void run_test (FILE *data_stream, FILE *test_in, FILE *test_out) { int num_of_request; unsigned short ordered_rids[100]; char num_of_request_str[10]; char target_key[20]; struct page result; num_of_request = atoi (fget_num (num_of_request_str, 10, test_in)); while (num_of_request--) { init_page (&result, true); fget_num (target_key, 20, test_in); // Get a request. if (search_by_key (target_key, &result, data_stream)) // sth worng here!!! { sort_record_in_page (&result, 2, ordered_rids); put_result (&result, ordered_rids, test_out); } else fprintf (test_out, "%d\r\n", -1); } }
// this example demostrates a black-scholes option pricing kernel. int main() { // number of options const int N = 4000000; // black-scholes parameters const float risk_free_rate = 0.02f; const float volatility = 0.30f; // get default device and setup context compute::device gpu = compute::system::default_device(); compute::context context(gpu); compute::command_queue queue(context, gpu); std::cout << "device: " << gpu.name() << std::endl; // initialize option data on host std::vector<float> stock_price_data(N); std::vector<float> option_strike_data(N); std::vector<float> option_years_data(N); std::srand(5347); for(int i = 0; i < N; i++){ stock_price_data[i] = rand_float(5.0f, 30.0f); option_strike_data[i] = rand_float(1.0f, 100.0f); option_years_data[i] = rand_float(0.25f, 10.0f); } // create memory buffers on the device compute::vector<float> call_result(N, context); compute::vector<float> put_result(N, context); compute::vector<float> stock_price(N, context); compute::vector<float> option_strike(N, context); compute::vector<float> option_years(N, context); // copy initial values to the device compute::copy_n(stock_price_data.begin(), N, stock_price.begin(), queue); compute::copy_n(option_strike_data.begin(), N, option_strike.begin(), queue); compute::copy_n(option_years_data.begin(), N, option_years.begin(), queue); // source code for black-scholes program const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE( // approximation of the cumulative normal distribution function float cnd(float d) { const float A1 = 0.319381530f; const float A2 = -0.356563782f; const float A3 = 1.781477937f; const float A4 = -1.821255978f; const float A5 = 1.330274429f; const float RSQRT2PI = 0.39894228040143267793994605993438f; float K = 1.0f / (1.0f + 0.2316419f * fabs(d)); float cnd = RSQRT2PI * exp(-0.5f * d * d) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5))))); if(d > 0){ cnd = 1.0f - cnd; } return cnd; } // black-scholes option pricing kernel __kernel void black_scholes(__global float *call_result, __global float *put_result, __global const float *stock_price, __global const float *option_strike, __global const float *option_years, float risk_free_rate, float volatility) { const uint opt = get_global_id(0); float S = stock_price[opt]; float X = option_strike[opt]; float T = option_years[opt]; float R = risk_free_rate; float V = volatility; float sqrtT = sqrt(T); float d1 = (log(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT); float d2 = d1 - V * sqrtT; float CNDD1 = cnd(d1); float CNDD2 = cnd(d2); float expRT = exp(-R * T); call_result[opt] = S * CNDD1 - X * expRT * CNDD2; put_result[opt] = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1); } );