int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the PC to point back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->ARM_pc = (long)cur->addr; if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); } else { reset_current_kprobe(); } break; case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* * We increment the nmissed count for accounting, * we can also use npre/npostfault count for accounting * these specific fault cases. */ kprobes_inc_nmissed_count(cur); /* * We come here because instructions in the pre/post * handler caused the page_fault, this could happen * if handler tries to access user space by * copy_from_user(), get_user() etc. Let the * user-specified handler try to fix it. */ if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) return 1; break; default: break; } return 0; }
static int __kprobes post_kprobe_handler(struct pt_regs *regs) { struct kprobe *cur = kprobe_running(); pr_debug("post_kprobe_handler, cur=%p\n", cur); if (!cur) return 0; if (cur->post_handler) { kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } resume_execution(cur, regs); reset_current_kprobe(); preempt_enable_no_resched(); return 1; }
/* * Called with IRQs disabled. IRQs must remain disabled from that point * all the way until processing this kprobe is complete. The current * kprobes implementation cannot process more than one nested level of * kprobe, and that level is reserved for user kprobe handlers, so we can't * risk encountering a new kprobe in an interrupt handler. */ void __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p, *cur; struct kprobe_ctlblk *kcb; kcb = get_kprobe_ctlblk(); cur = kprobe_running(); #ifdef CONFIG_THUMB2_KERNEL /* * First look for a probe which was registered using an address with * bit 0 set, this is the usual situation for pointers to Thumb code. * If not found, fallback to looking for one with bit 0 clear. */ p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1)); if (!p) p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); #else /* ! CONFIG_THUMB2_KERNEL */ p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); #endif if (p) { if (cur) { /* Kprobe is pending, so we're recursing. */ switch (kcb->kprobe_status) { case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* A pre- or post-handler probe got us here. */ kprobes_inc_nmissed_count(p); save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; singlestep(p, regs, kcb); restore_previous_kprobe(kcb); break; default: /* impossible cases */ BUG(); } } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) { /* Probe hit and conditional execution check ok. */ set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it prepped * for calling the break_handler below on re-entry, * so get out doing nothing more here. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { kcb->kprobe_status = KPROBE_HIT_SS; singlestep(p, regs, kcb); if (p->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; p->post_handler(p, regs, 0); } reset_current_kprobe(); } } else { /* * Probe hit but conditional execution check failed, * so just skip the instruction and continue as if * nothing had happened. */ singlestep_skip(p, regs); } } else if (cur) { /* We probably hit a jprobe. Call its break handler. */ if (cur->break_handler && cur->break_handler(cur, regs)) { kcb->kprobe_status = KPROBE_HIT_SS; singlestep(cur, regs, kcb); if (cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } } reset_current_kprobe(); } else { /* * The probe was removed and a race is in progress. * There is nothing we can do about it. Let's restart * the instruction. By the time we can restart, the * real instruction will be there. */ } }
/* * Called with IRQs disabled. IRQs must remain disabled from that point * all the way until processing this kprobe is complete. The current * kprobes implementation cannot process more than one nested level of * kprobe, and that level is reserved for user kprobe handlers, so we can't * risk encountering a new kprobe in an interrupt handler. */ void __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p, *cur; struct kprobe_ctlblk *kcb; kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc; kcb = get_kprobe_ctlblk(); cur = kprobe_running(); p = get_kprobe(addr); if (p) { if (cur) { /* Kprobe is pending, so we're recursing. */ switch (kcb->kprobe_status) { case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: /* A pre- or post-handler probe got us here. */ kprobes_inc_nmissed_count(p); save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; singlestep(p, regs, kcb); restore_previous_kprobe(kcb); break; default: /* impossible cases */ BUG(); } } else { set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it prepped * for calling the break_handler below on re-entry, * so get out doing nothing more here. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { kcb->kprobe_status = KPROBE_HIT_SS; singlestep(p, regs, kcb); if (p->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; p->post_handler(p, regs, 0); } reset_current_kprobe(); } } } else if (cur) { /* We probably hit a jprobe. Call its break handler. */ if (cur->break_handler && cur->break_handler(cur, regs)) { kcb->kprobe_status = KPROBE_HIT_SS; singlestep(cur, regs, kcb); if (cur->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; cur->post_handler(cur, regs, 0); } } reset_current_kprobe(); } else { /* * The probe was removed and a race is in progress. * There is nothing we can do about it. Let's restart * the instruction. By the time we can restart, the * real instruction will be there. */ } }