ExitCodes main_(int, const char**) override { //------------------------------------------------------------- // parameter handling //------------------------------------------------------------- String in = getStringOption_("in"); String out = getStringOption_("out"); FileTypes::Type out_type = FileTypes::nameToType(getStringOption_("out_type")); if (out_type == FileTypes::UNKNOWN) { out_type = FileHandler().getTypeByFileName(out); } //------------------------------------------------------------- // loading input //------------------------------------------------------------- MzMLFile mz_data_file; mz_data_file.setLogType(log_type_); PeakMap ms_peakmap; std::vector<Int> ms_level(1, 1); (mz_data_file.getOptions()).setMSLevels(ms_level); mz_data_file.load(in, ms_peakmap); if (ms_peakmap.size() == 0) { LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry."; return INCOMPATIBLE_INPUT_DATA; } // make sure that the spectra are sorted by m/z ms_peakmap.sortSpectra(true); //------------------------------------------------------------- // get params for MTD and EPD algorithms //------------------------------------------------------------- Param com_param = getParam_().copy("algorithm:common:", true); writeDebug_("Common parameters passed to both sub-algorithms (mtd and epd)", com_param, 3); Param mtd_param = getParam_().copy("algorithm:mtd:", true); writeDebug_("Parameters passed to MassTraceDetection", mtd_param, 3); Param epd_param = getParam_().copy("algorithm:epd:", true); writeDebug_("Parameters passed to ElutionPeakDetection", epd_param, 3); //------------------------------------------------------------- // configure and run MTD //------------------------------------------------------------- MassTraceDetection mt_ext; mtd_param.insert("", com_param); mtd_param.remove("chrom_fwhm"); mt_ext.setParameters(mtd_param); vector<MassTrace> m_traces; mt_ext.run(ms_peakmap, m_traces); vector<MassTrace> m_traces_final; bool use_epd = epd_param.getValue("enabled").toBool(); if (!use_epd) { swap(m_traces_final, m_traces); } else { ElutionPeakDetection ep_det; epd_param.remove("enabled"); // artificially added above epd_param.insert("", com_param); ep_det.setParameters(epd_param); std::vector<MassTrace> split_mtraces; // note: this step will destroy any meta data annotation (e.g. FWHM_mz_avg) ep_det.detectPeaks(m_traces, split_mtraces); if (ep_det.getParameters().getValue("width_filtering") == "auto") { m_traces_final.clear(); ep_det.filterByPeakWidth(split_mtraces, m_traces_final); LOG_INFO << "Notice: " << split_mtraces.size() - m_traces_final.size() << " of total " << split_mtraces.size() << " were dropped because of too low peak width." << std::endl; } else { swap(m_traces_final, split_mtraces); } } //------------------------------------------------------------- // writing consensus map output //------------------------------------------------------------- if (out_type == FileTypes::CONSENSUSXML) { ConsensusMap consensus_map; StringList ms_runs; ms_peakmap.getPrimaryMSRunPath(ms_runs); consensus_map.setPrimaryMSRunPath(ms_runs); for (Size i = 0; i < m_traces_final.size(); ++i) { if (m_traces_final[i].getSize() == 0) continue; ConsensusFeature fcons; int k = 0; for (MassTrace::const_iterator it = m_traces_final[i].begin(); it != m_traces_final[i].end(); ++it) { FeatureHandle fhandle; fhandle.setRT(it->getRT()); fhandle.setMZ(it->getMZ()); fhandle.setIntensity(it->getIntensity()); fhandle.setUniqueId(++k); fcons.insert(fhandle); } fcons.setMetaValue(3, m_traces_final[i].getLabel()); fcons.setCharge(0); fcons.setWidth(m_traces_final[i].estimateFWHM(use_epd)); fcons.setQuality(1 - (1.0 / m_traces_final[i].getSize())); fcons.setRT(m_traces_final[i].getCentroidRT()); fcons.setMZ(m_traces_final[i].getCentroidMZ()); fcons.setIntensity(m_traces_final[i].getIntensity(false)); consensus_map.push_back(fcons); } consensus_map.applyMemberFunction(&UniqueIdInterface::setUniqueId); addDataProcessing_(consensus_map, getProcessingInfo_(DataProcessing::QUANTITATION)); consensus_map.setUniqueId(); ConsensusXMLFile().store(out, consensus_map); } else //(out_type == FileTypes::FEATUREXML) { //----------------------------------------------------------- // convert mass traces to features //----------------------------------------------------------- std::vector<double> stats_sd; FeatureMap ms_feat_map; StringList ms_runs; ms_peakmap.getPrimaryMSRunPath(ms_runs); ms_feat_map.setPrimaryMSRunPath(ms_runs); for (Size i = 0; i < m_traces_final.size(); ++i) { if (m_traces_final[i].getSize() == 0) continue; m_traces_final[i].updateMeanMZ(); m_traces_final[i].updateWeightedMZsd(); Feature f; f.setMetaValue(3, m_traces_final[i].getLabel()); f.setCharge(0); f.setMZ(m_traces_final[i].getCentroidMZ()); f.setIntensity(m_traces_final[i].getIntensity(false)); f.setRT(m_traces_final[i].getCentroidRT()); f.setWidth(m_traces_final[i].estimateFWHM(use_epd)); f.setOverallQuality(1 - (1.0 / m_traces_final[i].getSize())); f.getConvexHulls().push_back(m_traces_final[i].getConvexhull()); double sd = m_traces_final[i].getCentroidSD(); f.setMetaValue("SD", sd); f.setMetaValue("SD_ppm", sd / f.getMZ() * 1e6); if (m_traces_final[i].fwhm_mz_avg > 0) f.setMetaValue("FWHM_mz_avg", m_traces_final[i].fwhm_mz_avg); stats_sd.push_back(m_traces_final[i].getCentroidSD()); ms_feat_map.push_back(f); } // print some stats about standard deviation of mass traces if (stats_sd.size() > 0) { std::sort(stats_sd.begin(), stats_sd.end()); LOG_INFO << "Mass trace m/z s.d.\n" << " low quartile: " << stats_sd[stats_sd.size() * 1 / 4] << "\n" << " median: " << stats_sd[stats_sd.size() * 1 / 2] << "\n" << " upp quartile: " << stats_sd[stats_sd.size() * 3 / 4] << std::endl; } ms_feat_map.applyMemberFunction(&UniqueIdInterface::setUniqueId); //------------------------------------------------------------- // writing output //------------------------------------------------------------- // annotate output with data processing info TODO addDataProcessing_(ms_feat_map, getProcessingInfo_(DataProcessing::QUANTITATION)); //ms_feat_map.setUniqueId(); FeatureXMLFile().store(out, ms_feat_map); } return EXECUTION_OK; }
ExitCodes main_(int, const char**) { //------------------------------------------------------------- // parameter handling //------------------------------------------------------------- StringList in = getStringList_("in"); String edta = getStringOption_("pos"); String out = getStringOption_("out"); String out_sep = getStringOption_("out_separator"); String out_TIC_debug = getStringOption_("auto_rt:out_debug_TIC"); StringList in_header = getStringList_("in_header"); // number of out_debug_TIC files and input files must be identical /*if (out_TIC_debug.size() > 0 && in.size() != out_TIC_debug.size()) { LOG_FATAL_ERROR << "Error: number of input file 'in' and auto_rt:out_debug_TIC files must be identical!" << std::endl; return ILLEGAL_PARAMETERS; }*/ // number of header files and input files must be identical if (in_header.size() > 0 && in.size() != in_header.size()) { LOG_FATAL_ERROR << "Error: number of input file 'in' and 'in_header' files must be identical!" << std::endl; return ILLEGAL_PARAMETERS; } if (!getFlag_("auto_rt:enabled") && !out_TIC_debug.empty()) { LOG_FATAL_ERROR << "Error: TIC output file requested, but auto_rt is not enabled! Either do not request the file or switch on 'auto_rt:enabled'." << std::endl; return ILLEGAL_PARAMETERS; } double rttol = getDoubleOption_("rt_tol"); double mztol = getDoubleOption_("mz_tol"); Size rt_collect = getIntOption_("rt_collect"); //------------------------------------------------------------- // loading input //------------------------------------------------------------- MzMLFile mzml_file; mzml_file.setLogType(log_type_); MSExperiment<Peak1D> exp, exp_pp; EDTAFile ed; ConsensusMap cm; ed.load(edta, cm); StringList tf_single_header0, tf_single_header1, tf_single_header2; // header content, for each column std::vector<String> vec_single; // one line for each compound, multiple columns per experiment vec_single.resize(cm.size()); for (Size fi = 0; fi < in.size(); ++fi) { // load raw data mzml_file.load(in[fi], exp); exp.sortSpectra(true); if (exp.empty()) { LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry." << std::endl; return INCOMPATIBLE_INPUT_DATA; } // try to detect RT peaks (only for the first input file -- all others should align!) // cm.size() might change in here... if (getFlag_("auto_rt:enabled") && fi == 0) { ConsensusMap cm_local = cm; // we might have different RT peaks for each map if 'auto_rt' is enabled cm.clear(false); // reset global list (about to be filled) // compute TIC MSChromatogram<> tic = exp.getTIC(); MSSpectrum<> tics, tic_gf, tics_pp, tics_sn; for (Size ic = 0; ic < tic.size(); ++ic) { // rewrite Chromatogram to MSSpectrum (GaussFilter requires it) Peak1D peak; peak.setMZ(tic[ic].getRT()); peak.setIntensity(tic[ic].getIntensity()); tics.push_back(peak); } // smooth (no PP_CWT here due to efficiency reasons -- large FWHM take longer!) double fwhm = getDoubleOption_("auto_rt:FHWM"); GaussFilter gf; Param p = gf.getParameters(); p.setValue("gaussian_width", fwhm * 2); // wider than FWHM, just to be sure we have a fully smoothed peak. Merging two peaks is unlikely p.setValue("use_ppm_tolerance", "false"); gf.setParameters(p); tic_gf = tics; gf.filter(tic_gf); // pick peaks PeakPickerHiRes pp; p = pp.getParameters(); p.setValue("signal_to_noise", getDoubleOption_("auto_rt:SNThreshold")); pp.setParameters(p); pp.pick(tic_gf, tics_pp); if (tics_pp.size()) { LOG_INFO << "Found " << tics_pp.size() << " auto-rt peaks at: "; for (Size ipp = 0; ipp != tics_pp.size(); ++ipp) LOG_INFO << " " << tics_pp[ipp].getMZ(); } else { LOG_INFO << "Found no auto-rt peaks. Change threshold parameters!"; } LOG_INFO << std::endl; if (!out_TIC_debug.empty()) // if debug file was given { // store intermediate steps for debug MSExperiment<> out_debug; out_debug.addChromatogram(toChromatogram(tics)); out_debug.addChromatogram(toChromatogram(tic_gf)); SignalToNoiseEstimatorMedian<MSSpectrum<> > snt; snt.init(tics); for (Size is = 0; is < tics.size(); ++is) { Peak1D peak; peak.setMZ(tic[is].getMZ()); peak.setIntensity(snt.getSignalToNoise(tics[is])); tics_sn.push_back(peak); } out_debug.addChromatogram(toChromatogram(tics_sn)); out_debug.addChromatogram(toChromatogram(tics_pp)); // get rid of "native-id" missing warning for (Size id = 0; id < out_debug.size(); ++id) out_debug[id].setNativeID(String("spectrum=") + id); mzml_file.store(out_TIC_debug, out_debug); LOG_DEBUG << "Storing debug AUTO-RT: " << out_TIC_debug << std::endl; } // add target EICs: for each m/z with no/negative RT, add all combinations of that m/z with auto-RTs // duplicate m/z entries will be ignored! // all other lines with positive RT values are copied unaffected //do not allow doubles std::set<double> mz_doubles; for (ConsensusMap::Iterator cit = cm_local.begin(); cit != cm_local.end(); ++cit) { if (cit->getRT() < 0) { if (mz_doubles.find(cit->getMZ()) == mz_doubles.end()) { mz_doubles.insert(cit->getMZ()); } else { LOG_INFO << "Found duplicate m/z entry (" << cit->getMZ() << ") for auto-rt. Skipping ..." << std::endl; continue; } ConsensusMap cm_RT_multiplex; for (MSSpectrum<>::ConstIterator itp = tics_pp.begin(); itp != tics_pp.end(); ++itp) { ConsensusFeature f = *cit; f.setRT(itp->getMZ()); cm.push_back(f); } } else { // default feature with no auto-rt LOG_INFO << "copying feature with RT " << cit->getRT() << std::endl; cm.push_back(*cit); } } // resize, since we have more positions now vec_single.resize(cm.size()); } // search for each EIC and add up Int not_found(0); Map<Size, double> quant; String description; if (fi < in_header.size()) { HeaderInfo info(in_header[fi]); description = info.header_description; } if (fi == 0) { // two additional columns for first file (theoretical RT and m/z) tf_single_header0 << "" << ""; tf_single_header1 << "" << ""; tf_single_header2 << "RT" << "mz"; } // 5 entries for each input file tf_single_header0 << File::basename(in[fi]) << "" << "" << "" << ""; tf_single_header1 << description << "" << "" << "" << ""; tf_single_header2 << "RTobs" << "dRT" << "mzobs" << "dppm" << "intensity"; for (Size i = 0; i < cm.size(); ++i) { //std::cerr << "Rt" << cm[i].getRT() << " mz: " << cm[i].getMZ() << " R " << cm[i].getMetaValue("rank") << "\n"; double mz_da = mztol * cm[i].getMZ() / 1e6; // mz tolerance in Dalton MSExperiment<>::ConstAreaIterator it = exp.areaBeginConst(cm[i].getRT() - rttol / 2, cm[i].getRT() + rttol / 2, cm[i].getMZ() - mz_da, cm[i].getMZ() + mz_da); Peak2D max_peak; max_peak.setIntensity(0); max_peak.setRT(cm[i].getRT()); max_peak.setMZ(cm[i].getMZ()); for (; it != exp.areaEndConst(); ++it) { if (max_peak.getIntensity() < it->getIntensity()) { max_peak.setIntensity(it->getIntensity()); max_peak.setRT(it.getRT()); max_peak.setMZ(it->getMZ()); } } double ppm = 0; // observed m/z offset if (max_peak.getIntensity() == 0) { ++not_found; } else { // take median for m/z found std::vector<double> mz; MSExperiment<>::Iterator itm = exp.RTBegin(max_peak.getRT()); SignedSize low = std::min<SignedSize>(std::distance(exp.begin(), itm), rt_collect); SignedSize high = std::min<SignedSize>(std::distance(itm, exp.end()) - 1, rt_collect); MSExperiment<>::AreaIterator itt = exp.areaBegin((itm - low)->getRT() - 0.01, (itm + high)->getRT() + 0.01, cm[i].getMZ() - mz_da, cm[i].getMZ() + mz_da); for (; itt != exp.areaEnd(); ++itt) { mz.push_back(itt->getMZ()); //std::cerr << "ppm: " << itt.getRT() << " " << itt->getMZ() << " " << itt->getIntensity() << std::endl; } if ((SignedSize)mz.size() > (low + high + 1)) LOG_WARN << "Compound " << i << " has overlapping peaks [" << mz.size() << "/" << low + high + 1 << "]" << std::endl; if (!mz.empty()) { double avg_mz = std::accumulate(mz.begin(), mz.end(), 0.0) / double(mz.size()); //std::cerr << "avg: " << avg_mz << "\n"; ppm = (avg_mz - cm[i].getMZ()) / cm[i].getMZ() * 1e6; } } // appending the second column set requires separator String append_sep = (fi == 0 ? "" : out_sep); vec_single[i] += append_sep; // new line if (fi == 0) { vec_single[i] += String(cm[i].getRT()) + out_sep + String(cm[i].getMZ()) + out_sep; } vec_single[i] += String(max_peak.getRT()) + out_sep + String(max_peak.getRT() - cm[i].getRT()) + out_sep + String(max_peak.getMZ()) + out_sep + String(ppm) + out_sep + String(max_peak.getIntensity()); } if (not_found) LOG_INFO << "Missing peaks for " << not_found << " compounds in file '" << in[fi] << "'.\n"; } //------------------------------------------------------------- // create header //------------------------------------------------------------- vec_single.insert(vec_single.begin(), ListUtils::concatenate(tf_single_header2, out_sep)); vec_single.insert(vec_single.begin(), ListUtils::concatenate(tf_single_header1, out_sep)); vec_single.insert(vec_single.begin(), ListUtils::concatenate(tf_single_header0, out_sep)); //------------------------------------------------------------- // writing output //------------------------------------------------------------- TextFile tf; for (std::vector<String>::iterator v_it = vec_single.begin(); v_it != vec_single.end(); ++v_it) { tf.addLine(*v_it); } tf.store(out); return EXECUTION_OK; }
/// @brief extracts the iTRAQ channels from the MS data and stores intensity values in a consensus map /// /// @param ms_exp_data Raw data to read /// @param consensus_map Output each MS² scan as a consensus feature /// @throws Exception::MissingInformation if no scans present or MS² scan has no precursor void ItraqChannelExtractor::run(const MSExperiment<Peak1D>& ms_exp_data, ConsensusMap& consensus_map) { if (ms_exp_data.empty()) { LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry."; throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, "Experiment has no scans!"); } MSExperiment<> ms_exp_MS2; String mode = (String) param_.getValue("select_activation"); std::cout << "Selecting scans with activation mode: " << (mode == "" ? "any" : mode) << "\n"; HasActivationMethod<MSExperiment<Peak1D>::SpectrumType> activation_predicate(ListUtils::create<String>(mode)); for (size_t idx = 0; idx < ms_exp_data.size(); ++idx) { if (ms_exp_data[idx].getMSLevel() == 2) { if (mode == "" || activation_predicate(ms_exp_data[idx])) { // copy only MS² scans ms_exp_MS2.addSpectrum(ms_exp_data[idx]); } else { //std::cout << "deleting spectrum # " << idx << " with RT: " << ms_exp_data[idx].getRT() << "\n"; } } } #ifdef ITRAQ_DEBUG std::cout << "we have " << ms_exp_MS2.size() << " scans left of level " << ms_exp_MS2[0].getMSLevel() << std::endl; std::cout << "run: channel_map_ has " << channel_map_.size() << " entries!" << std::endl; #endif consensus_map.clear(false); // set <mapList> header Int index_cnt = 0; for (ChannelMapType::const_iterator cm_it = channel_map_.begin(); cm_it != channel_map_.end(); ++cm_it) { // structure of Map cm_it // first == channel-name as Int e.g. 114 // second == ChannelInfo struct ConsensusMap::FileDescription channel_as_map; // label is the channel + description provided in the Params if (itraq_type_ != TMT_SIXPLEX) channel_as_map.label = "iTRAQ_" + String(cm_it->second.name) + "_" + String(cm_it->second.description); else channel_as_map.label = "TMT_" + String(cm_it->second.name) + "_" + String(cm_it->second.description); channel_as_map.size = ms_exp_MS2.size(); //TODO what about .filename? leave empty? // add some more MetaInfo channel_as_map.setMetaValue("channel_name", cm_it->second.name); channel_as_map.setMetaValue("channel_id", cm_it->second.id); channel_as_map.setMetaValue("channel_description", cm_it->second.description); channel_as_map.setMetaValue("channel_center", cm_it->second.center); channel_as_map.setMetaValue("channel_active", String(cm_it->second.active ? "true" : "false")); consensus_map.getFileDescriptions()[index_cnt++] = channel_as_map; } // create consensusElements Peak2D::CoordinateType allowed_deviation = (Peak2D::CoordinateType) param_.getValue("reporter_mass_shift"); // now we have picked data // --> assign peaks to channels UInt element_index(0); for (MSExperiment<>::ConstIterator it = ms_exp_MS2.begin(); it != ms_exp_MS2.end(); ++it) { // store RT&MZ of parent ion as centroid of ConsensusFeature ConsensusFeature cf; cf.setUniqueId(); cf.setRT(it->getRT()); if (it->getPrecursors().size() >= 1) { cf.setMZ(it->getPrecursors()[0].getMZ()); } else { throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, String("No precursor information given for scan native ID ") + String(it->getNativeID()) + " with RT " + String(it->getRT())); } Peak2D channel_value; channel_value.setRT(it->getRT()); // for each each channel Int index = 0; Peak2D::IntensityType overall_intensity = 0; for (ChannelMapType::const_iterator cm_it = channel_map_.begin(); cm_it != channel_map_.end(); ++cm_it) { // set mz-position of channel channel_value.setMZ(cm_it->second.center); // reset intensity channel_value.setIntensity(0); //add up all signals for (MSExperiment<>::SpectrumType::ConstIterator mz_it = it->MZBegin(cm_it->second.center - allowed_deviation) ; mz_it != it->MZEnd(cm_it->second.center + allowed_deviation) ; ++mz_it ) { channel_value.setIntensity(channel_value.getIntensity() + mz_it->getIntensity()); } overall_intensity += channel_value.getIntensity(); // add channel to ConsensusFeature cf.insert(index++, channel_value, element_index); } // ! channel_iterator // check featureHandles are not empty if (overall_intensity == 0) { cf.setMetaValue("all_empty", String("true")); } cf.setIntensity(overall_intensity); consensus_map.push_back(cf); // the tandem-scan in the order they appear in the experiment ++element_index; } // ! Experiment iterator #ifdef ITRAQ_DEBUG std::cout << "processed " << element_index << " scans" << std::endl; #endif consensus_map.setExperimentType("itraq"); return; }
void IsobaricChannelExtractor::extractChannels(const MSExperiment<Peak1D>& ms_exp_data, ConsensusMap& consensus_map) { if (ms_exp_data.empty()) { LOG_WARN << "The given file does not contain any conventional peak data, but might" " contain chromatograms. This tool currently cannot handle them, sorry.\n"; throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, "Experiment has no scans!"); } // clear the output map consensus_map.clear(false); consensus_map.setExperimentType("labeled_MS2"); // create predicate for spectrum checking LOG_INFO << "Selecting scans with activation mode: " << (selected_activation_ == "" ? "any" : selected_activation_) << "\n"; HasActivationMethod<MSExperiment<Peak1D>::SpectrumType> activation_predicate(StringList::create(selected_activation_)); // now we have picked data // --> assign peaks to channels UInt64 element_index(0); // remember the current precusor spectrum MSExperiment<Peak1D>::ConstIterator prec_spec = ms_exp_data.end(); for (MSExperiment<Peak1D>::ConstIterator it = ms_exp_data.begin(); it != ms_exp_data.end(); ++it) { // remember the last MS1 spectra as we assume it to be the precursor spectrum if (it->getMSLevel() == 1) prec_spec = it; if (selected_activation_ == "" || activation_predicate(*it)) { // check if precursor is available if (it->getPrecursors().empty()) { throw Exception::MissingInformation(__FILE__, __LINE__, __PRETTY_FUNCTION__, String("No precursor information given for scan native ID ") + it->getNativeID() + " with RT " + String(it->getRT())); } // check precursor constraints if (!isValidPrecursor_(it->getPrecursors()[0])) { LOG_DEBUG << "Skip spectrum " << it->getNativeID() << ": Precursor doesn't fulfill all constraints." << std::endl; continue; } // check precursor purity if we have a valid precursor .. if (prec_spec != ms_exp_data.end()) { const DoubleReal purity = computePrecursorPurity_(it, prec_spec); if (purity < min_precursor_purity_) { LOG_DEBUG << "Skip spectrum " << it->getNativeID() << ": Precursor purity is below the threshold. [purity = " << purity << "]" << std::endl; continue; } } else { LOG_INFO << "No precursor available for spectrum: " << it->getNativeID() << std::endl; } if (!(prec_spec == ms_exp_data.end()) && computePrecursorPurity_(it, prec_spec) < min_precursor_purity_) { LOG_DEBUG << "Skip spectrum " << it->getNativeID() << ": Precursor purity is below the threshold." << std::endl; continue; } // store RT&MZ of parent ion as centroid of ConsensusFeature ConsensusFeature cf; cf.setUniqueId(); cf.setRT(it->getRT()); cf.setMZ(it->getPrecursors()[0].getMZ()); Peak2D channel_value; channel_value.setRT(it->getRT()); // for each each channel UInt64 map_index = 0; Peak2D::IntensityType overall_intensity = 0; for (IsobaricQuantitationMethod::IsobaricChannelList::const_iterator cl_it = quant_method_->getChannelInformation().begin(); cl_it != quant_method_->getChannelInformation().end(); ++cl_it) { // set mz-position of channel channel_value.setMZ(cl_it->center); // reset intensity channel_value.setIntensity(0); // as every evaluation requires time, we cache the MZEnd iterator const MSExperiment<Peak1D>::SpectrumType::ConstIterator mz_end = it->MZEnd(cl_it->center + reporter_mass_shift_); // add up all signals for (MSExperiment<Peak1D>::SpectrumType::ConstIterator mz_it = it->MZBegin(cl_it->center - reporter_mass_shift_); mz_it != mz_end; ++mz_it) { channel_value.setIntensity(channel_value.getIntensity() + mz_it->getIntensity()); } // discard contribution of this channel as it is below the required intensity threshold if (channel_value.getIntensity() < min_reporter_intensity_) { channel_value.setIntensity(0); } overall_intensity += channel_value.getIntensity(); // add channel to ConsensusFeature cf.insert(map_index++, channel_value, element_index); } // ! channel_iterator // check if we keep this feature or if it contains low-intensity quantifications if (remove_low_intensity_quantifications_ && hasLowIntensityReporter_(cf)) { continue; } // check featureHandles are not empty if (overall_intensity == 0) { cf.setMetaValue("all_empty", String("true")); } cf.setIntensity(overall_intensity); consensus_map.push_back(cf); // the tandem-scan in the order they appear in the experiment ++element_index; } } // ! Experiment iterator /// add meta information to the map registerChannelsInOutputMap_(consensus_map); }
void EDTAFile::load(const String& filename, ConsensusMap& consensus_map) { // load input TextFile input(filename); TextFile::ConstIterator input_it = input.begin(); // reset map consensus_map = ConsensusMap(); consensus_map.setUniqueId(); char separator = ' '; if (input_it->hasSubstring("\t")) separator = '\t'; else if (input_it->hasSubstring(" ")) separator = ' '; else if (input_it->hasSubstring(",")) separator = ','; // parsing header line std::vector<String> headers; input_it->split(separator, headers); int offset = 0; for (Size i = 0; i < headers.size(); ++i) { headers[i].trim(); } String header_trimmed = *input.begin(); header_trimmed.trim(); enum { TYPE_UNDEFINED, TYPE_OLD_NOCHARGE, TYPE_OLD_CHARGE, TYPE_CONSENSUS } input_type = TYPE_UNDEFINED; Size input_features = 1; double rt = 0.0; double mz = 0.0; double it = 0.0; Int ch = 0; if (headers.size() <= 2) { throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line 1: not enough columns! Expected at least 3 columns!\nOffending line: '") + header_trimmed + "' (line 1)\n"); } else if (headers.size() == 3) input_type = TYPE_OLD_NOCHARGE; else if (headers.size() == 4) input_type = TYPE_OLD_CHARGE; // see if we have a header try { // try to convert... if not: thats a header rt = headers[0].toDouble(); mz = headers[1].toDouble(); it = headers[2].toDouble(); } catch (Exception::BaseException&) { offset = 1; ++input_it; LOG_INFO << "Detected a header line.\n"; } if (headers.size() >= 5) { if (String(headers[4].trim()).toUpper() == "RT1") input_type = TYPE_CONSENSUS; else input_type = TYPE_OLD_CHARGE; } if (input_type == TYPE_CONSENSUS) { // Every consensus style line includes features with four columns. // The remainder is meta data input_features = headers.size() / 4; } if (offset == 0 && (input_type == TYPE_OLD_CHARGE || input_type == TYPE_CONSENSUS)) { throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line 1: No HEADER provided. This is only allowed for three columns. You have more!\nOffending line: '") + header_trimmed + "' (line 1)\n"); } SignedSize input_size = input.end() - input.begin(); ConsensusMap::FileDescription desc; desc.filename = filename; desc.size = (input_size) - offset; consensus_map.getFileDescriptions()[0] = desc; // parsing features consensus_map.reserve(input_size); for (; input_it != input.end(); ++input_it) { //do nothing for empty lines String line_trimmed = *input_it; line_trimmed.trim(); if (line_trimmed == "") { if ((input_it - input.begin()) < input_size - 1) LOG_WARN << "Notice: Empty line ignored (line " << ((input_it - input.begin()) + 1) << ")."; continue; } //split line to tokens std::vector<String> parts; input_it->split(separator, parts); //abort if line does not contain enough fields if (parts.size() < 3) { throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line ") + String((input_it - input.begin()) + 1) + ": At least three columns are needed! (got " + String(parts.size()) + ")\nOffending line: '" + line_trimmed + "' (line " + String((input_it - input.begin()) + 1) + ")\n"); } ConsensusFeature cf; cf.setUniqueId(); try { // Convert values. Will return -1 if not available. rt = checkedToDouble_(parts, 0); mz = checkedToDouble_(parts, 1); it = checkedToDouble_(parts, 2); ch = checkedToInt_(parts, 3); cf.setRT(rt); cf.setMZ(mz); cf.setIntensity(it); if (input_type != TYPE_OLD_NOCHARGE) cf.setCharge(ch); } catch (Exception::BaseException&) { throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line ") + String((input_it - input.begin()) + 1) + ": Could not convert the first three columns to a number!\nOffending line: '" + line_trimmed + "' (line " + String((input_it - input.begin()) + 1) + ")\n"); } // Check all features in one line for (Size j = 1; j < input_features; ++j) { try { Feature f; f.setUniqueId(); // Convert values. Will return -1 if not available. rt = checkedToDouble_(parts, j * 4 + 0); mz = checkedToDouble_(parts, j * 4 + 1); it = checkedToDouble_(parts, j * 4 + 2); ch = checkedToInt_(parts, j * 4 + 3); // Only accept features with at least RT and MZ set if (rt != -1 && mz != -1) { f.setRT(rt); f.setMZ(mz); f.setIntensity(it); f.setCharge(ch); cf.insert(j - 1, f); } } catch (Exception::BaseException&) { throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Failed parsing in line ") + String((input_it - input.begin()) + 1) + ": Could not convert one of the four sub-feature columns (starting at column " + (j * 4 + 1) + ") to a number! Is the correct separator specified?\nOffending line: '" + line_trimmed + "' (line " + String((input_it - input.begin()) + 1) + ")\n"); } } //parse meta data for (Size j = input_features * 4; j < parts.size(); ++j) { String part_trimmed = parts[j]; part_trimmed.trim(); if (part_trimmed != "") { //check if column name is ok if (headers.size() <= j || headers[j] == "") { throw Exception::ParseError(__FILE__, __LINE__, __PRETTY_FUNCTION__, "", String("Error: Missing meta data header for column ") + (j + 1) + "!" + String("Offending header line: '") + header_trimmed + "' (line 1)"); } //add meta value cf.setMetaValue(headers[j], part_trimmed); } } //insert feature to map consensus_map.push_back(cf); } // register FileDescriptions ConsensusMap::FileDescription fd; fd.filename = filename; fd.size = consensus_map.size(); Size maps = std::max(input_features - 1, Size(1)); // its either a simple feature or a consensus map // (in this case the 'input_features' includes the centroid, which we do not count) for (Size i = 0; i < maps; ++i) { fd.label = String("EDTA_Map ") + String(i); consensus_map.getFileDescriptions()[i] = fd; } }