// simple {DM,IM} and {DV,IV} arrays void dumpDM(const DM& A, const char* s) { DMat M; M.load(A.num_rows(),A.num_cols(), A.data()); M.print(g_MSGFile, s, "lf", 4, 8, 51,0,50); }
int main(int argc, char** argv) { DM DualMesh; if ((argc!=4) && (argc!=6)) { cout<<endl; cout<<" -------------------- Curvature Filter ------------------------- "<<endl; cout<<" Please cite Yuanhao's PhD thesis and related papers. Thank you! "<<endl; cout<<" --------------------------------------------------------------- \n\n"; cout<<"usage: main imageName filterType Iterations.\n For example: ./cf lena.bmp m 30\n"; cout<<" or "<<endl; cout<<"usage: main imageName filterType MaxItNum lambda DataFitOrder.\n For example: ./cf lena.bmp m 30 1.2 1.5\n"; cout<<"************************************************\n"; cout<<"Possible Filter Type: t (Total Variation) \n"; cout<<" m (Mean Curvature) \n"; cout<<" g (Gaussian Curvature) \n"; cout<<" d (Difference Curvature) \n"; cout<<" b (Bernstein Filter) \n"; return -1; } DualMesh.read(argv[1]); char * filterType = argv[2]; if (*filterType == 't') Type = 0; if (*filterType == 'm') Type = 1; if (*filterType == 'd') Type = 3; if (*filterType == 'b') Type = 4; ItNum = atoi(argv[3]); if (argc==6) { lambda = atof(argv[4]); DataFitOrder = atof(argv[5]); } DualMesh.split(); double mytime; DualMesh.Filter(Type, mytime, ItNum); cout<<"runtime is "<<mytime<<" milliseconds."<<endl; DualMesh.merge(); DualMesh.write(); DualMesh.read(argv[1]); DualMesh.FilterNoSplit(Type, mytime, ItNum); cout<<"runtime (noSplit) is "<<mytime<<" milliseconds."<<endl; DualMesh.write("CF_NoSplit_result.png"); if (argc==6) { //filter solver for the variational models DualMesh.read(argv[1]); DualMesh.Solver(Type, mytime, ItNum, lambda, DataFitOrder); cout<<"runtime is "<<mytime<<" milliseconds."<<endl; DualMesh.write("CF_Solver.png"); } return 0; }
int main(int argc, char *argv[]) { // A int ncol = 5, nrow = 5; vector<int> colind = {0, 3, 6, 8, 10, 12}; vector<int> row = {0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4}; vector<double> nz = {19, 12, 12, 21, 12, 12, 21, 16, 21, 5, 21, 18}; DM A(Sparsity(nrow, ncol, colind, row), nz); // Right hand side DM b = DM::ones(ncol); // Type of linear systems enum SymType {UNSYM, SYM, PD}; // All Linear solvers to be tested struct Test { string solver; SymType type; }; vector<Test> tests; tests.push_back({"csparse", UNSYM}); tests.push_back({"csparsecholesky", PD}); tests.push_back({"lapacklu", UNSYM}); tests.push_back({"lapackqr", UNSYM}); tests.push_back({"ma27", SYM}); tests.push_back({"symbolicqr", UNSYM}); // Test all combinations for (auto s : {UNSYM, SYM, PD}) { DM A_test; switch (s) { case UNSYM: cout << "Unsymmetric linear system" << endl; A_test = A; break; case SYM: cout << "Symmetric linear system" << endl; A_test = A + A.T(); break; case PD: cout << "Positive definite linear system" << endl; A_test = mtimes(A.T(), A); break; } for (auto t : tests) { if (t.type > s) continue; // Cannot be solved if (!Linsol::has_plugin(t.solver)) { cout << t.solver << " not available" << endl; continue; } // Create a solver instance Linsol F("F", t.solver); // Solve F.reset(A_test.sparsity()); F.pivoting(A_test.ptr()); F.factorize(A_test.ptr()); DM x = densify(b); F.solve(x.ptr(), x.size2()); // Print the solution cout << "solution: " << x << " (" << t.solver << ")" << endl; } } return 0; }