Esempio n. 1
0
bool IsLucasProbablePrime(const Integer &n)
{
	if (n <= 1)
		return false;

	if (n.IsEven())
		return n==2;

	assert(n>2);

	Integer b=3;
	unsigned int i=0;
	int j;

	while ((j=Jacobi(b.Squared()-4, n)) == 1)
	{
		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
			return false;
		++b; ++b;
	}

	if (j==0) 
		return false;
	else
		return Lucas(n+1, b, n)==2;
}
Esempio n. 2
0
bool IsStrongLucasProbablePrime(const Integer &n)
{
	if (n <= 1)
		return false;

	if (n.IsEven())
		return n==2;

	assert(n>2);

	Integer b=3;
	unsigned int i=0;
	int j;

	while ((j=Jacobi(b.Squared()-4, n)) == 1)
	{
		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
			return false;
		++b; ++b;
	}

	if (j==0) 
		return false;

	Integer n1 = n+1;
	unsigned int a;

	// calculate a = largest power of 2 that divides n1
	for (a=0; ; a++)
		if (n1.GetBit(a))
			break;
	Integer m = n1>>a;

	Integer z = Lucas(m, b, n);
	if (z==2 || z==n-2)
		return true;
	for (i=1; i<a; i++)
	{
		z = (z.Squared()-2)%n;
		if (z==n-2)
			return true;
		if (z==2)
			return false;
	}
	return false;
}