = PI / 180.0; for (i = 0; i <= 360; i++) { x0[i] = cos(dtr * i); y0[i] = sin(dtr * i); } /* Set up viewport and window, but do not draw box */ plenv(-1.3, 1.3, -1.3, 1.3, 1, -2); for (i = 1; i <= 10; i++) { for (j = 0; j <= 360; j++) { x[j] = 0.1 * i * x0[j]; y[j] = 0.1 * i * y0[j]; } /* Draw circles for polar grid */ plline(361, x, y); } plcol0(2); for (i = 0; i <= 11; i++) { theta = 30.0 * i; dx = cos(dtr * theta); dy = sin(dtr * theta); /* Draw radial spokes for polar grid */ pljoin(0.0, 0.0, dx, dy); sprintf(text, "%d", ROUND(theta)); /* Write labels for angle */ /* Slightly off zero to avoid floating point logic flips at 90 and 270 deg. */ if (dx >= -0.00001) plptex(dx, dy, dx, dy, -0.15, text); else plptex(dx, dy, -dx, -dy, 1.15, text); } /* Draw the graph */ for (i = 0; i <= 360; i++) { r = sin(dtr * (5 * i)); x[i] = x0[i] * r; y[i] = y0[i] * r; } plcol0(3); plline(361, x, y); plcol0(4); plmtex("t", 2.0, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh"); plflush(); }
int main( int argc, char **argv ) { PLFLT minx, maxx, miny, maxy; PLFLT x, y; //variables for the shapelib example const PLINT nbeachareas = 2; const PLINT beachareas[] = { 23, 24 }; const PLINT nwoodlandareas = 94; PLINT woodlandareas[94]; const PLINT nshingleareas = 22; const PLINT shingleareas[] = { 0, 1, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 217, 2424, 2425, 2426, 2427, 2428, 2491, 2577 }; const PLINT ncragareas = 2024; PLINT cragareas[2024]; const PLINT majorroads[] = { 33, 48, 71, 83, 89, 90, 101, 102, 111 }; int i; // Parse and process command line arguments (void) plparseopts( &argc, argv, PL_PARSE_FULL ); // Longitude (x) and latitude (y) miny = -70; maxy = 80; plinit(); // Cartesian plots // Most of world minx = -170; maxx = minx + 360; // Setup a custom latitude and longitude-based scaling function. plslabelfunc( geolocation_labeler, NULL ); plcol0( 1 ); plenv( minx, maxx, miny, maxy, 1, 70 ); plmap( NULL, "usaglobe", minx, maxx, miny, maxy ); // The Americas minx = 190; maxx = 340; plcol0( 1 ); plenv( minx, maxx, miny, maxy, 1, 70 ); plmap( NULL, "usaglobe", minx, maxx, miny, maxy ); // Clear the labeling function plslabelfunc( NULL, NULL ); // Polar, Northern hemisphere minx = 0; maxx = 360; plenv( -75., 75., -75., 75., 1, -1 ); plmap( mapform19, "globe", minx, maxx, miny, maxy ); pllsty( 2 ); plmeridians( mapform19, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 ); // Polar, Northern hemisphere, this time with a PLplot-wide transform minx = 0; maxx = 360; plstransform( map_transform, NULL ); pllsty( 1 ); plenv( -75., 75., -75., 75., 1, -1 ); // No need to set the map transform here as the global transform will be // used. plmap( NULL, "globe", minx, maxx, miny, maxy ); pllsty( 2 ); plmeridians( NULL, 10.0, 10.0, 0.0, 360.0, -10.0, 80.0 ); // Show Baltimore, MD on the map plcol0( 2 ); plssym( 0.0, 2.0 ); x = -76.6125; y = 39.2902778; plpoin( 1, &x, &y, 18 ); plssym( 0.0, 1.0 ); plptex( -76.6125, 43.0, 0.0, 0.0, 0.0, "Baltimore, MD" ); // For C, this is how the global transform is cleared plstransform( NULL, NULL ); // An example using shapefiles. The shapefiles used are from Ordnance Survey, UK. // These were chosen because they provide shapefiles for small grid boxes which // are easilly manageable for this demo. pllsty( 1 ); minx = 240570; maxx = 621109; miny = 87822; maxy = 722770; plscol0( 0, 255, 255, 255 ); plscol0( 1, 0, 0, 0 ); plscol0( 2, 150, 150, 150 ); plscol0( 3, 0, 50, 200 ); plscol0( 4, 50, 50, 50 ); plscol0( 5, 150, 0, 0 ); plscol0( 6, 100, 100, 255 ); minx = 265000; maxx = 270000; miny = 145000; maxy = 150000; plscol0( 0, 255, 255, 255 ); //white plscol0( 1, 0, 0, 0 ); //black plscol0( 2, 255, 200, 0 ); //yelow for sand plscol0( 3, 60, 230, 60 ); // green for woodland plscol0( 4, 210, 120, 60 ); //brown for contours plscol0( 5, 150, 0, 0 ); //red for major roads plscol0( 6, 180, 180, 255 ); //pale blue for water plscol0( 7, 100, 100, 100 ); //pale grey for shingle or boulders plscol0( 8, 100, 100, 100 ); //dark grey for custom polygons - generally crags plcol0( 1 ); plenv( minx, maxx, miny, maxy, 1, -1 ); pllab( "", "", "Martinhoe CP, Exmoor National Park, UK (shapelib only)" ); //Beach plcol0( 2 ); plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, beachareas, nbeachareas ); //woodland plcol0( 3 ); for ( i = 0; i < nwoodlandareas; ++i ) woodlandareas[i] = i + 218; plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, (PLINT_VECTOR) woodlandareas, nwoodlandareas ); //shingle or boulders plcol0( 7 ); plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, shingleareas, nshingleareas ); //crags plcol0( 8 ); for ( i = 0; i < ncragareas; ++i ) cragareas[i] = i + 325; plmapfill( NULL, "ss/ss64ne_Landform_Area", minx, maxx, miny, maxy, (PLINT_VECTOR) cragareas, ncragareas ); //draw contours, we need to separate contours from high/low coastline //draw_contours(pls, "ss/SS64_line", 433, 20, 4, 3, minx, maxx, miny, maxy ); plcol0( 4 ); plmapline( NULL, "ss/ss64ne_Height_Contours", minx, maxx, miny, maxy, NULL, 0 ); //draw the sea and surface water plwidth( 0.0 ); plcol0( 6 ); plmapfill( NULL, "ss/ss64ne_Water_Area", minx, maxx, miny, maxy, NULL, 0 ); plwidth( 2.0 ); plmapfill( NULL, "ss/ss64ne_Water_Line", minx, maxx, miny, maxy, NULL, 0 ); //draw the roads, first with black and then thinner with colour to give an //an outlined appearance plwidth( 5.0 ); plcol0( 1 ); plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, NULL, 0 ); plwidth( 3.0 ); plcol0( 0 ); plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, NULL, 0 ); plcol0( 5 ); plmapline( NULL, "ss/ss64ne_Road_Centreline", minx, maxx, miny, maxy, majorroads, 9 ); //draw buildings plwidth( 1.0 ); plcol0( 1 ); plmapfill( NULL, "ss/ss64ne_Building_Area", minx, maxx, miny, maxy, NULL, 0 ); //labels plsfci( 0x80000100 ); plschr( 0, 0.8 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "MARTINHOE CP", minx, maxx, miny, maxy, 202 ); plschr( 0, 0.7 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Heale\nDown", minx, maxx, miny, maxy, 13 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "South\nDown", minx, maxx, miny, maxy, 34 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Martinhoe\nCommon", minx, maxx, miny, maxy, 42 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Woody Bay", minx, maxx, miny, maxy, 211 ); plschr( 0, 0.6 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Mill Wood", minx, maxx, miny, maxy, 16 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Heale Wood", minx, maxx, miny, maxy, 17 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 1.0, "Bodley", minx, maxx, miny, maxy, 31 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.0, "Martinhoe", minx, maxx, miny, maxy, 37 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Woolhanger\nCommon", minx, maxx, miny, maxy, 60 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "West Ilkerton\nCommon", minx, maxx, miny, maxy, 61 ); plmaptex( NULL, "ss/ss64ne_General_Text", 1.0, 0.0, 0.5, "Caffyns\nHeanton\nDown", minx, maxx, miny, maxy, 62 ); plend(); exit( 0 ); }