bool udd_ep_set_halt(udd_ep_id_t ep)
{
	bool b_dir_in = ep & USB_EP_DIR_IN;
	uint8_t ep_index = ep & USB_EP_ADDR_MASK;
	udd_ep_job_t *ptr_job = &udd_ep_job[ep_index - 1];
	irqflags_t flags;
	if (USB_DEVICE_MAX_EP < ep_index) {
		return false;
	}
	flags = cpu_irq_save();
	if (b_dir_in && (Is_udd_transmit_ready(ep_index)
				|| ptr_job->bank > 1)) {
		// Halt until banks sent
		ptr_job->b_stall_requested = true;
		udd_enable_endpoint_interrupt(ep_index);
		cpu_irq_restore(flags);
		return true;
	} else {
		// Stall endpoint
		udd_enable_stall_handshake(ep_index);
		udd_enable_endpoint_interrupt(ep_index);
		cpu_irq_restore(flags);
	}
	return true;
}
Esempio n. 2
0
bool udd_ep_set_halt(udd_ep_id_t ep)
{
	udd_ep_job_t *ptr_job;
	uint8_t index = ep & USB_EP_ADDR_MASK;

	if (USB_DEVICE_MAX_EP < index) {
		return false;
	}

	ptr_job = &udd_ep_job[index - 1];

	if (Is_udd_endpoint_stall_requested(index) // Endpoint stalled
			|| ptr_job->stall_requested) { // Endpoint stall is requested
		return true; // Already STALL
	}

	if (ptr_job->busy == true) {
		return false; // Job on going, stall impossible
	}

	if ((ep & USB_EP_DIR_IN) && (0 != udd_nb_busy_bank(index))) {
			// Delay the stall after the end of IN transfer on USB line
			ptr_job->stall_requested = true;
			udd_enable_bank_interrupt(index);
			udd_enable_endpoint_interrupt(index);
			return true;
	}
	
	// Stall endpoint immediately
	udd_disable_endpoint_bank_autoswitch(index);
	udd_ack_stall(index);
	udd_enable_stall_handshake(index);
	return true;
}
Esempio n. 3
0
static void udd_reset_ep_ctrl(void)
{
	irqflags_t flags;

	// Reset USB address to 0
	udd_configure_address(0);
	udd_enable_address();

	// Alloc and configure control endpoint
	udd_configure_endpoint(0,
			USB_EP_TYPE_CONTROL,
			0,
			USB_DEVICE_EP_CTRL_SIZE, AVR32_USBC_UECFG0_EPBK_SINGLE);

	// Use internal buffer for endpoint control
	udd_udesc_set_buf0_addr(0, udd_ctrl_buffer);

	// don't use multipacket on endpoint control
	udd_udesc_rst_buf0_size(0);
	udd_enable_endpoint(0);
	udd_disable_busy_bank0(0);
	flags = cpu_irq_save();
	udd_enable_setup_received_interrupt(0);
	udd_enable_out_received_interrupt(0);
	udd_enable_endpoint_interrupt(0);
	cpu_irq_restore(flags);
}
Esempio n. 4
0
bool udd_ep_run(udd_ep_id_t ep, bool b_shortpacket,
		uint8_t * buf, iram_size_t buf_size,
		udd_callback_trans_t callback)
{
	udd_ep_job_t *ptr_job;
	irqflags_t flags;
	bool b_dir_in = ep & USB_EP_DIR_IN;

	ep &= USB_EP_ADDR_MASK;
	if (USB_DEVICE_MAX_EP < ep) {
		return false;
	}
	
	// Get job about endpoint
	ptr_job = &udd_ep_job[ep - 1];

	if ((!Is_udd_endpoint_enabled(ep))
			|| ptr_job->b_stall_requested
			|| Is_udd_endpoint_stall_requested(ep)) {
		return false; // Endpoint is halted
	}

	flags = cpu_irq_save();
	if (ptr_job->busy == true) {
		cpu_irq_restore(flags);
		return false; // Job already on going
	}
	ptr_job->busy = true;
	cpu_irq_restore(flags);

	// No job running. Let's setup a new one.
	ptr_job->buf = buf;
	ptr_job->buf_size = buf_size;
	ptr_job->buf_cnt = 0;
	ptr_job->call_trans = callback;
	ptr_job->b_shortpacket = b_shortpacket || (buf_size == 0);
	ptr_job->b_buf_end = false;

	flags = cpu_irq_save();
	udd_enable_endpoint_interrupt(ep);
	// Request first transfer
	if (b_dir_in) {
		if (Is_udd_in_pending(ep)) {
			// Append more data (handled in interrupt service)
		} else {
			// Start new, try to fill 1~2 banks before handling status
			if (udd_ep_in_sent(ep, true)) {
				// Over one bank
				udd_ep_in_sent(ep, false);
			} else {
				// Less than one bank
			}
		}
	} else {
		// Waiting for OUT received interrupt
	}
	cpu_irq_restore(flags);

	return true;
}
Esempio n. 5
0
static bool udd_ep_interrupt(void)
{
	udd_ep_id_t ep;
	udd_ep_job_t *ptr_job;

	// For each endpoint different of control endpoint (0)
	for (ep = 1; ep <= USB_DEVICE_MAX_EP; ep++) {
		// Check DMA event
		if (Is_udd_endpoint_dma_interrupt_enabled(ep)
				&& Is_udd_endpoint_dma_interrupt(ep)) {
			uint32_t nb_remaining;
			udd_disable_endpoint_dma_interrupt(ep);
			// Save number of data no transfered
			nb_remaining = (udd_endpoint_dma_get_status(ep) &
					AVR32_USBB_UDDMA1_STATUS_CH_BYTE_CNT_MASK)
					>>
					AVR32_USBB_UDDMA1_STATUS_CH_BYTE_CNT_OFFSET;
			// Get job corresponding at endpoint
			ptr_job = &udd_ep_job[ep - 1];
			// Update number of data transfered
			ptr_job->buf_size -= nb_remaining;

			if (!Is_udd_endpoint_in(ep)) {
				// Disable autoswitch bank on OUT
				udd_disable_endpoint_bank_autoswitch(ep);
			} else {
				// Wait end of background transfer on IN endpoint before disabled autoswitch bank
				udd_enable_endpoint_interrupt(ep);
				udd_enable_bank_interrupt(ep);
			}
			// Call callback to signal end of transfer
			udd_ep_finish_job(&udd_ep_job[ep - 1], false);
			return true;
		}
		// Check empty bank interrupt event
		if (Is_udd_endpoint_interrupt_enabled(ep)
				&& (0 == udd_nb_busy_bank(ep))) {
			// End of background transfer on IN endpoint
			udd_disable_bank_interrupt(ep);
			udd_disable_endpoint_interrupt(ep);
			// If no new transfer running then disable autoswitch bank
			if (!udd_ep_job[ep - 1].busy) {
				udd_disable_endpoint_bank_autoswitch(ep);
			}
			// If a stall has been requested during backgound transfer then execute it
			if (udd_ep_job[ep - 1].stall_requested) {
				udd_ep_job[ep - 1].stall_requested = false;
				udd_enable_stall_handshake(ep);
				udd_reset_data_toggle(ep);
			}
			return true;
		}
	}
static void udd_reset_ep_ctrl(void)
{
	irqflags_t flags;

	// Reset USB address to 0
	udd_enable_address();
	udd_configure_address(0);
	// Alloc and configure control endpoint in OUT direction
	udd_configure_endpoint(0, USB_EP_TYPE_CONTROL, 0);
	udd_enable_endpoint(0);

	flags = cpu_irq_save();
	udd_enable_endpoint_interrupt(0);
	cpu_irq_restore(flags);
}
Esempio n. 7
0
static void udd_reset_ep_ctrl(void)
{
	irqflags_t flags;
	// Reset USB address to 0
	udd_configure_address(0);
	udd_enable_address();
	// Alloc and configure control endpoint
	udd_configure_endpoint(0,
			USB_EP_TYPE_CONTROL,
			0,
			USB_DEVICE_EP_CTRL_SIZE, AVR32_USBB_UECFG0_EPBK_SINGLE);

	udd_allocate_memory(0);
	udd_enable_endpoint(0);
	flags = cpu_irq_save();
	udd_enable_setup_received_interrupt(0);
	udd_enable_out_received_interrupt(0);
	udd_enable_endpoint_interrupt(0);
	cpu_irq_restore(flags);
}
Esempio n. 8
0
static void udd_ep_trans_done(udd_ep_id_t ep)
{
	uint32_t udd_dma_ctrl = 0;
	udd_ep_job_t *ptr_job;
	iram_size_t next_trans;
	irqflags_t flags;

	// Get job corresponding at endpoint
	ptr_job = &udd_ep_job[ep - 1];

	if (!ptr_job->busy) {
		return; // No job is running, then ignore it (system error)
	}

	if (ptr_job->nb_trans != ptr_job->buf_size) {
		// Need to send or receive other data
		next_trans = ptr_job->buf_size - ptr_job->nb_trans;

		if (UDD_ENDPOINT_MAX_TRANS < next_trans) {
			// The USB hardware support a maximum
			// transfer size of UDD_ENDPOINT_MAX_TRANS Bytes
			next_trans = UDD_ENDPOINT_MAX_TRANS;

			// Set 0 to transfer the maximum
			udd_dma_ctrl = (0 <<
					AVR32_USBB_UDDMA1_CONTROL_CH_BYTE_LENGTH_OFFSET)
					& AVR32_USBB_UDDMA1_CONTROL_CH_BYTE_LENGTH_MASK;
		} else {
			udd_dma_ctrl = (next_trans <<
					AVR32_USBB_UDDMA1_CONTROL_CH_BYTE_LENGTH_OFFSET)
					& AVR32_USBB_UDDMA1_CONTROL_CH_BYTE_LENGTH_MASK;
		}
		if (Is_udd_endpoint_in(ep)) {
			if (0 != next_trans % udd_get_endpoint_size(ep)) {
				// Enable short packet option
				// else the DMA transfer is accepted
				// and interrupt DMA valid but nothing is sent.
				udd_dma_ctrl |= AVR32_USBB_UDDMA1_CONTROL_DMAEND_EN_MASK;
				// No need to request another ZLP
				ptr_job->b_shortpacket = false;
			}
		} else {
			if ((USB_EP_TYPE_ISOCHRONOUS != udd_get_endpoint_type(ep))
					|| (next_trans <= udd_get_endpoint_size(ep))) {

				// Enable short packet reception
				udd_dma_ctrl |= AVR32_USBB_UDDMA1_CONTROL_EOT_IRQ_EN_MASK
						| AVR32_USBB_UDDMA1_CONTROL_BUFF_CLOSE_IN_EN_MASK;
			}
		}

		// Start USB DMA to fill or read fifo of the selected endpoint
		udd_endpoint_dma_set_addr(ep, (U32) &ptr_job->buf[ptr_job->nb_trans]);
		udd_dma_ctrl |= AVR32_USBB_UDDMA1_CONTROL_EOBUFF_IRQ_EN_MASK |
				AVR32_USBB_UDDMA1_CONTROL_CH_EN_MASK;

		// Disable IRQs to have a short sequence
		// between read of EOT_STA and DMA enable
		flags = cpu_irq_save();
		if ( !(udd_endpoint_dma_get_status(ep)
				& AVR32_USBB_UDDMA1_STATUS_EOT_STA_MASK)) {
			udd_endpoint_dma_set_control(ep, udd_dma_ctrl);
			ptr_job->nb_trans += next_trans;
			udd_enable_endpoint_dma_interrupt(ep);
			cpu_irq_restore(flags);
			return;
		}
		cpu_irq_restore(flags);

		// Here a ZLP has been received
		// and the DMA transfer must be not started.
		// It is the end of transfer
		ptr_job->buf_size = ptr_job->nb_trans;
	}
	if (Is_udd_endpoint_in(ep)) {
		if (ptr_job->b_shortpacket) {
			// Need to send a ZLP (No possible with USB DMA)
			// enable interrupt to wait a free bank to sent ZLP
			udd_ack_in_send(ep);
			if (Is_udd_write_enabled(ep)) {
				// Force interrupt in case of ep already free
				udd_raise_in_send(ep);
			}
			udd_enable_in_send_interrupt(ep);
			udd_enable_endpoint_interrupt(ep);
			return;
		}
	}
	// Call callback to signal end of transfer
	udd_ep_finish_job(ptr_job, false, ep);
}
Esempio n. 9
0
static void udd_ep_trans_done(udd_ep_id_t ep)
{
	udd_ep_job_t *ptr_job;
	uint16_t ep_size, nb_trans;
	uint16_t next_trans;
	udd_ep_id_t ep_num;
	irqflags_t flags;

	ep_num = ep & USB_EP_ADDR_MASK;
	ep_size = udd_get_endpoint_size(ep_num);

	// Get job corresponding at endpoint
	ptr_job = &udd_ep_job[ep_num - 1];

	// Disable interrupt of endpoint
	flags = cpu_irq_save();
	udd_disable_endpoint_interrupt(ep_num);
	cpu_irq_restore(flags);

	if (!ptr_job->busy) {
		return; // No job is running, then ignore it (system error)
	}

	if (USB_EP_DIR_IN == (ep & USB_EP_DIR_IN)) {
		// Transfer complete on IN
		nb_trans = udd_udesc_get_buf0_size(ep_num);

		// Lock emission of new IN packet
		udd_enable_busy_bank0(ep_num);

		// Ack interrupt
		udd_ack_in_send(ep_num);

		if (0 == nb_trans) {
			if (0 == udd_nb_busy_bank(ep_num)) {
				// All byte are transfered than take nb byte requested
				nb_trans = udd_udesc_get_buf0_ctn(ep_num);
			}
		}
		// Update number of data transfered
		ptr_job->nb_trans += nb_trans;

		// Need to send other data
		if ((ptr_job->nb_trans != ptr_job->buf_size)
				|| ptr_job->b_shortpacket) {
			next_trans = ptr_job->buf_size - ptr_job->nb_trans;
			if (UDD_ENDPOINT_MAX_TRANS < next_trans) {
				// The USB hardware support a maximum
				// transfer size of UDD_ENDPOINT_MAX_TRANS Bytes
				next_trans = UDD_ENDPOINT_MAX_TRANS -
						(UDD_ENDPOINT_MAX_TRANS % ep_size);
				udd_udesc_set_buf0_autozlp(ep_num, false);
			} else {
				// Need ZLP, if requested and last packet is not a short packet
				udd_udesc_set_buf0_autozlp(ep_num, ptr_job->b_shortpacket);
				ptr_job->b_shortpacket = false; // No need to request another ZLP
			}

			udd_udesc_set_buf0_ctn(ep_num, next_trans);
			udd_udesc_rst_buf0_size(ep_num);

			// Link the user buffer directly on USB hardware DMA
			udd_udesc_set_buf0_addr(ep_num,
					&ptr_job->buf[ptr_job->nb_trans]);

			// Start transfer
			udd_ack_fifocon(ep_num);
			udd_disable_busy_bank0(ep_num);

			// Enable interrupt
			flags = cpu_irq_save();
			udd_enable_in_send_interrupt(ep_num);
			udd_enable_endpoint_interrupt(ep_num);
			cpu_irq_restore(flags);
			return;
		}
	} else {
		// Transfer complete on OUT
		nb_trans = udd_udesc_get_buf0_ctn(ep_num);

		// Lock reception of new OUT packet
		udd_enable_busy_bank0(ep_num);

		// Ack interrupt
		udd_ack_out_received(ep_num);
		udd_ack_fifocon(ep_num);

		// Can be necessary to copy data receive from cache buffer to user buffer
		if (ptr_job->b_use_out_cache_buffer) {
			memcpy(&ptr_job->buf[ptr_job->nb_trans],
					udd_ep_out_cache_buffer[ep_num - 1],
					ptr_job->buf_size % ep_size);
		}

		// Update number of data transfered
		ptr_job->nb_trans += nb_trans;
		if (ptr_job->nb_trans > ptr_job->buf_size) {
			ptr_job->nb_trans = ptr_job->buf_size;
		}

		// If all previous data requested are received and user buffer not full
		// then need to receive other data
		if ((nb_trans == udd_udesc_get_buf0_size(ep_num))
			&& (ptr_job->nb_trans != ptr_job->buf_size)) {
			next_trans = ptr_job->buf_size - ptr_job->nb_trans;
			if (UDD_ENDPOINT_MAX_TRANS < next_trans) {
				// The USB hardware support a maximum transfer size
				// of UDD_ENDPOINT_MAX_TRANS Bytes
				next_trans = UDD_ENDPOINT_MAX_TRANS
						- (UDD_ENDPOINT_MAX_TRANS % ep_size);
			} else {
				next_trans -= next_trans % ep_size;
			}

			udd_udesc_rst_buf0_ctn(ep_num);
			if (next_trans < ep_size) {
				// Use the cache buffer for Bulk or Interrupt size endpoint
				ptr_job->b_use_out_cache_buffer = true;
				udd_udesc_set_buf0_addr(ep_num,
						udd_ep_out_cache_buffer[ep_num-1]);
				udd_udesc_set_buf0_size(ep_num, ep_size);
			} else {
				// Link the user buffer directly on USB hardware DMA
				udd_udesc_set_buf0_addr(ep_num, &ptr_job->buf[ptr_job->nb_trans]);
				udd_udesc_set_buf0_size(ep_num, next_trans);
			}
			// Start transfer
			udd_disable_busy_bank0(ep_num);

			// Enable interrupt
			flags = cpu_irq_save();
			udd_enable_out_received_interrupt(ep_num);
			udd_enable_endpoint_interrupt(ep_num);
			cpu_irq_restore(flags);
			return;
		}
	}

	// Job complete then call callback
	ptr_job->busy = false;
	if (NULL != ptr_job->call_trans) {
		ptr_job->call_trans(UDD_EP_TRANSFER_OK, ptr_job->nb_trans, ep);
	}
	return;
}
bool udd_ep_run(udd_ep_id_t ep, bool b_shortpacket,
		uint8_t * buf, iram_size_t buf_size,
		udd_callback_trans_t callback)
{
	uint16_t ep_size, trans_size, short_packet;
	bool b_dir_in;
	udd_ep_job_t *ptr_job;
	irqflags_t flags;

	b_dir_in = (USB_EP_DIR_IN == (ep & USB_EP_DIR_IN));
	ep &= USB_EP_ADDR_MASK;
	if (USB_DEVICE_MAX_EP < ep)
		return false;

	// Get job about endpoint
	ptr_job = &udd_ep_job[ep - 1];

	if ((!Is_udd_endpoint_enabled(ep))
			|| Is_udd_endpoint_stall_requested(ep))
		return false;	// Endpoint is halted

   flags = cpu_irq_save();
	if (ptr_job->busy == true) {
		cpu_irq_restore(flags);
		return false;	// Job already on going
	}
	ptr_job->busy = true;
	cpu_irq_restore(flags);

	// No job running. Let's setup a new one.
	//
	// The USB hardware support a maximum transfer size of 0x7FFF Bytes
	ep_size = udd_get_endpoint_size(ep);
	if (0x7FFF < buf_size) {
		trans_size = 0x7FFF - (0x7FFF % ep_size);
		short_packet = 0;
	} else {
		trans_size = buf_size;
		short_packet = trans_size % ep_size;
	}

	if (b_dir_in) {
		// Need ZLP, if requested and last packet is not a short packet
		udd_udesc_set_buf0_autozlp(ep, b_shortpacket);
		udd_udesc_set_buf0_ctn(ep, trans_size);
		udd_udesc_rst_buf0_size(ep);
		// Link the user buffer directly on USB hardware DMA
		udd_udesc_set_buf0_addr(ep, buf);
	} else {
		udd_udesc_rst_buf0_ctn(ep);
		ptr_job->nb_trans = 0;
		if (trans_size < ep_size) {
			// The user buffer is smaller than endpoint size
			if (AVR32_USBC_PTYPE_ISOCHRONOUS ==
					udd_get_endpoint_type(ep)) {
				ptr_job->busy = false;
				return false;	// The user must use a buffer corresponding at isochrnous endpoint size
			}
			// Use the cache buffer for Bulk or Interrupt size endpoint
			ptr_job->b_use_out_cache_buffer = true;
			udd_udesc_set_buf0_addr(ep,
					udd_ep_out_cache_buffer[ep - 1]);
			udd_udesc_set_buf0_size(ep, ep_size);
		} else {
			// Link the user buffer directly on USB hardware DMA
			ptr_job->b_use_out_cache_buffer = false;
			udd_udesc_set_buf0_addr(ep, buf);
			udd_udesc_set_buf0_size(ep, trans_size - short_packet);
		}
	}

	// Update Job information
	ptr_job->buf = buf;
	ptr_job->buf_size = trans_size;
	ptr_job->call_trans = callback;
	ptr_job->busy = true;


	// Start transfer
	udd_disable_busy_bank0(ep);

	// Enable interrupt
	flags = cpu_irq_save();
	if (b_dir_in) {
		udd_ack_fifocon(ep);
		udd_ack_in_send(ep);
		udd_enable_in_send_interrupt(ep);
	} else {
		udd_enable_out_received_interrupt(ep);
	}
	udd_enable_endpoint_interrupt(ep);
	cpu_irq_restore(flags);

	return true;
}