QamTachymeter::QamTachymeter(QWidget* parent ) : QamFlightInstrument(parent) { m_class = "QamTachymeter" ; setLabel(QString("TURBINE"), TURBINE ) ; setUnit(QString("x 1000"), TURBINE ) ; setMinMax(0, 40000, TURBINE ) ; setThresholds(32000, 35000, TURBINE ) ; setValue(0, TURBINE ) ; m_radius[TURBINE] = QFI_RADIUS ; m_start[TURBINE] = 120 ; m_span[TURBINE] = 300 ; m_min[TURBINE] = 0 ; m_max[TURBINE] = 40 ; m_step[TURBINE] = m_span[TURBINE] / ( m_max[TURBINE] - m_min[TURBINE] ) ; setLabel(QString("ROTOR"), ROTOR ) ; setUnit(QString("t/mn x 100"), ROTOR ) ; setMinMax(0, 450, ROTOR ) ; setThresholds(280, 420, ROTOR ) ; setValue(0, ROTOR ) ; m_radius[ROTOR] = 0.6 * QFI_RADIUS ; m_start[ROTOR] = 120 ; m_span[ROTOR] = 320 ; m_min[ROTOR] = 0 ; m_max[ROTOR] = 45 ; m_step[ROTOR] = m_span[ROTOR] / ( m_max[ROTOR] - m_min[ROTOR] ) ; // animation des aiguilles (pour tests) setAdjustable(100, 0, TURBINE ) ; // connect(this, SIGNAL( selectChanged() ), this, SLOT( selectChanged() ) ) ; }
StandardModel<Two_scale>::StandardModel(const StandardModel<Two_scale>& s) : yu(s.yu), yd(s.yd), ye(s.ye), g(s.g) { setPars(numStandardModelPars); setMu(s.displayMu()); setLoops(s.displayLoops()); setThresholds(s.displayThresholds()); }
StandardModel<Two_scale>::StandardModel() : yu(3, 3), yd(3, 3), ye(3, 3), g(3) , precision(1.0e-3) { setPars(numStandardModelPars); setMu(0.0); setLoops(1); setThresholds(0); }
StandardModel<Two_scale>::StandardModel(const DoubleMatrix& SMu, const DoubleMatrix& SMd, const DoubleMatrix& SMe, const DoubleVector& g_) : yu(SMu), yd(SMd), ye(SMe), g(g_) { setPars(numStandardModelPars); setMu(0.0); setLoops(1); setThresholds(0); }
void MssmSusy::setSusy(const MssmSusy & s) { setLoops(s.displayLoops()); setThresholds(s.displayThresholds()); setMu(s.displayMu()); setYukawaMatrix(YU, s.displayYukawaMatrix(YU)); setYukawaMatrix(YD, s.displayYukawaMatrix(YD)); setYukawaMatrix(YE, s.displayYukawaMatrix(YE)); setHvev(s.displayHvev()); setTanb(s.displayTanb()); setSusyMu(s.displaySusyMu()); setAllGauge(s.displayGauge()); }
const StandardModel<Two_scale>& StandardModel<Two_scale>::operator=(const StandardModel<Two_scale>& s) { if (this == &s) return *this; yu = s.yu; yd = s.yd; ye = s.ye; g = s.g; setMu(s.displayMu()); setLoops(s.displayLoops()); setThresholds(s.displayThresholds()); return *this; }
const QedQcd & QedQcd::operator=(const QedQcd & m) { if (this == &m) return *this; a = m.a; mf = m.mf; mbPole = m.mbPole; input = m.input; ckm = m.ckm; pmns = m.pmns; setLoops(m.displayLoops()); setThresholds(m.displayThresholds()); setMu(m.displayMu()); return *this; }
tResult CurveDetector::Init(tInitStage eStage, __exception) { RETURN_IF_FAILED(cFilter::Init(eStage, __exception_ptr)); switch (eStage) { case StageFirst: RETURN_IF_FAILED(createVideoInputPin("videoInput", this->videoInput)); RETURN_IF_FAILED(createVideoOutputPin("rgbVideo", this->rgbOutput)); break; case StageNormal: setThresholds(); break; case StageGraphReady: break; } RETURN_NOERROR; }
void Adafruit_MPR121::setThreshholds(uint8_t touch, uint8_t release) { setThresholds(touch, release); }
tResult CurveDetector::PropertyChanged(const char *propertyName) { setThresholds(); RETURN_NOERROR; }
int shapeDetector(BoundingBox* result, CvCapture* capture, int numberOfIntervals){ int numberOfWindows = 0; int interval, start_t=45, end_t, span_t=65; int w_counter=0; int threshold[100]; int i,j; int frameCounter=0; int totalNumberOfPatterns=0; int numberOfReducedPatterns=0; char dynamicThresholding=1; char run=1; char showWindow [100]; char got_result = 0; //Used to know if we had great success of just got canceled struct Metric metric[100]; IplImage* imgGrayScale; IplImage* img; Pattern allPatterns[100]; Pattern reducedPatterns[10]; CvPoint s_list[4]; CvSeq* contourArray[100]; CvMemStorage *storage = cvCreateMemStorage(0); //storage area for all contours box = result; srand(time(NULL)); for(i=0; i<100; i++) { showWindow[i] = 0; } //********************* SET UP IMAGES AND DISPLAY WINDOWS *********************** //********************************************************************************* img = cvQueryFrame(capture); imgGrayScale = cvCreateImage(cvGetSize(img), 8, 1); switch( numberOfWindows ) { case 3: cvNamedWindow("Threshold 2", CV_WINDOW_AUTOSIZE | CV_WINDOW_KEEPRATIO | CV_GUI_NORMAL); case 2: cvNamedWindow("Threshold 3", CV_WINDOW_AUTOSIZE | CV_WINDOW_KEEPRATIO | CV_GUI_NORMAL); case 1: cvNamedWindow("Threshold 1", CV_WINDOW_AUTOSIZE | CV_WINDOW_KEEPRATIO | CV_GUI_NORMAL); } cvNamedWindow("Tracked", CV_WINDOW_AUTOSIZE | CV_WINDOW_KEEPRATIO | CV_GUI_NORMAL); cvCreateTrackbar("Threshold lower", "Tracked", &start_t, 255, NULL); cvCreateTrackbar("Threshold upper", "Tracked", &end_t, 255, NULL); //--------------------------------------------------------------------------------- span_t = end_t - start_t; interval = span_t/numberOfIntervals; for(i=0; i<numberOfIntervals; i++){ threshold[i] = start_t+((i+1)*interval); } while(run){ //Main loop //********************* IMAGE PRE-PROCESSING **************************** frameCounter++; img = cvQueryFrame(capture); //converting the original image into grayscale cvCvtColor(img,imgGrayScale,CV_BGR2GRAY); //--------------------------------------------------------------------------- // Awesome shapeProcessing function calls for(i=0; i<numberOfIntervals; i++){ metric[i] = shapeProcessing(img, imgGrayScale, threshold[i]); //Append patterns found in the layers to allPatterns list for(j=0; j<metric[i].numberOfPatterns; j++){ allPatterns[totalNumberOfPatterns] = metric[i].p_list[j]; totalNumberOfPatterns++; } } // Reduce patterns numberOfReducedPatterns = reducePatterns(allPatterns, reducedPatterns, totalNumberOfPatterns); for(i=0; i<numberOfReducedPatterns; i++){ drawRect(reducedPatterns[i].cv_rect, img); } if(numberOfReducedPatterns == 4){ findBox_r(&reducedPatterns[0], &s_list[0]); box->topLeft = s_list[0]; box->topRight = s_list[1]; box->bottomLeft = s_list[2]; box->bottomRight = s_list[3]; got_result = 1; run = 0; } // Adjust thresholds if(dynamicThresholding) { setThresholds(&threshold[0], &metric[0], numberOfIntervals); } else{ span_t = end_t - start_t; interval = span_t/numberOfIntervals; for(i=0; i<numberOfIntervals; i++){ threshold[i] = start_t+((i+1)*interval); } } numberOfReducedPatterns=0; totalNumberOfPatterns=0; //show the image in which identified shapes are marked cvShowImage("Tracked",img); int input; input = cvWaitKey(10) & 0xff; //wait for a key press. also needed to repaint windows. Masks away bits higher then interesting switch(input){ case 27: //esc-key case 'q': case 'e': run=0; break; case 'd': draw = !draw; break; } } //end of main while(run) loop //cleaning up switch( numberOfWindows ) { case 3: cvDestroyWindow("Threshold 2"); case 2: cvDestroyWindow("Threshold 3"); case 1: cvDestroyWindow("Threshold 1"); } cvDestroyWindow("Tracked"); cvReleaseMemStorage(&storage); cvReleaseImage(&imgGrayScale); //cvReleaseImage(&img); printf("Number of frames: %d\n", frameCounter); return got_result; }