MultiDimArrayType* OneDimArrayConverter::array_type2multi_array_type(ArrayType* at){
    suif_vector<ArrayType*> array_types;

    suif_map<ArrayType*, MultiDimArrayType*>::iterator type_iter =
            type_map->find(to<ArrayType>(at));

    if (type_iter == type_map->end()) {
        suif_vector<Expression*> lower_bounds;
        suif_vector<Expression*> upper_bounds;
        suif_vector<ArrayType*> array_types;
        Type *type = at->get_element_type()->get_base_type();

        array_types.push_back(at);                      // sub-types for this array type
        all_array_types->push_back(at);                 // all array types

        while (is_kind_of<ArrayType>(type)) {           // unwrap array access
            ArrayType *atyp = to<ArrayType>(type);
            array_types.push_back(atyp);
            type = atyp->get_element_type()->get_base_type();
        }

        // save lower and upper bounds
        for (int i = array_types.size()-1;i >=0;i--) {
            ArrayType *atyp = array_types[i];
            lower_bounds.push_back(deep_suif_clone(atyp->get_lower_bound()));
            upper_bounds.push_back(deep_suif_clone(atyp->get_upper_bound()));
        }

        IInteger bit_size = to<DataType>(type)->get_bit_size();
        IInteger bit_alignment = to<DataType>(type)->get_bit_alignment();

        MultiDimArrayType* multi_type = tb->get_multi_dim_array_type(
                bit_size, bit_alignment.c_int(), 
                tb->get_qualified_type(type),
                lower_bounds, upper_bounds);

        // save the translation in the map
        type_map->enter_value(at, multi_type);
        return multi_type;
    }else
        return (*type_iter).second;
}
// All of the array references expressions in the passed in the struct are
//  equivalent, so we can determine types of the original and use that
//  to create a new expression with which to replace everything.
bool TransformUnrolledArraysPass::ReplaceNDReference(EquivalentReferences* a)
{
  assert(a != NULL) ;
  assert(a->original != NULL) ;

  // Check to see if the reference at this stage is a constant or not
  IntConstant* constantIndex = 
    dynamic_cast<IntConstant*>(a->original->get_index()) ;
  
  if (constantIndex == NULL)
  {
    // There was no replacement made
    return false ;
  }

  Expression* baseAddress = a->original->get_base_array_address() ;
  assert(baseAddress != NULL) ;
  assert(constantIndex != NULL) ;

  // Create a replacement expression for this value.  This will either
  //  be another array reference expression or a single variable.
  Expression* replacementExp = NULL ;
  //  QualifiedType* elementType = GetQualifiedTypeOfElement(a->original) ;
  VariableSymbol* originalSymbol = GetArrayVariable(a->original) ;
  assert(originalSymbol != NULL) ;
  LString replacementName = 
    GetReplacementName(originalSymbol->get_name(), 
		       constantIndex->get_value().c_int()) ;
  int dimensionality = GetDimensionality(a->original) ;
  
  QualifiedType* elementType = originalSymbol->get_type() ;
  while (dynamic_cast<ArrayType*>(elementType->get_base_type()) != NULL)
  {
    elementType = dynamic_cast<ArrayType*>(elementType->get_base_type())->get_element_type() ;
  }
  
  // There is a special case for one dimensional arrays as opposed to all
  //  other dimensional arrays.  It only should happen if we are truly
  //  replacing an array with a one dimensional array.
  if (dimensionality == 1 && 
      dynamic_cast<ArrayReferenceExpression*>(a->original->get_parent())==NULL)
  {

    VariableSymbol* replacementVar = 
      create_variable_symbol(theEnv,
			     GetQualifiedTypeOfElement(a->original),
			     TempName(replacementName)) ;
    procDef->get_symbol_table()->append_symbol_table_object(replacementVar) ;
    
    replacementExp = 
      create_load_variable_expression(theEnv,
				      elementType->get_base_type(),
				      replacementVar) ;
  }
  else
  {
    // Create a new array with one less dimension.  This requires a new
    //  array type.
    ArrayType* varType = 
      dynamic_cast<ArrayType*>(originalSymbol->get_type()->get_base_type()) ;
    assert(varType != NULL) ;
   
    ArrayType* replacementArrayType =
      create_array_type(theEnv,
	varType->get_element_type()->get_base_type()->get_bit_size(),
	0, // bit alignment
	OneLessDimension(originalSymbol->get_type(), dimensionality),
	dynamic_cast<Expression*>(varType->get_lower_bound()->deep_clone()),
	dynamic_cast<Expression*>(varType->get_upper_bound()->deep_clone()),
	TempName(varType->get_name())) ;

    procDef->get_symbol_table()->append_symbol_table_object(replacementArrayType) ;

    VariableSymbol* replacementArraySymbol = 
      create_variable_symbol(theEnv,
			     create_qualified_type(theEnv,
						   replacementArrayType,
						   TempName(LString("qualType"))),
			     TempName(replacementName)) ;

    procDef->get_symbol_table()->append_symbol_table_object(replacementArraySymbol) ;

    // Create a new symbol address expression for this variable symbol
    SymbolAddressExpression* replacementAddrExp =
      create_symbol_address_expression(theEnv,
				       replacementArrayType,
				       replacementArraySymbol) ;

    // Now, replace the symbol address expression in the base
    //  array address with this symbol.
    ReplaceSymbol(a->original, replacementAddrExp) ;
    
    // And replace this reference with the base array address.
    replacementExp = a->original->get_base_array_address() ;
    a->original->set_base_array_address(NULL) ;
    replacementExp->set_parent(NULL) ;
  }

  // Replace all of the equivalent expressions with the newly generated
  //  replacement expression.
  assert(replacementExp != NULL) ;
  a->original->get_parent()->replace(a->original, replacementExp) ;
   
  //  ReplaceChildExpression(a->original->get_parent(),
  //			 a->original,
  //			 replacementExp) ;

  list<ArrayReferenceExpression*>::iterator equivIter = 
    a->allEquivalent.begin() ;
  while (equivIter != a->allEquivalent.end()) 
  {
    (*equivIter)->get_parent()->replace((*equivIter),
					dynamic_cast<Expression*>(replacementExp->deep_clone())) ;
    //    ReplaceChildExpression((*equivIter)->get_parent(),
    //			   (*equivIter),
    //			   dynamic_cast<Expression*>(replacementExp->deep_clone())) ;
    ++equivIter ;
  }

  return true ;
}