Esempio n. 1
0
void IK_SetTransform(IK_Segment *seg, float start[3], float rest[][3], float basis[][3], float length)
{
	IK_QSegment *qseg = (IK_QSegment*)seg;

	MT_Vector3 mstart(start);
	// convert from blender column major to moto row major
	MT_Matrix3x3 mbasis(basis[0][0], basis[1][0], basis[2][0],
	                    basis[0][1], basis[1][1], basis[2][1],
	                    basis[0][2], basis[1][2], basis[2][2]);
	MT_Matrix3x3 mrest(rest[0][0], rest[1][0], rest[2][0],
	                   rest[0][1], rest[1][1], rest[2][1],
	                   rest[0][2], rest[1][2], rest[2][2]);
	MT_Scalar mlength(length);

	if (qseg->Composite()) {
		MT_Vector3 cstart(0, 0, 0);
		MT_Matrix3x3 cbasis;
		cbasis.setIdentity();
		
		qseg->SetTransform(mstart, mrest, mbasis, 0.0);
		qseg->Composite()->SetTransform(cstart, cbasis, cbasis, mlength);
	}
	else
		qseg->SetTransform(mstart, mrest, mbasis, mlength);
}
Esempio n. 2
0
bool PyOrientationTo(PyObject *pyval, MT_Matrix3x3 &rot, const char *error_prefix)
{
	int size= PySequence_Size(pyval);
	
	if (size == 4)
	{
		MT_Quaternion qrot;
		if (PyQuatTo(pyval, qrot))
		{
			rot.setRotation(qrot);
			return true;
		}
	}
	else if (size == 3) {
		/* 3x3 matrix or euler */
		MT_Vector3 erot;
		if (PyVecTo(pyval, erot))
		{
			rot.setEuler(erot);
			return true;
		}
		PyErr_Clear();
		
		if (PyMatTo(pyval, rot))
		{
			return true;
		}
	}
	
	PyErr_Format(PyExc_TypeError, "%s, could not set the orientation from a 3x3 matrix, quaternion or euler sequence", error_prefix);
	return false;
}
MT_Point3 KX_NavMeshObject::TransformToWorldCoords(const MT_Point3& lpos)
{
	MT_Matrix3x3 orientation = NodeGetWorldOrientation();
	const MT_Vector3& scaling = NodeGetWorldScaling();
	orientation.scale(scaling[0], scaling[1], scaling[2]);
	MT_Transform worldtr(NodeGetWorldPosition(), orientation); 
	MT_Point3 wpos = worldtr(lpos);
	return wpos;
}
MT_Point3 KX_NavMeshObject::TransformToLocalCoords(const MT_Point3& wpos)
{
	MT_Matrix3x3 orientation = NodeGetWorldOrientation();
	const MT_Vector3& scaling = NodeGetWorldScaling();
	orientation.scale(scaling[0], scaling[1], scaling[2]);
	MT_Transform worldtr(NodeGetWorldPosition(), orientation); 
	MT_Transform invworldtr;
	invworldtr.invert(worldtr);
	MT_Point3 lpos = invworldtr(wpos);
	return lpos;
}
Esempio n. 5
0
static void RemoveTwist(MT_Matrix3x3& R)
{
	// compute twist parameter
	MT_Scalar tau = ComputeTwist(R);

	// compute twist matrix
	MT_Matrix3x3 T = ComputeTwistMatrix(tau);

	// remove twist
	R = R*T.transposed();
}
Esempio n. 6
0
void KX_KetsjiEngine::DoSound(KX_Scene* scene)
{
	m_logger->StartLog(tc_sound, m_kxsystem->GetTimeInSeconds(), true);

	KX_Camera* cam = scene->GetActiveCamera();
	if (!cam)
		return;
	MT_Point3 listenerposition = cam->NodeGetWorldPosition();
	MT_Vector3 listenervelocity = cam->GetLinearVelocity();
	MT_Matrix3x3 listenerorientation = cam->NodeGetWorldOrientation();

	{
		AUD_3DData data;
		float f;

		listenerorientation.getValue3x3(data.orientation);
		listenerposition.getValue(data.position);
		listenervelocity.getValue(data.velocity);

		f = data.position[1];
		data.position[1] = data.position[2];
		data.position[2] = -f;

		f = data.velocity[1];
		data.velocity[1] = data.velocity[2];
		data.velocity[2] = -f;

		f = data.orientation[1];
		data.orientation[1] = data.orientation[2];
		data.orientation[2] = -f;

		f = data.orientation[3];
		data.orientation[3] = -data.orientation[6];
		data.orientation[6] = f;

		f = data.orientation[4];
		data.orientation[4] = -data.orientation[8];
		data.orientation[8] = -f;

		f = data.orientation[5];
		data.orientation[5] = data.orientation[7];
		data.orientation[7] = f;

		AUD_updateListener(&data);
	}
}
Esempio n. 7
0
/* vectomat function obtained from constrain.c and modified to work with MOTO library */
static MT_Matrix3x3 vectomat(MT_Vector3 vec, short axis, short upflag, short threedimup)
{
	MT_Matrix3x3 mat;
	MT_Vector3 y(MT_Scalar(0.0f), MT_Scalar(1.0f), MT_Scalar(0.0f));
	MT_Vector3 z(MT_Scalar(0.0f), MT_Scalar(0.0f), MT_Scalar(1.0f)); /* world Z axis is the global up axis */
	MT_Vector3 proj;
	MT_Vector3 right;
	MT_Scalar mul;
	int right_index;

	/* Normalized Vec vector*/
	vec = vec.safe_normalized_vec(z);

	/* if 2D doesn't move the up vector */
	if (!threedimup) {
		vec.setValue(MT_Scalar(vec[0]), MT_Scalar(vec[1]), MT_Scalar(0.0f));
		vec = (vec - z.dot(vec)*z).safe_normalized_vec(z);
	}

	if (axis > 2)
		axis -= 3;
	else
		vec = -vec;

	/* project the up vector onto the plane specified by vec */
	/* first z onto vec... */
	mul = z.dot(vec) / vec.dot(vec);
	proj = vec * mul;
	/* then onto the plane */
	proj = z - proj;
	/* proj specifies the transformation of the up axis */
	proj = proj.safe_normalized_vec(y);

	/* Normalized cross product of vec and proj specifies transformation of the right axis */
	right = proj.cross(vec);
	right.normalize();

	if (axis != upflag) {
		right_index = 3 - axis - upflag;

		/* account for up direction, track direction */
		right = right * basis_cross(axis, upflag);
		mat.setRow(right_index, right);
		mat.setRow(upflag, proj);
		mat.setRow(axis, vec);
		mat = mat.inverse();
	}
	/* identity matrix - don't do anything if the two axes are the same */
	else {
		mat.setIdentity();
	}

	return mat;
}
void RAS_OpenGLRasterizer::FlushDebugShapes()
{
	if (m_debugShapes.empty())
		return;

	// DrawDebugLines
	GLboolean light, tex;

	light= glIsEnabled(GL_LIGHTING);
	tex= glIsEnabled(GL_TEXTURE_2D);

	if (light) glDisable(GL_LIGHTING);
	if (tex) glDisable(GL_TEXTURE_2D);

	//draw lines
	glBegin(GL_LINES);
	for (unsigned int i=0;i<m_debugShapes.size();i++)
	{
		if (m_debugShapes[i].m_type != OglDebugShape::LINE)
			continue;
		glColor4f(m_debugShapes[i].m_color[0],m_debugShapes[i].m_color[1],m_debugShapes[i].m_color[2],1.f);
		const MT_Scalar* fromPtr = &m_debugShapes[i].m_pos.x();
		const MT_Scalar* toPtr= &m_debugShapes[i].m_param.x();
		glVertex3dv(fromPtr);
		glVertex3dv(toPtr);
	}
	glEnd();

	//draw circles
	for (unsigned int i=0;i<m_debugShapes.size();i++)
	{
		if (m_debugShapes[i].m_type != OglDebugShape::CIRCLE)
			continue;
		glBegin(GL_LINE_LOOP);
		glColor4f(m_debugShapes[i].m_color[0],m_debugShapes[i].m_color[1],m_debugShapes[i].m_color[2],1.f);

		static const MT_Vector3 worldUp(0.0, 0.0, 1.0);
		MT_Vector3 norm = m_debugShapes[i].m_param;
		MT_Matrix3x3 tr;
		if (norm.fuzzyZero() || norm == worldUp)
		{
			tr.setIdentity();
		}
		else
		{
			MT_Vector3 xaxis, yaxis;
			xaxis = MT_cross(norm, worldUp);
			yaxis = MT_cross(xaxis, norm);
			tr.setValue(xaxis.x(), xaxis.y(), xaxis.z(),
				yaxis.x(), yaxis.y(), yaxis.z(),
				norm.x(), norm.y(), norm.z());
		}
		MT_Scalar rad = m_debugShapes[i].m_param2.x();
		int n = (int) m_debugShapes[i].m_param2.y();
		for (int j = 0; j<n; j++)
		{
			MT_Scalar theta = j*M_PI*2/n;
			MT_Vector3 pos(cos(theta) * rad, sin(theta) * rad, 0.0);
			pos = pos*tr;
			pos += m_debugShapes[i].m_pos;
			const MT_Scalar* posPtr = &pos.x();
			glVertex3dv(posPtr);
		}
		glEnd();
	}

	if (light) glEnable(GL_LIGHTING);
	if (tex) glEnable(GL_TEXTURE_2D);

	m_debugShapes.clear();
}
void	KX_BulletPhysicsController::RelativeRotate(const MT_Matrix3x3& drot,bool local)
{
	float	rotval[9];
	drot.getValue3x3(rotval);
	CcdPhysicsController::RelativeRotate(rotval,local);
}
void	KX_ConvertBulletObject(	class	KX_GameObject* gameobj,
	class	RAS_MeshObject* meshobj,
	struct  DerivedMesh* dm,
	class	KX_Scene* kxscene,
	struct	PHY_ShapeProps* shapeprops,
	struct	PHY_MaterialProps*	smmaterial,
	struct	KX_ObjectProperties*	objprop)
{

	CcdPhysicsEnvironment* env = (CcdPhysicsEnvironment*)kxscene->GetPhysicsEnvironment();
	assert(env);
	

	bool isbulletdyna = false;
	bool isbulletsensor = false;
	bool isbulletchar = false;
	bool useGimpact = false;
	CcdConstructionInfo ci;
	class PHY_IMotionState* motionstate = new KX_MotionState(gameobj->GetSGNode());
	class CcdShapeConstructionInfo *shapeInfo = new CcdShapeConstructionInfo();

	
	if (!objprop->m_dyna)
	{
		ci.m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT;
	}
	if (objprop->m_ghost)
	{
		ci.m_collisionFlags |= btCollisionObject::CF_NO_CONTACT_RESPONSE;
	}

	ci.m_MotionState = motionstate;
	ci.m_gravity = btVector3(0,0,0);
	ci.m_linearFactor = btVector3(objprop->m_lockXaxis? 0 : 1,
									objprop->m_lockYaxis? 0 : 1,
									objprop->m_lockZaxis? 0 : 1);
	ci.m_angularFactor = btVector3(objprop->m_lockXRotaxis? 0 : 1,
									objprop->m_lockYRotaxis? 0 : 1,
									objprop->m_lockZRotaxis? 0 : 1);
	ci.m_localInertiaTensor =btVector3(0,0,0);
	ci.m_mass = objprop->m_dyna ? shapeprops->m_mass : 0.f;
	ci.m_clamp_vel_min = shapeprops->m_clamp_vel_min;
	ci.m_clamp_vel_max = shapeprops->m_clamp_vel_max;
	ci.m_margin = objprop->m_margin;
	ci.m_stepHeight = objprop->m_character ? shapeprops->m_step_height : 0.f;
	ci.m_jumpSpeed = objprop->m_character ? shapeprops->m_jump_speed : 0.f;
	ci.m_fallSpeed = objprop->m_character ? shapeprops->m_fall_speed : 0.f;
	shapeInfo->m_radius = objprop->m_radius;
	isbulletdyna = objprop->m_dyna;
	isbulletsensor = objprop->m_sensor;
	isbulletchar = objprop->m_character;
	useGimpact = ((isbulletdyna || isbulletsensor) && !objprop->m_softbody);

	ci.m_localInertiaTensor = btVector3(ci.m_mass/3.f,ci.m_mass/3.f,ci.m_mass/3.f);
	
	btCollisionShape* bm = 0;

	switch (objprop->m_boundclass)
	{
	case KX_BOUNDSPHERE:
		{
			//float radius = objprop->m_radius;
			//btVector3 inertiaHalfExtents (
			//	radius,
			//	radius,
			//	radius);
			
			//blender doesn't support multisphere, but for testing:

			//bm = new MultiSphereShape(inertiaHalfExtents,,&trans.getOrigin(),&radius,1);
			shapeInfo->m_shapeType = PHY_SHAPE_SPHERE;
			bm = shapeInfo->CreateBulletShape(ci.m_margin);
			break;
		};
	case KX_BOUNDBOX:
		{
			shapeInfo->m_halfExtend.setValue(
				objprop->m_boundobject.box.m_extends[0],
				objprop->m_boundobject.box.m_extends[1],
				objprop->m_boundobject.box.m_extends[2]);

			shapeInfo->m_halfExtend /= 2.0;
			shapeInfo->m_halfExtend = shapeInfo->m_halfExtend.absolute();
			shapeInfo->m_shapeType = PHY_SHAPE_BOX;
			bm = shapeInfo->CreateBulletShape(ci.m_margin);
			break;
		};
	case KX_BOUNDCYLINDER:
		{
			shapeInfo->m_halfExtend.setValue(
				objprop->m_boundobject.c.m_radius,
				objprop->m_boundobject.c.m_radius,
				objprop->m_boundobject.c.m_height * 0.5f
			);
			shapeInfo->m_shapeType = PHY_SHAPE_CYLINDER;
			bm = shapeInfo->CreateBulletShape(ci.m_margin);
			break;
		}

	case KX_BOUNDCONE:
		{
			shapeInfo->m_radius = objprop->m_boundobject.c.m_radius;
			shapeInfo->m_height = objprop->m_boundobject.c.m_height;
			shapeInfo->m_shapeType = PHY_SHAPE_CONE;
			bm = shapeInfo->CreateBulletShape(ci.m_margin);
			break;
		}
	case KX_BOUNDPOLYTOPE:
		{
			shapeInfo->SetMesh(meshobj, dm,true);
			bm = shapeInfo->CreateBulletShape(ci.m_margin);
			break;
		}
	case KX_BOUNDCAPSULE:
		{
			shapeInfo->m_radius = objprop->m_boundobject.c.m_radius;
			shapeInfo->m_height = objprop->m_boundobject.c.m_height;
			shapeInfo->m_shapeType = PHY_SHAPE_CAPSULE;
			bm = shapeInfo->CreateBulletShape(ci.m_margin);
			break;
		}
	case KX_BOUNDMESH:
		{
			// mesh shapes can be shared, check first if we already have a shape on that mesh
			class CcdShapeConstructionInfo *sharedShapeInfo = CcdShapeConstructionInfo::FindMesh(meshobj, dm, false);
			if (sharedShapeInfo != NULL) 
			{
				shapeInfo->Release();
				shapeInfo = sharedShapeInfo;
				shapeInfo->AddRef();
			} else
			{
				shapeInfo->SetMesh(meshobj, dm, false);
			}

			// Soft bodies can benefit from welding, don't do it on non-soft bodies
			if (objprop->m_softbody)
			{
				shapeInfo->setVertexWeldingThreshold1(objprop->m_soft_welding); //todo: expose this to the UI
			}

			bm = shapeInfo->CreateBulletShape(ci.m_margin, useGimpact, !objprop->m_softbody);
			//should we compute inertia for dynamic shape?
			//bm->calculateLocalInertia(ci.m_mass,ci.m_localInertiaTensor);

			break;
		}
	case KX_BOUND_DYN_MESH:
		/* do nothing */
		break;
	}


//	ci.m_localInertiaTensor.setValue(0.1f,0.1f,0.1f);

	if (!bm)
	{
		delete motionstate;
		shapeInfo->Release();
		return;
	}

	//bm->setMargin(ci.m_margin);


		if (objprop->m_isCompoundChild)
		{
			//find parent, compound shape and add to it
			//take relative transform into account!
			CcdPhysicsController* parentCtrl = (CcdPhysicsController*)objprop->m_dynamic_parent->GetPhysicsController();
			assert(parentCtrl);
			CcdShapeConstructionInfo* parentShapeInfo = parentCtrl->GetShapeInfo();
			btRigidBody* rigidbody = parentCtrl->GetRigidBody();
			btCollisionShape* colShape = rigidbody->getCollisionShape();
			assert(colShape->isCompound());
			btCompoundShape* compoundShape = (btCompoundShape*)colShape;

			// compute the local transform from parent, this may include several node in the chain
			SG_Node* gameNode = gameobj->GetSGNode();
			SG_Node* parentNode = objprop->m_dynamic_parent->GetSGNode();
			// relative transform
			MT_Vector3 parentScale = parentNode->GetWorldScaling();
			parentScale[0] = MT_Scalar(1.0)/parentScale[0];
			parentScale[1] = MT_Scalar(1.0)/parentScale[1];
			parentScale[2] = MT_Scalar(1.0)/parentScale[2];
			MT_Vector3 relativeScale = gameNode->GetWorldScaling() * parentScale;
			MT_Matrix3x3 parentInvRot = parentNode->GetWorldOrientation().transposed();
			MT_Vector3 relativePos = parentInvRot*((gameNode->GetWorldPosition()-parentNode->GetWorldPosition())*parentScale);
			MT_Matrix3x3 relativeRot = parentInvRot*gameNode->GetWorldOrientation();

			shapeInfo->m_childScale.setValue(relativeScale[0],relativeScale[1],relativeScale[2]);
			bm->setLocalScaling(shapeInfo->m_childScale);
			shapeInfo->m_childTrans.getOrigin().setValue(relativePos[0],relativePos[1],relativePos[2]);
			float rot[12];
			relativeRot.getValue(rot);
			shapeInfo->m_childTrans.getBasis().setFromOpenGLSubMatrix(rot);

			parentShapeInfo->AddShape(shapeInfo);
			compoundShape->addChildShape(shapeInfo->m_childTrans,bm);
			//do some recalc?
			//recalc inertia for rigidbody
			if (!rigidbody->isStaticOrKinematicObject())
			{
				btVector3 localInertia;
				float mass = 1.f/rigidbody->getInvMass();
				compoundShape->calculateLocalInertia(mass,localInertia);
				rigidbody->setMassProps(mass,localInertia);
			}
			shapeInfo->Release();
			// delete motionstate as it's not used
			delete motionstate;
			return;
		}

		if (objprop->m_hasCompoundChildren)
		{
			// create a compound shape info
			CcdShapeConstructionInfo *compoundShapeInfo = new CcdShapeConstructionInfo();
			compoundShapeInfo->m_shapeType = PHY_SHAPE_COMPOUND;
			compoundShapeInfo->AddShape(shapeInfo);
			// create the compound shape manually as we already have the child shape
			btCompoundShape* compoundShape = new btCompoundShape();
			compoundShape->addChildShape(shapeInfo->m_childTrans,bm);
			// now replace the shape
			bm = compoundShape;
			shapeInfo->Release();
			shapeInfo = compoundShapeInfo;
		}






#ifdef TEST_SIMD_HULL
	if (bm->IsPolyhedral())
	{
		PolyhedralConvexShape* polyhedron = static_cast<PolyhedralConvexShape*>(bm);
		if (!polyhedron->m_optionalHull)
		{
			//first convert vertices in 'Point3' format
			int numPoints = polyhedron->GetNumVertices();
			Point3* points = new Point3[numPoints+1];
			//first 4 points should not be co-planar, so add central point to satisfy MakeHull
			points[0] = Point3(0.f,0.f,0.f);
			
			btVector3 vertex;
			for (int p=0;p<numPoints;p++)
			{
				polyhedron->GetVertex(p,vertex);
				points[p+1] = Point3(vertex.getX(),vertex.getY(),vertex.getZ());
			}

			Hull* hull = Hull::MakeHull(numPoints+1,points);
			polyhedron->m_optionalHull = hull;
		}

	}
#endif //TEST_SIMD_HULL


	ci.m_collisionShape = bm;
	ci.m_shapeInfo = shapeInfo;
	ci.m_friction = smmaterial->m_friction;//tweak the friction a bit, so the default 0.5 works nice
	ci.m_restitution = smmaterial->m_restitution;
	ci.m_physicsEnv = env;
	// drag / damping is inverted
	ci.m_linearDamping = 1.f - shapeprops->m_lin_drag;
	ci.m_angularDamping = 1.f - shapeprops->m_ang_drag;
	//need a bit of damping, else system doesn't behave well
	ci.m_inertiaFactor = shapeprops->m_inertia/0.4f;//defaults to 0.4, don't want to change behavior
	
	ci.m_do_anisotropic = shapeprops->m_do_anisotropic;
	ci.m_anisotropicFriction.setValue(shapeprops->m_friction_scaling[0],shapeprops->m_friction_scaling[1],shapeprops->m_friction_scaling[2]);


//////////
	//do Fh, do Rot Fh
	ci.m_do_fh = shapeprops->m_do_fh;
	ci.m_do_rot_fh = shapeprops->m_do_rot_fh;
	ci.m_fh_damping = smmaterial->m_fh_damping;
	ci.m_fh_distance = smmaterial->m_fh_distance;
	ci.m_fh_normal = smmaterial->m_fh_normal;
	ci.m_fh_spring = smmaterial->m_fh_spring;
	ci.m_radius = objprop->m_radius;
	
	
	///////////////////
	ci.m_gamesoftFlag = objprop->m_gamesoftFlag;
	ci.m_soft_linStiff = objprop->m_soft_linStiff;
	ci.m_soft_angStiff = objprop->m_soft_angStiff;		/* angular stiffness 0..1 */
	ci.m_soft_volume= objprop->m_soft_volume;			/* volume preservation 0..1 */

	ci.m_soft_viterations= objprop->m_soft_viterations;		/* Velocities solver iterations */
	ci.m_soft_piterations= objprop->m_soft_piterations;		/* Positions solver iterations */
	ci.m_soft_diterations= objprop->m_soft_diterations;		/* Drift solver iterations */
	ci.m_soft_citerations= objprop->m_soft_citerations;		/* Cluster solver iterations */

	ci.m_soft_kSRHR_CL= objprop->m_soft_kSRHR_CL;		/* Soft vs rigid hardness [0,1] (cluster only) */
	ci.m_soft_kSKHR_CL= objprop->m_soft_kSKHR_CL;		/* Soft vs kinetic hardness [0,1] (cluster only) */
	ci.m_soft_kSSHR_CL= objprop->m_soft_kSSHR_CL;		/* Soft vs soft hardness [0,1] (cluster only) */
	ci.m_soft_kSR_SPLT_CL= objprop->m_soft_kSR_SPLT_CL;	/* Soft vs rigid impulse split [0,1] (cluster only) */

	ci.m_soft_kSK_SPLT_CL= objprop->m_soft_kSK_SPLT_CL;	/* Soft vs rigid impulse split [0,1] (cluster only) */
	ci.m_soft_kSS_SPLT_CL= objprop->m_soft_kSS_SPLT_CL;	/* Soft vs rigid impulse split [0,1] (cluster only) */
	ci.m_soft_kVCF= objprop->m_soft_kVCF;			/* Velocities correction factor (Baumgarte) */
	ci.m_soft_kDP= objprop->m_soft_kDP;			/* Damping coefficient [0,1] */

	ci.m_soft_kDG= objprop->m_soft_kDG;			/* Drag coefficient [0,+inf] */
	ci.m_soft_kLF= objprop->m_soft_kLF;			/* Lift coefficient [0,+inf] */
	ci.m_soft_kPR= objprop->m_soft_kPR;			/* Pressure coefficient [-inf,+inf] */
	ci.m_soft_kVC= objprop->m_soft_kVC;			/* Volume conversation coefficient [0,+inf] */

	ci.m_soft_kDF= objprop->m_soft_kDF;			/* Dynamic friction coefficient [0,1] */
	ci.m_soft_kMT= objprop->m_soft_kMT;			/* Pose matching coefficient [0,1] */
	ci.m_soft_kCHR= objprop->m_soft_kCHR;			/* Rigid contacts hardness [0,1] */
	ci.m_soft_kKHR= objprop->m_soft_kKHR;			/* Kinetic contacts hardness [0,1] */

	ci.m_soft_kSHR= objprop->m_soft_kSHR;			/* Soft contacts hardness [0,1] */
	ci.m_soft_kAHR= objprop->m_soft_kAHR;			/* Anchors hardness [0,1] */
	ci.m_soft_collisionflags= objprop->m_soft_collisionflags;	/* Vertex/Face or Signed Distance Field(SDF) or Clusters, Soft versus Soft or Rigid */
	ci.m_soft_numclusteriterations= objprop->m_soft_numclusteriterations;	/* number of iterations to refine collision clusters*/

	////////////////////
	ci.m_collisionFilterGroup = 
		(isbulletsensor) ? short(CcdConstructionInfo::SensorFilter) :
		(isbulletdyna) ? short(CcdConstructionInfo::DefaultFilter) :
		(isbulletchar) ? short(CcdConstructionInfo::CharacterFilter) : 
		short(CcdConstructionInfo::StaticFilter);
	ci.m_collisionFilterMask = 
		(isbulletsensor) ? short(CcdConstructionInfo::AllFilter ^ CcdConstructionInfo::SensorFilter) :
		(isbulletdyna) ? short(CcdConstructionInfo::AllFilter) : 
		(isbulletchar) ? short(CcdConstructionInfo::AllFilter) :
		short(CcdConstructionInfo::AllFilter ^ CcdConstructionInfo::StaticFilter);
	ci.m_bRigid = objprop->m_dyna && objprop->m_angular_rigidbody;
	
	ci.m_contactProcessingThreshold = objprop->m_contactProcessingThreshold;//todo: expose this in advanced settings, just like margin, default to 10000 or so
	ci.m_bSoft = objprop->m_softbody;
	ci.m_bDyna = isbulletdyna;
	ci.m_bSensor = isbulletsensor;
	ci.m_bCharacter = isbulletchar;
	ci.m_bGimpact = useGimpact;
	MT_Vector3 scaling = gameobj->NodeGetWorldScaling();
	ci.m_scaling.setValue(scaling[0], scaling[1], scaling[2]);
	CcdPhysicsController* physicscontroller = new CcdPhysicsController(ci);
	// shapeInfo is reference counted, decrement now as we don't use it anymore
	if (shapeInfo)
		shapeInfo->Release();

	gameobj->SetPhysicsController(physicscontroller,isbulletdyna);
	// don't add automatically sensor object, they are added when a collision sensor is registered
	if (!isbulletsensor && objprop->m_in_active_layer)
	{
		env->AddCcdPhysicsController( physicscontroller);
	}
	physicscontroller->SetNewClientInfo(gameobj->getClientInfo());
	{
		btRigidBody* rbody = physicscontroller->GetRigidBody();

		if (rbody)
		{
			if (objprop->m_angular_rigidbody)
			{
				rbody->setLinearFactor(ci.m_linearFactor);
				rbody->setAngularFactor(ci.m_angularFactor);
			}

			if (rbody && objprop->m_disableSleeping)
			{
				rbody->setActivationState(DISABLE_DEACTIVATION);
			}
		}
	}

	CcdPhysicsController* parentCtrl = objprop->m_dynamic_parent ? (CcdPhysicsController*)objprop->m_dynamic_parent->GetPhysicsController() : 0;
	physicscontroller->SetParentCtrl(parentCtrl);

	
	//Now done directly in ci.m_collisionFlags so that it propagates to replica
	//if (objprop->m_ghost)
	//{
	//	rbody->setCollisionFlags(rbody->getCollisionFlags() | btCollisionObject::CF_NO_CONTACT_RESPONSE);
	//}
	
	if (objprop->m_dyna && !objprop->m_angular_rigidbody)
	{
#if 0
		//setting the inertia could achieve similar results to constraint the up
		//but it is prone to instability, so use special 'Angular' constraint
		btVector3 inertia = physicscontroller->GetRigidBody()->getInvInertiaDiagLocal();
		inertia.setX(0.f);
		inertia.setZ(0.f);

		physicscontroller->GetRigidBody()->setInvInertiaDiagLocal(inertia);
		physicscontroller->GetRigidBody()->updateInertiaTensor();
#endif

		//env->createConstraint(physicscontroller,0,PHY_ANGULAR_CONSTRAINT,0,0,0,0,0,1);
	
		//Now done directly in ci.m_bRigid so that it propagates to replica
		//physicscontroller->GetRigidBody()->setAngularFactor(0.f);
		;
	}

	bool isActor = objprop->m_isactor;
	gameobj->getClientInfo()->m_type = 
		(isbulletsensor) ? ((isActor) ? KX_ClientObjectInfo::OBACTORSENSOR : KX_ClientObjectInfo::OBSENSOR) :
		(isActor) ? KX_ClientObjectInfo::ACTOR : KX_ClientObjectInfo::STATIC;
	// store materialname in auxinfo, needed for touchsensors
	if (meshobj)
	{
		const STR_String& matname=meshobj->GetMaterialName(0);
		gameobj->getClientInfo()->m_auxilary_info = (matname.Length() ? (void*)(matname.ReadPtr()+2) : NULL);
	} else
	{
		gameobj->getClientInfo()->m_auxilary_info = 0;
	}



	STR_String materialname;
	if (meshobj)
		materialname = meshobj->GetMaterialName(0);


#if 0
	///test for soft bodies
	if (objprop->m_softbody && physicscontroller)
	{
		btSoftBody* softBody = physicscontroller->GetSoftBody();
		if (softBody && gameobj->GetMesh(0))//only the first mesh, if any
		{
			//should be a mesh then, so add a soft body deformer
			KX_SoftBodyDeformer* softbodyDeformer = new KX_SoftBodyDeformer( gameobj->GetMesh(0),(BL_DeformableGameObject*)gameobj);
			gameobj->SetDeformer(softbodyDeformer);
		}
	}
#endif

}
Esempio n. 11
0
bool KX_RaySensor::Evaluate()
{
	bool result = false;
	bool reset = m_reset && m_level;
	m_rayHit = false; 
	m_hitObject = NULL;
	m_hitPosition[0] = 0;
	m_hitPosition[1] = 0;
	m_hitPosition[2] = 0;

	m_hitNormal[0] = 1;
	m_hitNormal[1] = 0;
	m_hitNormal[2] = 0;
	
	KX_GameObject* obj = (KX_GameObject*)GetParent();
	MT_Point3 frompoint = obj->NodeGetWorldPosition();
	MT_Matrix3x3 matje = obj->NodeGetWorldOrientation();
	MT_Matrix3x3 invmat = matje.inverse();
	
	MT_Vector3 todir;
	m_reset = false;
	switch (m_axis)
	{
	case SENS_RAY_X_AXIS: // X
		{
			todir[0] = invmat[0][0];
			todir[1] = invmat[0][1];
			todir[2] = invmat[0][2];
			break;
		}
	case SENS_RAY_Y_AXIS: // Y
		{
			todir[0] = invmat[1][0];
			todir[1] = invmat[1][1];
			todir[2] = invmat[1][2];
			break;
		}
	case SENS_RAY_Z_AXIS: // Z
		{
			todir[0] = invmat[2][0];
			todir[1] = invmat[2][1];
			todir[2] = invmat[2][2];
			break;
		}
	case SENS_RAY_NEG_X_AXIS: // -X
		{
			todir[0] = -invmat[0][0];
			todir[1] = -invmat[0][1];
			todir[2] = -invmat[0][2];
			break;
		}
	case SENS_RAY_NEG_Y_AXIS: // -Y
		{
			todir[0] = -invmat[1][0];
			todir[1] = -invmat[1][1];
			todir[2] = -invmat[1][2];
			break;
		}
	case SENS_RAY_NEG_Z_AXIS: // -Z
		{
			todir[0] = -invmat[2][0];
			todir[1] = -invmat[2][1];
			todir[2] = -invmat[2][2];
			break;
		}
	}
	todir.normalize();
	m_rayDirection[0] = todir[0];
	m_rayDirection[1] = todir[1];
	m_rayDirection[2] = todir[2];

	MT_Point3 topoint = frompoint + (m_distance) * todir;
	PHY_IPhysicsEnvironment* pe = m_scene->GetPhysicsEnvironment();

	if (!pe)
	{
		std::cout << "WARNING: Ray sensor " << GetName() << ":  There is no physics environment!" << std::endl;
		std::cout << "         Check universe for malfunction." << std::endl;
		return false;
	} 

	KX_IPhysicsController *spc = obj->GetPhysicsController();
	KX_GameObject *parent = obj->GetParent();
	if (!spc && parent)
		spc = parent->GetPhysicsController();
	
	if (parent)
		parent->Release();
	

	PHY_IPhysicsEnvironment* physics_environment = this->m_scene->GetPhysicsEnvironment();
	

	KX_RayCast::Callback<KX_RaySensor> callback(this, spc);
	KX_RayCast::RayTest(physics_environment, frompoint, topoint, callback);

	/* now pass this result to some controller */

	if (m_rayHit)
	{
		if (!m_bTriggered)
		{
			// notify logicsystem that ray is now hitting
			result = true;
			m_bTriggered = true;
		}
		else
		{
			// notify logicsystem that ray is STILL hitting ...
			result = false;

		}
	}
	else
	{
		if (m_bTriggered)
		{
			m_bTriggered = false;
			// notify logicsystem that ray JUST left the Object
			result = true;
		}
		else
		{
			result = false;
		}

	}
	if (reset)
		// force an event
		result = true;

	return result;
}
Esempio n. 12
0
void KX_SteeringActuator::HandleActorFace(MT_Vector3& velocity)
{
	if (m_facingMode==0 && (!m_navmesh || !m_normalUp))
		return;
	KX_GameObject* curobj = (KX_GameObject*) GetParent();
	MT_Vector3 dir = m_facingMode==0 ?  curobj->NodeGetLocalOrientation().getColumn(1) : velocity;
	if (dir.fuzzyZero())
		return;
	dir.normalize();
	MT_Vector3 up(0,0,1);
	MT_Vector3 left;
	MT_Matrix3x3 mat;
	
	if (m_navmesh && m_normalUp)
	{
		dtStatNavMesh* navmesh =  m_navmesh->GetNavMesh();
		MT_Vector3 normal;
		MT_Vector3 trpos = m_navmesh->TransformToLocalCoords(curobj->NodeGetWorldPosition());
		if (getNavmeshNormal(navmesh, trpos, normal))
		{

			left = (dir.cross(up)).safe_normalized();
			dir = (-left.cross(normal)).safe_normalized();
			up = normal;
		}
	}

	switch (m_facingMode)
	{
	case 1: // TRACK X
		{
			left  = dir.safe_normalized();
			dir = -(left.cross(up)).safe_normalized();
			break;
		};
	case 2:	// TRACK Y
		{
			left  = (dir.cross(up)).safe_normalized();
			break;
		}

	case 3: // track Z
		{
			left = up.safe_normalized();
			up = dir.safe_normalized();
			dir = left;
			left  = (dir.cross(up)).safe_normalized();
			break;
		}

	case 4: // TRACK -X
		{
			left  = -dir.safe_normalized();
			dir = -(left.cross(up)).safe_normalized();
			break;
		};
	case 5: // TRACK -Y
		{
			left  = (-dir.cross(up)).safe_normalized();
			dir = -dir;
			break;
		}
	case 6: // track -Z
		{
			left = up.safe_normalized();
			up = -dir.safe_normalized();
			dir = left;
			left  = (dir.cross(up)).safe_normalized();
			break;
		}
	}

	mat.setValue (
		left[0], dir[0],up[0], 
		left[1], dir[1],up[1],
		left[2], dir[2],up[2]
	);

	
	
	KX_GameObject* parentObject = curobj->GetParent();
	if (parentObject)
	{ 
		MT_Vector3 localpos;
		localpos = curobj->GetSGNode()->GetLocalPosition();
		MT_Matrix3x3 parentmatinv;
		parentmatinv = parentObject->NodeGetWorldOrientation ().inverse ();
		mat = parentmatinv * mat;
		mat = m_parentlocalmat * mat;
		curobj->NodeSetLocalOrientation(mat);
		curobj->NodeSetLocalPosition(localpos);
	}
	else
	{
		curobj->NodeSetLocalOrientation(mat);
	}

}
Esempio n. 13
0
bool KX_TrackToActuator::Update(double curtime, bool frame)
{
	bool result = false;	
	bool bNegativeEvent = IsNegativeEvent();
	RemoveAllEvents();

	if (bNegativeEvent)
	{
		// do nothing on negative events
	}
	else if (m_object)
	{
		KX_GameObject* curobj = (KX_GameObject*) GetParent();
		MT_Vector3 dir = ((KX_GameObject*)m_object)->NodeGetWorldPosition() - curobj->NodeGetWorldPosition();
		if (dir.length2())
			dir.normalize();
		MT_Vector3 up(0,0,1);
		
		
#ifdef DSADSA
		switch (m_upflag)
		{
		case 0:
			{
				up.setValue(1.0,0,0);
				break;
			} 
		case 1:
			{
				up.setValue(0,1.0,0);
				break;
			}
		case 2:
		default:
			{
				up.setValue(0,0,1.0);
			}
		}
#endif 
		if (m_allow3D)
		{
			up = (up - up.dot(dir) * dir).safe_normalized();
			
		}
		else
		{
			dir = (dir - up.dot(dir)*up).safe_normalized();
		}
		
		MT_Vector3 left;
		MT_Matrix3x3 mat;
		
		switch (m_trackflag)
		{
		case 0: // TRACK X
			{
				// (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = dir.safe_normalized();
				dir = (left.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			};
		case 1:	// TRACK Y
			{
				// (0.0 , 1.0 , 0.0 ) y direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = (dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			}
			
		case 2: // track Z
			{
				left = up.safe_normalized();
				up = dir.safe_normalized();
				dir = left;
				left  = (dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				break;
			}
			
		case 3: // TRACK -X
			{
				// (1.0 , 0.0 , 0.0 ) x direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = -dir.safe_normalized();
				dir = -(left.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			};
		case 4: // TRACK -Y
			{
				// (0.0 , -1.0 , 0.0 ) -y direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = (-dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], -dir[0],up[0], 
					left[1], -dir[1],up[1],
					left[2], -dir[2],up[2]
					);
				break;
			}
		case 5: // track -Z
			{
				left = up.safe_normalized();
				up = -dir.safe_normalized();
				dir = left;
				left  = (dir.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
				
				break;
			}
			
		default:
			{
				// (1.0 , 0.0 , 0.0 ) -x direction is forward, z (0.0 , 0.0 , 1.0 ) up
				left  = -dir.safe_normalized();
				dir = -(left.cross(up)).safe_normalized();
				mat.setValue (
					left[0], dir[0],up[0], 
					left[1], dir[1],up[1],
					left[2], dir[2],up[2]
					);
			}
		}
		
		MT_Matrix3x3 oldmat;
		oldmat= curobj->NodeGetWorldOrientation();
		
		/* erwin should rewrite this! */
		mat= matrix3x3_interpol(oldmat, mat, m_time);
		

		if(m_parentobj){ // check if the model is parented and calculate the child transform
				
			MT_Point3 localpos;
			localpos = curobj->GetSGNode()->GetLocalPosition();
			// Get the inverse of the parent matrix
			MT_Matrix3x3 parentmatinv;
			parentmatinv = m_parentobj->NodeGetWorldOrientation ().inverse ();				
			// transform the local coordinate system into the parents system
			mat = parentmatinv * mat;
			// append the initial parent local rotation matrix
			mat = m_parentlocalmat * mat;

			// set the models tranformation properties
			curobj->NodeSetLocalOrientation(mat);
			curobj->NodeSetLocalPosition(localpos);
			//curobj->UpdateTransform();
		}
		else
		{
			curobj->NodeSetLocalOrientation(mat);
		}

		result = true;
	}

	return result;
}