void MeshBase::detect_interior_parents() { // This requires an inspection on every processor parallel_object_only(); // Check if the mesh contains mixed dimensions. If so, then set interior parents, otherwise return. if (this->elem_dimensions().size() == 1) return; //This map will be used to set interior parents LIBMESH_BEST_UNORDERED_MAP<dof_id_type, std::vector<dof_id_type> > node_to_elem; const_element_iterator el = this->active_elements_begin(); const_element_iterator end = this->active_elements_end(); for (; el!=end; ++el) { const Elem * elem = *el; // Populating the node_to_elem map, same as MeshTools::build_nodes_to_elem_map for (unsigned int n=0; n<elem->n_vertices(); n++) { libmesh_assert_less (elem->id(), this->max_elem_id()); node_to_elem[elem->node_id(n)].push_back(elem->id()); } } // Automatically set interior parents el = this->elements_begin(); for (; el!=end; ++el) { Elem * element = *el; // Ignore an 3D element or an element that already has an interior parent if (element->dim()>=LIBMESH_DIM || element->interior_parent()) continue; // Start by generating a SET of elements that are dim+1 to the current // element at each vertex of the current element, thus ignoring interior nodes. // If one of the SET of elements is empty, then we will not have an interior parent // since an interior parent must be connected to all vertices of the current element std::vector< std::set<dof_id_type> > neighbors( element->n_vertices() ); bool found_interior_parents = false; for (dof_id_type n=0; n < element->n_vertices(); n++) { std::vector<dof_id_type> & element_ids = node_to_elem[element->node_id(n)]; for (std::vector<dof_id_type>::iterator e_it = element_ids.begin(); e_it != element_ids.end(); e_it++) { dof_id_type eid = *e_it; if (this->elem_ref(eid).dim() == element->dim()+1) neighbors[n].insert(eid); } if (neighbors[n].size()>0) { found_interior_parents = true; } else { // We have found an empty set, no reason to continue // Ensure we set this flag to false before the break since it could have // been set to true for previous vertex found_interior_parents = false; break; } } // If we have successfully generated a set of elements for each vertex, we will compare // the set for vertex 0 will the sets for the vertices until we find a id that exists in // all sets. If found, this is our an interior parent id. The interior parent id found // will be the lowest element id if there is potential for multiple interior parents. if (found_interior_parents) { std::set<dof_id_type> & neighbors_0 = neighbors[0]; for (std::set<dof_id_type>::iterator e_it = neighbors_0.begin(); e_it != neighbors_0.end(); e_it++) { found_interior_parents=false; dof_id_type interior_parent_id = *e_it; for (dof_id_type n=1; n < element->n_vertices(); n++) { if (neighbors[n].find(interior_parent_id)!=neighbors[n].end()) { found_interior_parents=true; } else { found_interior_parents=false; break; } } if (found_interior_parents) { element->set_interior_parent(this->elem_ptr(interior_parent_id)); break; } } } } }
void TetGenMeshInterface::triangulate_conformingDelaunayMesh_carvehole (const std::vector<Point> & holes, double quality_constraint, double volume_constraint) { // Before calling this function, the Mesh must contain a convex hull // of TRI3 elements which define the boundary. unsigned hull_integrity_check = check_hull_integrity(); // Possibly die if hull integrity check failed this->process_hull_integrity_result(hull_integrity_check); // class tetgen_wrapper allows library access on a basic level TetGenWrapper tetgen_wrapper; // Copy Mesh's node points into TetGen data structure this->fill_pointlist(tetgen_wrapper); // >>> fill input structure "tetgenio" with facet data: int facet_num = this->_mesh.n_elem(); // allocate memory in "tetgenio" structure: tetgen_wrapper.allocate_facetlist (facet_num, cast_int<int>(holes.size())); // Set up tetgen data structures with existing facet information // from the convex hull. { int insertnum = 0; MeshBase::element_iterator it = this->_mesh.elements_begin(); const MeshBase::element_iterator end = this->_mesh.elements_end(); for (; it != end ; ++it) { tetgen_wrapper.allocate_facet_polygonlist(insertnum, 1); tetgen_wrapper.allocate_polygon_vertexlist(insertnum, 0, 3); Elem * elem = *it; for (unsigned int j=0; j<elem->n_nodes(); ++j) { // We need to get the sequential index of elem->node_ptr(j), but // it should already be stored in _sequential_to_libmesh_node_map... unsigned libmesh_node_id = elem->node_id(j); // The libmesh node IDs may not be sequential, but can we assume // they are at least in order??? We will do so here. std::vector<unsigned>::iterator node_iter = Utility::binary_find(_sequential_to_libmesh_node_map.begin(), _sequential_to_libmesh_node_map.end(), libmesh_node_id); // Check to see if not found: this could also indicate the sequential // node map is not sorted... if (node_iter == _sequential_to_libmesh_node_map.end()) libmesh_error_msg("Global node " << libmesh_node_id << " not found in sequential node map!"); int sequential_index = cast_int<int> (std::distance(_sequential_to_libmesh_node_map.begin(), node_iter)); // Debugging: // libMesh::out << "libmesh_node_id=" << libmesh_node_id // << ", sequential_index=" << sequential_index // << std::endl; tetgen_wrapper.set_vertex(insertnum, // facet number 0, // polygon (always 0) j, // local vertex index in tetgen input sequential_index); } // Go to next facet in polygonlist insertnum++; } } // fill hole list (if there are holes): if (holes.size() > 0) { std::vector<Point>::const_iterator ihole; unsigned hole_index = 0; for (ihole=holes.begin(); ihole!=holes.end(); ++ihole) tetgen_wrapper.set_hole(hole_index++, (*ihole)(0), (*ihole)(1), (*ihole)(2)); } // Run TetGen triangulation method: // p = tetrahedralizes a piecewise linear complex (see definition in user manual) // Q = quiet, no terminal output // q = specify a minimum radius/edge ratio // a = tetrahedron volume constraint // assemble switches: std::ostringstream oss; // string holding switches oss << "pQ"; if (quality_constraint != 0) oss << "q" << std::fixed << quality_constraint; if (volume_constraint != 0) oss << "a" << std::fixed << volume_constraint; std::string params = oss.str(); tetgen_wrapper.set_switches(params); // TetGen switches: Piecewise linear complex, Quiet mode tetgen_wrapper.run_tetgen(); // => nodes: unsigned int old_nodesnum = this->_mesh.n_nodes(); REAL x=0., y=0., z=0.; const unsigned int num_nodes = tetgen_wrapper.get_numberofpoints(); // Debugging: // libMesh::out << "Original mesh had " << old_nodesnum << " nodes." << std::endl; // libMesh::out << "Reserving space for " << num_nodes << " total nodes." << std::endl; // Reserve space for additional nodes in the node map _sequential_to_libmesh_node_map.reserve(num_nodes); // Add additional nodes to the Mesh. // Original code had i<=num_nodes here (Note: the indexing is: // foo[3*i], [3*i+1], [3*i+2]) But according to the TetGen docs, "In // all cases, the first item in any array is stored starting at // index [0]." for (unsigned int i=old_nodesnum; i<num_nodes; i++) { // Fill in x, y, z values tetgen_wrapper.get_output_node(i, x,y,z); // Catch the node returned by add_point()... this will tell us the ID // assigned by the Mesh. Node * new_node = this->_mesh.add_point ( Point(x,y,z) ); // Store this new ID in our sequential-to-libmesh node mapping array _sequential_to_libmesh_node_map.push_back( new_node->id() ); } // Debugging: // std::copy(_sequential_to_libmesh_node_map.begin(), // _sequential_to_libmesh_node_map.end(), // std::ostream_iterator<unsigned>(std::cout, " ")); // std::cout << std::endl; // => tetrahedra: const unsigned int num_elements = tetgen_wrapper.get_numberoftetrahedra(); // Vector that temporarily holds the node labels defining element connectivity. unsigned int node_labels[4]; for (unsigned int i=0; i<num_elements; i++) { // TetGen only supports Tet4 elements. Elem * elem = new Tet4; // Fill up the the node_labels vector for (unsigned int j=0; j<elem->n_nodes(); j++) node_labels[j] = tetgen_wrapper.get_element_node(i,j); // Associate nodes with this element this->assign_nodes_to_elem(node_labels, elem); // Finally, add this element to the mesh this->_mesh.add_elem(elem); } // Delete original convex hull elements. Is there ever a case where // we should not do this? this->delete_2D_hull_elements(); }
Elem * Packing<Elem *>::unpack (std::vector<largest_id_type>::const_iterator in, MeshBase * mesh) { #ifndef NDEBUG const std::vector<largest_id_type>::const_iterator original_in = in; const largest_id_type incoming_header = *in++; libmesh_assert_equal_to (incoming_header, elem_magic_header); #endif // int 0: level const unsigned int level = cast_int<unsigned int>(*in++); #ifdef LIBMESH_ENABLE_AMR // int 1: p level const unsigned int p_level = cast_int<unsigned int>(*in++); // int 2: refinement flag and encoded has_children const int rflag = cast_int<int>(*in++); const int invalid_rflag = cast_int<int>(Elem::INVALID_REFINEMENTSTATE); libmesh_assert_greater_equal (rflag, 0); libmesh_assert_less (rflag, invalid_rflag*2+1); const bool has_children = (rflag > invalid_rflag); const Elem::RefinementState refinement_flag = has_children ? cast_int<Elem::RefinementState>(rflag - invalid_rflag - 1) : cast_int<Elem::RefinementState>(rflag); // int 3: p refinement flag const int pflag = cast_int<int>(*in++); libmesh_assert_greater_equal (pflag, 0); libmesh_assert_less (pflag, Elem::INVALID_REFINEMENTSTATE); const Elem::RefinementState p_refinement_flag = cast_int<Elem::RefinementState>(pflag); #else in += 3; #endif // LIBMESH_ENABLE_AMR // int 4: element type const int typeint = cast_int<int>(*in++); libmesh_assert_greater_equal (typeint, 0); libmesh_assert_less (typeint, INVALID_ELEM); const ElemType type = cast_int<ElemType>(typeint); const unsigned int n_nodes = Elem::type_to_n_nodes_map[type]; // int 5: processor id const processor_id_type processor_id = cast_int<processor_id_type>(*in++); libmesh_assert (processor_id < mesh->n_processors() || processor_id == DofObject::invalid_processor_id); // int 6: subdomain id const subdomain_id_type subdomain_id = cast_int<subdomain_id_type>(*in++); // int 7: dof object id const dof_id_type id = cast_int<dof_id_type>(*in++); libmesh_assert_not_equal_to (id, DofObject::invalid_id); #ifdef LIBMESH_ENABLE_UNIQUE_ID // int 8: dof object unique id const unique_id_type unique_id = cast_int<unique_id_type>(*in++); #endif #ifdef LIBMESH_ENABLE_AMR // int 9: parent dof object id. // Note: If level==0, then (*in) == invalid_id. In // this case, the equality check in cast_int<unsigned>(*in) will // never succeed. Therefore, we should only attempt the more // rigorous cast verification in cases where level != 0. const dof_id_type parent_id = (level == 0) ? static_cast<dof_id_type>(*in++) : cast_int<dof_id_type>(*in++); libmesh_assert (level == 0 || parent_id != DofObject::invalid_id); libmesh_assert (level != 0 || parent_id == DofObject::invalid_id); // int 10: local child id // Note: If level==0, then which_child_am_i is not valid, so don't // do the more rigorous cast verification. const unsigned int which_child_am_i = (level == 0) ? static_cast<unsigned int>(*in++) : cast_int<unsigned int>(*in++); #else in += 2; #endif // LIBMESH_ENABLE_AMR const dof_id_type interior_parent_id = static_cast<dof_id_type>(*in++); // Make sure we don't miscount above when adding the "magic" header // plus the real data header libmesh_assert_equal_to (in - original_in, header_size + 1); Elem * elem = mesh->query_elem_ptr(id); // if we already have this element, make sure its // properties match, and update any missing neighbor // links, but then go on if (elem) { libmesh_assert_equal_to (elem->level(), level); libmesh_assert_equal_to (elem->id(), id); //#ifdef LIBMESH_ENABLE_UNIQUE_ID // No check for unique id sanity //#endif libmesh_assert_equal_to (elem->processor_id(), processor_id); libmesh_assert_equal_to (elem->subdomain_id(), subdomain_id); libmesh_assert_equal_to (elem->type(), type); libmesh_assert_equal_to (elem->n_nodes(), n_nodes); #ifndef NDEBUG // All our nodes should be correct for (unsigned int i=0; i != n_nodes; ++i) libmesh_assert(elem->node_id(i) == cast_int<dof_id_type>(*in++)); #else in += n_nodes; #endif #ifdef LIBMESH_ENABLE_AMR libmesh_assert_equal_to (elem->refinement_flag(), refinement_flag); libmesh_assert_equal_to (elem->has_children(), has_children); #ifdef DEBUG if (elem->active()) { libmesh_assert_equal_to (elem->p_level(), p_level); libmesh_assert_equal_to (elem->p_refinement_flag(), p_refinement_flag); } #endif libmesh_assert (!level || elem->parent() != libmesh_nullptr); libmesh_assert (!level || elem->parent()->id() == parent_id); libmesh_assert (!level || elem->parent()->child_ptr(which_child_am_i) == elem); #endif // Our interior_parent link should be "close to" correct - we // may have to update it, but we can check for some // inconsistencies. { // If the sending processor sees no interior_parent here, we'd // better agree. if (interior_parent_id == DofObject::invalid_id) { if (elem->dim() < LIBMESH_DIM) libmesh_assert (!(elem->interior_parent())); } // If the sending processor has a remote_elem interior_parent, // then all we know is that we'd better have *some* // interior_parent else if (interior_parent_id == remote_elem->id()) { libmesh_assert(elem->interior_parent()); } else { Elem * ip = mesh->query_elem_ptr(interior_parent_id); // The sending processor sees an interior parent here, so // if we don't have that interior element, then we'd // better have a remote_elem signifying that fact. if (!ip) libmesh_assert_equal_to (elem->interior_parent(), remote_elem); else { // The sending processor has an interior_parent here, // and we have that element, but that does *NOT* mean // we're already linking to it. Perhaps we initially // received elem from a processor on which the // interior_parent link was remote? libmesh_assert(elem->interior_parent() == ip || elem->interior_parent() == remote_elem); // If the link was originally remote, update it if (elem->interior_parent() == remote_elem) { elem->set_interior_parent(ip); } } } } // Our neighbor links should be "close to" correct - we may have // to update a remote_elem link, and we can check for possible // inconsistencies along the way. // // For subactive elements, we don't bother keeping neighbor // links in good shape, so there's nothing we need to set or can // safely assert here. if (!elem->subactive()) for (auto n : elem->side_index_range()) { const dof_id_type neighbor_id = cast_int<dof_id_type>(*in++); // If the sending processor sees a domain boundary here, // we'd better agree. if (neighbor_id == DofObject::invalid_id) { libmesh_assert (!(elem->neighbor_ptr(n))); continue; } // If the sending processor has a remote_elem neighbor here, // then all we know is that we'd better *not* have a domain // boundary. if (neighbor_id == remote_elem->id()) { libmesh_assert(elem->neighbor_ptr(n)); continue; } Elem * neigh = mesh->query_elem_ptr(neighbor_id); // The sending processor sees a neighbor here, so if we // don't have that neighboring element, then we'd better // have a remote_elem signifying that fact. if (!neigh) { libmesh_assert_equal_to (elem->neighbor_ptr(n), remote_elem); continue; } // The sending processor has a neighbor here, and we have // that element, but that does *NOT* mean we're already // linking to it. Perhaps we initially received both elem // and neigh from processors on which their mutual link was // remote? libmesh_assert(elem->neighbor_ptr(n) == neigh || elem->neighbor_ptr(n) == remote_elem); // If the link was originally remote, we should update it, // and make sure the appropriate parts of its family link // back to us. if (elem->neighbor_ptr(n) == remote_elem) { elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } } // Our p level and refinement flags should be "close to" correct // if we're not an active element - we might have a p level // increased or decreased by changes in remote_elem children. // // But if we have remote_elem children, then we shouldn't be // doing a projection on this inactive element on this // processor, so we won't need correct p settings. Couldn't // hurt to update, though. #ifdef LIBMESH_ENABLE_AMR if (elem->processor_id() != mesh->processor_id()) { elem->hack_p_level(p_level); elem->set_p_refinement_flag(p_refinement_flag); } #endif // LIBMESH_ENABLE_AMR // FIXME: We should add some debug mode tests to ensure that the // encoded indexing and boundary conditions are consistent. } else { // We don't already have the element, so we need to create it. // Find the parent if necessary Elem * parent = libmesh_nullptr; #ifdef LIBMESH_ENABLE_AMR // Find a child element's parent if (level > 0) { // Note that we must be very careful to construct the send // connectivity so that parents are encountered before // children. If we get here and can't find the parent that // is a fatal error. parent = mesh->elem_ptr(parent_id); } // Or assert that the sending processor sees no parent else libmesh_assert_equal_to (parent_id, DofObject::invalid_id); #else // No non-level-0 elements without AMR libmesh_assert_equal_to (level, 0); #endif elem = Elem::build(type,parent).release(); libmesh_assert (elem); #ifdef LIBMESH_ENABLE_AMR if (level != 0) { // Since this is a newly created element, the parent must // have previously thought of this child as a remote element. libmesh_assert_equal_to (parent->child_ptr(which_child_am_i), remote_elem); parent->add_child(elem, which_child_am_i); } // Assign the refinement flags and levels elem->set_p_level(p_level); elem->set_refinement_flag(refinement_flag); elem->set_p_refinement_flag(p_refinement_flag); libmesh_assert_equal_to (elem->level(), level); // If this element should have children, assign remote_elem to // all of them for now, for consistency. Later unpacked // elements may overwrite that. if (has_children) { const unsigned int nc = elem->n_children(); for (unsigned int c=0; c != nc; ++c) elem->add_child(const_cast<RemoteElem *>(remote_elem), c); } #endif // LIBMESH_ENABLE_AMR // Assign the IDs elem->subdomain_id() = subdomain_id; elem->processor_id() = processor_id; elem->set_id() = id; #ifdef LIBMESH_ENABLE_UNIQUE_ID elem->set_unique_id() = unique_id; #endif // Assign the connectivity libmesh_assert_equal_to (elem->n_nodes(), n_nodes); for (unsigned int n=0; n != n_nodes; n++) elem->set_node(n) = mesh->node_ptr (cast_int<dof_id_type>(*in++)); // Set interior_parent if found { // We may be unpacking an element that was a ghost element on the // sender, in which case the element's interior_parent may not be // known by the packed element. We'll have to set such // interior_parents to remote_elem ourselves and wait for a // later packed element to give us better information. if (interior_parent_id == remote_elem->id()) { elem->set_interior_parent (const_cast<RemoteElem *>(remote_elem)); } else if (interior_parent_id != DofObject::invalid_id) { // If we don't have the interior parent element, then it's // a remote_elem until we get it. Elem * ip = mesh->query_elem_ptr(interior_parent_id); if (!ip ) elem->set_interior_parent (const_cast<RemoteElem *>(remote_elem)); else elem->set_interior_parent(ip); } } for (auto n : elem->side_index_range()) { const dof_id_type neighbor_id = cast_int<dof_id_type>(*in++); if (neighbor_id == DofObject::invalid_id) continue; // We may be unpacking an element that was a ghost element on the // sender, in which case the element's neighbors may not all be // known by the packed element. We'll have to set such // neighbors to remote_elem ourselves and wait for a later // packed element to give us better information. if (neighbor_id == remote_elem->id()) { elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem)); continue; } // If we don't have the neighbor element, then it's a // remote_elem until we get it. Elem * neigh = mesh->query_elem_ptr(neighbor_id); if (!neigh) { elem->set_neighbor(n, const_cast<RemoteElem *>(remote_elem)); continue; } // If we have the neighbor element, then link to it, and // make sure the appropriate parts of its family link back // to us. elem->set_neighbor(n, neigh); elem->make_links_to_me_local(n); } elem->unpack_indexing(in); } in += elem->packed_indexing_size(); // If this is a coarse element, // add any element side or edge boundary condition ids if (level == 0) { for (auto s : elem->side_index_range()) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_side (elem, s, cast_int<boundary_id_type>(*in++)); } for (auto e : elem->edge_index_range()) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_edge (elem, e, cast_int<boundary_id_type>(*in++)); } for (unsigned short sf=0; sf != 2; ++sf) { const boundary_id_type num_bcs = cast_int<boundary_id_type>(*in++); for (boundary_id_type bc_it=0; bc_it < num_bcs; bc_it++) mesh->get_boundary_info().add_shellface (elem, sf, cast_int<boundary_id_type>(*in++)); } } // Return the new element return elem; }