Esempio n. 1
0
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits)
{
	CRYPTOPP_ASSERT(qbits > 9);	// no primes exist for pbits = 10, qbits = 9
	CRYPTOPP_ASSERT(pbits > qbits);

	const Integer minQ = Integer::Power2(qbits - 1);
	const Integer maxQ = Integer::Power2(qbits) - 1;
	const Integer minP = Integer::Power2(pbits - 1);
	const Integer maxP = Integer::Power2(pbits) - 1;

top:

	Integer r1, r2;
	do
	{
		(void)q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12);
		// Solution always exists because q === 7 mod 12.
		(void)SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q);
		// I believe k_i, r1 and r2 are being used slightly different than the
		// paper's algorithm. I believe it is leading to the failed asserts.
		// Just make the assert part of the condition.
		if(!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit() ?
			r1 : r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3 * q)) { continue; }
	} while (((p % 3U) != 2) || (((p.Squared() - p + 1) % q).NotZero()));

	// CRYPTOPP_ASSERT((p % 3U) == 2);
	// CRYPTOPP_ASSERT(((p.Squared() - p + 1) % q).IsZero());

	GFP2_ONB<ModularArithmetic> gfp2(p);
	GFP2Element three = gfp2.ConvertIn(3), t;

	while (true)
	{
		g.c1.Randomize(rng, Integer::Zero(), p-1);
		g.c2.Randomize(rng, Integer::Zero(), p-1);
		t = XTR_Exponentiate(g, p+1, p);
		if (t.c1 == t.c2)
			continue;
		g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p);
		if (g != three)
			break;
	}

	if (XTR_Exponentiate(g, q, p) != three)
		goto top;

	// CRYPTOPP_ASSERT(XTR_Exponentiate(g, q, p) == three);
}
Esempio n. 2
0
void DL_GroupParameters_DSA::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
	Integer p, q, g;

	if (alg.GetValue("Modulus", p) && alg.GetValue("SubgroupGenerator", g))
	{
		q = alg.GetValueWithDefault("SubgroupOrder", ComputeGroupOrder(p)/2);
	}
	else
	{
		int modulusSize = 1024;
		alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);

		if (!DSA::IsValidPrimeLength(modulusSize))
			throw InvalidArgument("DSA: not a valid prime length");

		SecByteBlock seed(SHA::DIGESTSIZE);
		Integer h;
		int c;

		do
		{
			rng.GenerateBlock(seed, SHA::DIGESTSIZE);
		} while (!DSA::GeneratePrimes(seed, SHA::DIGESTSIZE*8, c, p, modulusSize, q));

		do
		{
			h.Randomize(rng, 2, p-2);
			g = a_exp_b_mod_c(h, (p-1)/q, p);
		} while (g <= 1);
	}

	Initialize(p, q, g);
}
Esempio n. 3
0
Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
{
	const unsigned smallPrimeBound = 29, c_opt=10;
	Integer p;

	unsigned int primeTableSize;
	const word16 * primeTable = GetPrimeTable(primeTableSize);

	if (bits < smallPrimeBound)
	{
		do
			p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
		while (TrialDivision(p, 1 << ((bits+1)/2)));
	}
	else
	{
		const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
		double relativeSize;
		do
			relativeSize = pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
		while (bits * relativeSize >= bits - margin);

		Integer a,b;
		Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
		Integer I = Integer::Power2(bits-2)/q;
		Integer I2 = I << 1;
		unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
		bool success = false;
		while (!success)
		{
			p.Randomize(rng, I, I2, Integer::ANY);
			p *= q; p <<= 1; ++p;
			if (!TrialDivision(p, trialDivisorBound))
			{
				a.Randomize(rng, 2, p-1, Integer::ANY);
				b = a_exp_b_mod_c(a, (p-1)/q, p);
				success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
			}
		}
	}
	return p;
}
Esempio n. 4
0
Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
{
	Integer p;
	Integer minP = Integer::Power2(pbits-1);
	Integer maxP = Integer::Power2(pbits) - 1;

	if (maxP <= Integer(s_lastSmallPrime).Squared())
	{
		// Randomize() will generate a prime provable by trial division
		p.Randomize(rng, minP, maxP, Integer::PRIME);
		return p;
	}

	unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
	Integer q = MihailescuProvablePrime(rng, qbits);
	Integer q2 = q<<1;

	while (true)
	{
		// this initializes the sieve to search in the arithmetic
		// progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
		// with q the recursively generated prime above. We will be able
		// to use Lucas tets for proving primality. A trick of Quisquater
		// allows taking q > cubic_root(p) rather then square_root: this
		// decreases the recursion.

		p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
		PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);

		while (sieve.NextCandidate(p))
		{
			if (FastProbablePrimeTest(p) && ProvePrime(p, q))
				return p;
		}
	}

	// not reached
	return p;
}
Esempio n. 5
0
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits)
{
	assert(qbits > 9);	// no primes exist for pbits = 10, qbits = 9
	assert(pbits > qbits);

	const Integer minQ = Integer::Power2(qbits - 1);
	const Integer maxQ = Integer::Power2(qbits) - 1;
	const Integer minP = Integer::Power2(pbits - 1);
	const Integer maxP = Integer::Power2(pbits) - 1;

	Integer r1, r2;
	do
	{
		bool qFound = q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12);
		CRYPTOPP_UNUSED(qFound); assert(qFound);
		bool solutionsExist = SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q);
		CRYPTOPP_UNUSED(solutionsExist); assert(solutionsExist);
	} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit()?r1:r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3*q));
	assert(((p.Squared() - p + 1) % q).IsZero());

	GFP2_ONB<ModularArithmetic> gfp2(p);
	GFP2Element three = gfp2.ConvertIn(3), t;

	while (true)
	{
		g.c1.Randomize(rng, Integer::Zero(), p-1);
		g.c2.Randomize(rng, Integer::Zero(), p-1);
		t = XTR_Exponentiate(g, p+1, p);
		if (t.c1 == t.c2)
			continue;
		g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p);
		if (g != three)
			break;
	}
	assert(XTR_Exponentiate(g, q, p) == three);
}
Esempio n. 6
0
bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
{
	if (n <= 3)
		return n==2 || n==3;

	assert(n>3);

	Integer b;
	for (unsigned int i=0; i<rounds; i++)
	{
		b.Randomize(rng, 2, n-2);
		if (!IsStrongProbablePrime(n, b))
			return false;
	}
	return true;
}