/***********************************************************************//** * @brief Return spatially integrated background model * * @param[in] obsEng Measured event energy. * @param[in] obsTime Measured event time. * @param[in] obs Observation. * @return Spatially integrated model. * * @exception GException::invalid_argument * The specified observation is not a CTA observation. * * Spatially integrates the cube background model for a given measured event * energy and event time. This method also applies a deadtime correction * factor, so that the normalization of the model is a real rate * (counts/MeV/s). ***************************************************************************/ double GCTAModelCubeBackground::npred(const GEnergy& obsEng, const GTime& obsTime, const GObservation& obs) const { // Initialise result double npred = 0.0; bool has_npred = false; // Build unique identifier std::string id = obs.instrument() + "::" + obs.id(); // Check if Npred value is already in cache #if defined(G_USE_NPRED_CACHE) if (!m_npred_names.empty()) { // Search for unique identifier, and if found, recover Npred value // and break for (int i = 0; i < m_npred_names.size(); ++i) { if (m_npred_names[i] == id && m_npred_energies[i] == obsEng) { npred = m_npred_values[i]; has_npred = true; #if defined(G_DEBUG_NPRED) std::cout << "GCTAModelCubeBackground::npred:"; std::cout << " cache=" << i; std::cout << " npred=" << npred << std::endl; #endif break; } } } // endif: there were values in the Npred cache #endif // Continue only if no Npred cache value has been found if (!has_npred) { // Evaluate only if model is valid if (valid_model()) { // Get pointer on CTA observation const GCTAObservation* cta = dynamic_cast<const GCTAObservation*>(&obs); if (cta == NULL) { std::string msg = "Specified observation is not a CTA" " observation.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } // Get pointer on CTA cube response const GCTAResponseCube* rsp = dynamic_cast<const GCTAResponseCube*>(cta->response()); if (rsp == NULL) { std::string msg = "Specified observation does not contain" " a cube response.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } // Get log10 of energy in TeV double logE = obsEng.log10TeV(); // Retrieve CTA background const GCTACubeBackground bgd = rsp->background(); // Integrate the background map at a certain energy npred = bgd.integral(logE); // Store result in Npred cache #if defined(G_USE_NPRED_CACHE) m_npred_names.push_back(id); m_npred_energies.push_back(obsEng); m_npred_times.push_back(obsTime); m_npred_values.push_back(npred); #endif // Debug: Check for NaN #if defined(G_NAN_CHECK) if (gammalib::is_notanumber(npred) || gammalib::is_infinite(npred)) { std::string origin = "GCTAModelCubeBackground::npred"; std::string message = " NaN/Inf encountered (npred=" + gammalib::str(npred) + ")"; gammalib::warning(origin, message); } #endif } // endif: model was valid } // endif: Npred computation required // Multiply in spectral and temporal components npred *= spectral()->eval(obsEng, obsTime); npred *= temporal()->eval(obsTime); // Apply deadtime correction npred *= obs.deadc(obsTime); // Return Npred return npred; }
/***********************************************************************//** * @brief Return spatially integrated data model * * @param[in] obsEng Measured event energy. * @param[in] obsTime Measured event time. * @param[in] obs Observation. * @return Spatially integrated model. * * @exception GException::invalid_argument * No CTA event list found in observation. * No CTA pointing found in observation. * * Spatially integrates the data model for a given measured event energy and * event time. This method also applies a deadtime correction factor, so that * the normalization of the model is a real rate (counts/exposure time). ***************************************************************************/ double GCTAModelBackground::npred(const GEnergy& obsEng, const GTime& obsTime, const GObservation& obs) const { // Initialise result double npred = 0.0; bool has_npred = false; // Build unique identifier std::string id = obs.instrument() + "::" + obs.id(); // Check if Npred value is already in cache #if defined(G_USE_NPRED_CACHE) if (!m_npred_names.empty()) { // Search for unique identifier, and if found, recover Npred value // and break for (int i = 0; i < m_npred_names.size(); ++i) { if (m_npred_names[i] == id && m_npred_energies[i] == obsEng) { npred = m_npred_values[i]; has_npred = true; #if defined(G_DEBUG_NPRED) std::cout << "GCTAModelBackground::npred:"; std::cout << " cache=" << i; std::cout << " npred=" << npred << std::endl; #endif break; } } } // endif: there were values in the Npred cache #endif // Continue only if no Npred cache value was found if (!has_npred) { // Evaluate only if model is valid if (valid_model()) { // Get CTA event list const GCTAEventList* events = dynamic_cast<const GCTAEventList*>(obs.events()); if (events == NULL) { std::string msg = "No CTA event list found in observation.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } #if !defined(G_NPRED_AROUND_ROI) // Get CTA pointing direction GCTAPointing* pnt = dynamic_cast<GCTAPointing*>(obs.pointing()); if (pnt == NULL) { std::string msg = "No CTA pointing found in observation.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } #endif // Get reference to ROI centre const GSkyDir& roi_centre = events->roi().centre().dir(); // Get ROI radius in radians double roi_radius = events->roi().radius() * gammalib::deg2rad; // Get distance from ROI centre in radians #if defined(G_NPRED_AROUND_ROI) double roi_distance = 0.0; #else double roi_distance = roi_centre.dist(pnt->dir()); #endif // Initialise rotation matrix to transform from ROI system to // celestial coordinate system GMatrix ry; GMatrix rz; ry.eulery(roi_centre.dec_deg() - 90.0); rz.eulerz(-roi_centre.ra_deg()); GMatrix rot = (ry * rz).transpose(); // Compute position angle of ROI centre with respect to model // centre (radians) #if defined(G_NPRED_AROUND_ROI) double omega0 = 0.0; #else double omega0 = pnt->dir().posang(events->roi().centre().dir()); #endif // Setup integration function GCTAModelBackground::npred_roi_kern_theta integrand(spatial(), obsEng, obsTime, rot, roi_radius, roi_distance, omega0); // Setup integrator GIntegral integral(&integrand); integral.eps(1e-3); // Setup integration boundaries #if defined(G_NPRED_AROUND_ROI) double rmin = 0.0; double rmax = roi_radius; #else double rmin = (roi_distance > roi_radius) ? roi_distance-roi_radius : 0.0; double rmax = roi_radius + roi_distance; #endif // Spatially integrate radial component npred = integral.romb(rmin, rmax); // Store result in Npred cache #if defined(G_USE_NPRED_CACHE) m_npred_names.push_back(id); m_npred_energies.push_back(obsEng); m_npred_times.push_back(obsTime); m_npred_values.push_back(npred); #endif // Debug: Check for NaN #if defined(G_NAN_CHECK) if (gammalib::is_notanumber(npred) || gammalib::is_infinite(npred)) { std::cout << "*** ERROR: GCTAModelBackground::npred:"; std::cout << " NaN/Inf encountered"; std::cout << " (npred=" << npred; std::cout << ", roi_radius=" << roi_radius; std::cout << ")" << std::endl; } #endif } // endif: model was valid } // endif: Npred computation required // Multiply in spectral and temporal components npred *= spectral()->eval(obsEng, obsTime); npred *= temporal()->eval(obsTime); // Apply deadtime correction npred *= obs.deadc(obsTime); // Return Npred return npred; }
/***********************************************************************//** * @brief Return spatially integrated background model * * @param[in] obsEng Measured event energy. * @param[in] obsTime Measured event time. * @param[in] obs Observation. * @return Spatially integrated model. * * @exception GException::invalid_argument * The specified observation is not a CTA observation. * * Spatially integrates the instrumental background model for a given * measured event energy and event time. This method also applies a deadtime * correction factor, so that the normalization of the model is a real rate * (counts/MeV/s). ***************************************************************************/ double GCTAModelIrfBackground::npred(const GEnergy& obsEng, const GTime& obsTime, const GObservation& obs) const { // Initialise result double npred = 0.0; bool has_npred = false; // Build unique identifier std::string id = obs.instrument() + "::" + obs.id(); // Check if Npred value is already in cache #if defined(G_USE_NPRED_CACHE) if (!m_npred_names.empty()) { // Search for unique identifier, and if found, recover Npred value // and break for (int i = 0; i < m_npred_names.size(); ++i) { if (m_npred_names[i] == id && m_npred_energies[i] == obsEng) { npred = m_npred_values[i]; has_npred = true; #if defined(G_DEBUG_NPRED) std::cout << "GCTAModelIrfBackground::npred:"; std::cout << " cache=" << i; std::cout << " npred=" << npred << std::endl; #endif break; } } } // endif: there were values in the Npred cache #endif // Continue only if no Npred cache value has been found if (!has_npred) { // Evaluate only if model is valid if (valid_model()) { // Get pointer on CTA observation const GCTAObservation* cta = dynamic_cast<const GCTAObservation*>(&obs); if (cta == NULL) { std::string msg = "Specified observation is not a CTA" " observation.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } // Get pointer on CTA IRF response const GCTAResponseIrf* rsp = dynamic_cast<const GCTAResponseIrf*>(cta->response()); if (rsp == NULL) { std::string msg = "Specified observation does not contain" " an IRF response.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } // Retrieve pointer to CTA background const GCTABackground* bgd = rsp->background(); if (bgd == NULL) { std::string msg = "Specified observation contains no background" " information.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } // Get CTA event list const GCTAEventList* events = dynamic_cast<const GCTAEventList*>(obs.events()); if (events == NULL) { std::string msg = "No CTA event list found in observation.\n" + obs.print(); throw GException::invalid_argument(G_NPRED, msg); } // Get reference to ROI centre const GSkyDir& roi_centre = events->roi().centre().dir(); // Get ROI radius in radians double roi_radius = events->roi().radius() * gammalib::deg2rad; // Get log10 of energy in TeV double logE = obsEng.log10TeV(); // Setup integration function GCTAModelIrfBackground::npred_roi_kern_theta integrand(bgd, logE); // Setup integrator GIntegral integral(&integrand); integral.eps(g_cta_inst_background_npred_theta_eps); // Spatially integrate radial component npred = integral.romberg(0.0, roi_radius); // Store result in Npred cache #if defined(G_USE_NPRED_CACHE) m_npred_names.push_back(id); m_npred_energies.push_back(obsEng); m_npred_times.push_back(obsTime); m_npred_values.push_back(npred); #endif // Debug: Check for NaN #if defined(G_NAN_CHECK) if (gammalib::is_notanumber(npred) || gammalib::is_infinite(npred)) { std::string origin = "GCTAModelIrfBackground::npred"; std::string message = " NaN/Inf encountered (npred=" + gammalib::str(npred) + ", roi_radius=" + gammalib::str(roi_radius) + ")"; gammalib::warning(origin, message); } #endif } // endif: model was valid } // endif: Npred computation required // Multiply in spectral and temporal components npred *= spectral()->eval(obsEng, obsTime); npred *= temporal()->eval(obsTime); // Apply deadtime correction npred *= obs.deadc(obsTime); // Return Npred return npred; }
/***********************************************************************//** * @brief Return spatially integrated background model * * @param[in] obsEng Measured event energy. * @param[in] obsTime Measured event time. * @param[in] obs Observation. * @return Spatially integrated model. * * @exception GException::invalid_argument * The specified observation is not a CTA observation. * * Spatially integrates the effective area background model for a given * measured event energy and event time. This method also applies a deadtime * correction factor, so that the normalization of the model is a real rate * (counts/MeV/s). ***************************************************************************/ double GCTAModelAeffBackground::npred(const GEnergy& obsEng, const GTime& obsTime, const GObservation& obs) const { // Set number of iterations for Romberg integration. //static const int iter_theta = 6; //static const int iter_phi = 6; // Initialise result double npred = 0.0; bool has_npred = false; // Build unique identifier std::string id = obs.instrument() + "::" + obs.id(); // Check if Npred value is already in cache #if defined(G_USE_NPRED_CACHE) if (!m_npred_names.empty()) { // Search for unique identifier, and if found, recover Npred value // and break for (int i = 0; i < m_npred_names.size(); ++i) { if (m_npred_names[i] == id && m_npred_energies[i] == obsEng) { npred = m_npred_values[i]; has_npred = true; #if defined(G_DEBUG_NPRED) std::cout << "GCTAModelAeffBackground::npred:"; std::cout << " cache=" << i; std::cout << " npred=" << npred << std::endl; #endif break; } } } // endif: there were values in the Npred cache #endif // Continue only if no Npred cache value has been found if (!has_npred) { // Evaluate only if model is valid if (valid_model()) { // Get log10 of energy in TeV double logE = obsEng.log10TeV(); // Spatially integrate effective area component npred = this->aeff_integral(obs, logE); // Store result in Npred cache #if defined(G_USE_NPRED_CACHE) m_npred_names.push_back(id); m_npred_energies.push_back(obsEng); m_npred_times.push_back(obsTime); m_npred_values.push_back(npred); #endif // Debug: Check for NaN #if defined(G_NAN_CHECK) if (gammalib::is_notanumber(npred) || gammalib::is_infinite(npred)) { std::string origin = "GCTAModelAeffBackground::npred"; std::string message = " NaN/Inf encountered (npred=" + gammalib::str(npred) + ")"; gammalib::warning(origin, message); } #endif } // endif: model was valid } // endif: Npred computation required // Multiply in spectral and temporal components npred *= spectral()->eval(obsEng, obsTime); npred *= temporal()->eval(obsTime); // Apply deadtime correction npred *= obs.deadc(obsTime); // Return Npred return npred; }
/***********************************************************************//** * @brief Convolve sky model with the instrument response * * @param[in] model Sky model. * @param[in] event Event. * @param[in] srcEng Source energy. * @param[in] srcTime Source time. * @param[in] obs Observation. * @param[in] grad Should model gradients be computed? (default: true) * @return Event probability. * * Computes the event probability * * \f[ * P(p',E',t'|E,t) = \int S(p,E,t) \times R(p',E',t'|p,E,t) \, dp * \f] * * for a given true energy \f$E\f$ and time \f$t\f$. ***************************************************************************/ double GResponse::eval_prob(const GModelSky& model, const GEvent& event, const GEnergy& srcEng, const GTime& srcTime, const GObservation& obs, const bool& grad) const { // Initialise result double prob = 0.0; // Continue only if the model has a spatial component if (model.spatial() != NULL) { // Set source GSource source(model.name(), model.spatial(), srcEng, srcTime); // Compute IRF value double irf = this->irf(event, source, obs); // Continue only if IRF value is positive if (irf > 0.0) { // If required, apply instrument specific model scaling if (model.has_scales()) { irf *= model.scale(obs.instrument()).value(); } // Evaluate spectral and temporal components double spec = (model.spectral() != NULL) ? model.spectral()->eval(srcEng, srcTime, grad) : 1.0; double temp = (model.temporal() != NULL) ? model.temporal()->eval(srcTime, grad) : 1.0; // Compute probability prob = spec * temp * irf; // Optionally compute partial derivatives if (grad) { // Multiply factors to spectral gradients if (model.spectral() != NULL) { double fact = temp * irf; if (fact != 1.0) { for (int i = 0; i < model.spectral()->size(); ++i) { (*model.spectral())[i].factor_gradient((*model.spectral())[i].factor_gradient() * fact); } } } // Multiply factors to temporal gradients if (model.temporal() != NULL) { double fact = spec * irf; if (fact != 1.0) { for (int i = 0; i < model.temporal()->size(); ++i) { (*model.temporal())[i].factor_gradient((*model.temporal())[i].factor_gradient() * fact); } } } } // endif: computed partial derivatives // Compile option: Check for NaN/Inf #if defined(G_NAN_CHECK) if (gammalib::is_notanumber(prob) || gammalib::is_infinite(prob)) { std::cout << "*** ERROR: GResponse::eval_prob:"; std::cout << " NaN/Inf encountered"; std::cout << " (prob=" << prob; std::cout << ", spec=" << spec; std::cout << ", temp=" << temp; std::cout << ", irf=" << irf; std::cout << ")" << std::endl; } #endif } // endif: IRF value was positive // ... otherwise if gradient computation is requested then set the // spectral and temporal gradients to zero else if (grad) { // Reset spectral gradients if (model.spectral() != NULL) { for (int i = 0; i < model.spectral()->size(); ++i) { (*model.spectral())[i].factor_gradient(0.0); } } // Reset temporal gradients if (model.temporal() != NULL) { for (int i = 0; i < model.temporal()->size(); ++i) { (*model.temporal())[i].factor_gradient(0.0); } } } // endelse: IRF value was not positive } // endif: Gamma-ray source model had a spatial component // Return event probability return prob; }