Esempio n. 1
0
void
NIImporter_OpenDrive::addViaConnectionSecure(const NBEdgeCont &ec,
        const NBNode * const node, const OpenDriveEdge &e,
        LinkType lt, const std::string &via,
        std::vector<NIImporter_OpenDrive::Connection> &connections) {
    NBEdge *from = 0;
    NBEdge *to = 0;
    if (node==e.to) {
        // the connection is at the end of the "positive" direction
        if (lt==OPENDRIVE_LT_PREDECESSOR) {
            // via -> edge
            to = ec.retrieve(e.id);
        } else {
            // -edge -> via
            //  "ambigous?"
            from = ec.retrieve("-" + e.id);
        }
    } else {
        // the connection is at the begin of the "positive" direction
        if (lt==OPENDRIVE_LT_PREDECESSOR) {
            // via -> -edge
            to = ec.retrieve("-" + e.id);
        } else {
            // edge -> via
            //  "ambigous?"
            from = ec.retrieve(e.id);
        }
    }
    if (from==0&&to==0) {
        throw ProcessError("Missing edge");
    }
    Connection c(from, via, to);
    connections.push_back(c);
}
bool
NIVissimTL::NIVissimTLSignal::addTo(NBEdgeCont& ec, NBLoadedTLDef* tl) const {
    NIVissimConnection* c = NIVissimConnection::dictionary(myEdgeID);
    NBConnectionVector assignedConnections;
    if (c == 0) {
        // What to do if on an edge? -> close all outgoing connections
        NBEdge* edge = ec.retrievePossiblySplit(toString<int>(myEdgeID), myPosition);
        if (edge == 0) {
            WRITE_WARNING("Could not set tls signal at edge '" + toString(myEdgeID) + "' - the edge was not built.");
            return false;
        }
        // Check whether it is already known, which edges are approached
        //  by which lanes
        // check whether to use the original lanes only
        if (edge->lanesWereAssigned()) {
            std::vector<NBEdge::Connection> connections = edge->getConnectionsFromLane(myLane - 1);
            for (std::vector<NBEdge::Connection>::iterator i = connections.begin(); i != connections.end(); i++) {
                const NBEdge::Connection& conn = *i;
                assert(myLane - 1 < (int)edge->getNumLanes());
                assignedConnections.push_back(NBConnection(edge, myLane - 1, conn.toEdge, conn.toLane));
            }
        } else {
            WRITE_WARNING("Edge : Lanes were not assigned(!)");
            for (unsigned int j = 0; j < edge->getNumLanes(); j++) {
                std::vector<NBEdge::Connection> connections = edge->getConnectionsFromLane(j);
                for (std::vector<NBEdge::Connection>::iterator i = connections.begin(); i != connections.end(); i++) {
                    const NBEdge::Connection& conn = *i;
                    assignedConnections.push_back(NBConnection(edge, j, conn.toEdge, conn.toLane));
                }
            }
        }
    } else {
        // get the edges
        NBEdge* tmpFrom = ec.retrievePossiblySplit(toString<int>(c->getFromEdgeID()), toString<int>(c->getToEdgeID()), true);
        NBEdge* tmpTo = ec.retrievePossiblySplit(toString<int>(c->getToEdgeID()), toString<int>(c->getFromEdgeID()), false);
        // check whether the edges are known
        if (tmpFrom != 0 && tmpTo != 0) {
            // add connections this signal is responsible for
            assignedConnections.push_back(NBConnection(tmpFrom, -1, tmpTo, -1));
        } else {
            return false;
            // !!! one of the edges could not be build
        }
    }
    // add to the group
    assert(myGroupIDs.size() != 0);
    // @todo just another hack?!
    /*
    if (myGroupIDs.size() == 1) {
        return tl->addToSignalGroup(toString<int>(*(myGroupIDs.begin())),
                                    assignedConnections);
    } else {
        // !!!
        return tl->addToSignalGroup(toString<int>(*(myGroupIDs.begin())),
                                    assignedConnections);
    }
    */
    return tl->addToSignalGroup(toString<int>(myGroupIDs.front()), assignedConnections);
}
Esempio n. 3
0
void
NWWriter_DlrNavteq::writeLinksUnsplitted(const OptionsCont& oc, NBEdgeCont& ec) {
    std::map<const std::string, std::string> nameIDs;
    OutputDevice& device = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_links_unsplitted.txt");
    writeHeader(device, oc);
    // write format specifier
    device << "# LINK_ID\tNODE_ID_FROM\tNODE_ID_TO\tBETWEEN_NODE_ID\tLENGTH\tVEHICLE_TYPE\tFORM_OF_WAY\tBRUNNEL_TYPE\tFUNCTIONAL_ROAD_CLASS\tSPEED_CATEGORY\tNUMBER_OF_LANES\tSPEED_LIMIT\tSPEED_RESTRICTION\tNAME_ID1_REGIONAL\tNAME_ID2_LOCAL\tHOUSENUMBERS_RIGHT\tHOUSENUMBERS_LEFT\tZIP_CODE\tAREA_ID\tSUBAREA_ID\tTHROUGH_TRAFFIC\tSPECIAL_RESTRICTIONS\tEXTENDED_NUMBER_OF_LANES\tISRAMP\tCONNECTION\n";
    // write edges
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        NBEdge* e = (*i).second;
        const int kph = speedInKph(e->getSpeed());
        const std::string& betweenNodeID = (e->getGeometry().size() > 2) ? e->getID() : UNDEFINED;
        std::string nameID = UNDEFINED;
        if (oc.getBool("output.street-names")) {
            const std::string& name = i->second->getStreetName();
            if (name != "" && nameIDs.count(name) == 0) {
                nameID = toString(nameIDs.size());
                nameIDs[name] = nameID;
            }
        }
        device << e->getID() << "\t"
               << e->getFromNode()->getID() << "\t"
               << e->getToNode()->getID() << "\t"
               << betweenNodeID << "\t"
               << getGraphLength(e) << "\t"
               << getAllowedTypes(e->getPermissions()) << "\t"
               << "3\t" // Speed Category 1-8 XXX refine this
               << UNDEFINED << "\t" // no special brunnel type (we don't know yet)
               << getRoadClass(e) << "\t"
               << getSpeedCategory(kph) << "\t"
               << getNavteqLaneCode(e->getNumLanes()) << "\t"
               << getSpeedCategoryUpperBound(kph) << "\t"
               << kph << "\t"
               << nameID << "\t" // NAME_ID1_REGIONAL XXX
               << UNDEFINED << "\t" // NAME_ID2_LOCAL XXX
               << UNDEFINED << "\t" // housenumbers_right
               << UNDEFINED << "\t" // housenumbers_left
               << UNDEFINED << "\t" // ZIP_CODE
               << UNDEFINED << "\t" // AREA_ID
               << UNDEFINED << "\t" // SUBAREA_ID
               << "1\t" // through_traffic (allowed)
               << UNDEFINED << "\t" // special_restrictions
               << UNDEFINED << "\t" // extended_number_of_lanes
               << UNDEFINED << "\t" // isRamp
               << "0\t" // connection (between nodes always in order)
               << "\n";
    }
    if (oc.getBool("output.street-names")) {
        OutputDevice& namesDevice = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_names.txt");
        writeHeader(namesDevice, oc);
        // write format specifier
        namesDevice << "# NAME_ID\tName\n" << nameIDs.size() << "\n";
        for (std::map<const std::string, std::string>::const_iterator i = nameIDs.begin(); i != nameIDs.end(); ++i) {
            namesDevice << i->second << "\t" << i->first << "\n";
        }
    }
}
Esempio n. 4
0
unsigned int
NIVissimConnection::buildEdgeConnections(NBEdgeCont &ec) {
    unsigned int unsetConnections = 0;
    // try to determine the connected edges
    NBEdge *fromEdge = 0;
    NBEdge *toEdge = 0;
    NIVissimEdge *vissimFrom = NIVissimEdge::dictionary(getFromEdgeID());
    if (vissimFrom->wasWithinAJunction()) {
        // this edge was not built, try to get one that approaches it
        vissimFrom = vissimFrom->getBestIncoming();
        if (vissimFrom!=0) {
            fromEdge = ec.retrievePossiblySplitted(toString(vissimFrom->getID()), toString(getFromEdgeID()), true);
        }
    } else {
        // this edge was built, try to get the proper part
        fromEdge = ec.retrievePossiblySplitted(toString(getFromEdgeID()), toString(getToEdgeID()), true);
    }
    NIVissimEdge *vissimTo = NIVissimEdge::dictionary(getToEdgeID());
    if (vissimTo->wasWithinAJunction()) {
        vissimTo = vissimTo->getBestOutgoing();
        if (vissimTo!=0) {
            toEdge = ec.retrievePossiblySplitted(toString(vissimTo->getID()), toString(getToEdgeID()), true);
        }
    } else {
        toEdge = ec.retrievePossiblySplitted(toString(getToEdgeID()), toString(getFromEdgeID()), false);
    }

    // try to get the edges the current connection connects
    /*
    NBEdge *fromEdge = ec.retrievePossiblySplitted(toString(getFromEdgeID()), toString(getToEdgeID()), true);
    NBEdge *toEdge = ec.retrievePossiblySplitted(toString(getToEdgeID()), toString(getFromEdgeID()), false);
    */
    if (fromEdge==0||toEdge==0) {
        WRITE_WARNING("Could not build connection between '" + toString(getFromEdgeID())+ "' and '" + toString(getToEdgeID())+ "'.");
        return 1; // !!! actually not 1
    }
    recheckLanes(fromEdge, toEdge);
    const IntVector &fromLanes = getFromLanes();
    const IntVector &toLanes = getToLanes();
    if (fromLanes.size()!=toLanes.size()) {
        MsgHandler::getWarningInstance()->inform("Lane sizes differ for connection '" + toString(getID()) + "'.");
    } else {
        for (unsigned int index=0; index<fromLanes.size(); ++index) {
            if (fromEdge->getNoLanes()<=static_cast<unsigned int>(fromLanes[index])) {
                MsgHandler::getWarningInstance()->inform("Could not set connection between '" + fromEdge->getID() + "_" + toString(fromLanes[index]) + "' and '" + toEdge->getID() + "_" + toString(toLanes[index]) + "'.");
                ++unsetConnections;
            } else if (!fromEdge->addLane2LaneConnection(fromLanes[index], toEdge, toLanes[index], NBEdge::L2L_VALIDATED)) {
                MsgHandler::getWarningInstance()->inform("Could not set connection between '" + fromEdge->getID() + "_" + toString(fromLanes[index]) + "' and '" + toEdge->getID() + "_" + toString(toLanes[index]) + "'.");
                ++unsetConnections;
            }
        }
    }
    return unsetConnections;
}
Esempio n. 5
0
void
NBJoinedEdgesMap::init(NBEdgeCont& ec) {
    const std::vector<std::string> edgeNames = ec.getAllNames();
    myMap.clear();
    for (std::vector<std::string>::const_iterator i = edgeNames.begin(); i != edgeNames.end(); i++) {
        MappedEdgesVector e;
        e.push_back(*i);
        myMap[*i] = e;
        myLengths[*i] = ec.retrieve(*i)->getLength();
    }
}
Esempio n. 6
0
void
NWWriter_XML::writeStreetSigns(const OptionsCont& oc, NBEdgeCont& ec) {
    OutputDevice& device = OutputDevice::getDevice(oc.getString("street-sign-output"));
    device.writeXMLHeader("pois", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/poi_file.xsd\"");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        NBEdge* e = (*i).second;
        const std::vector<NBSign>& signs =  e->getSigns();
        for (std::vector<NBSign>::const_iterator it = signs.begin(); it != signs.end(); ++it) {
            it->writeAsPOI(device, e);
        }
    }
    device.close();
}
Esempio n. 7
0
void
NWWriter_DlrNavteq::writeNodesUnsplitted(const OptionsCont& oc, NBNodeCont& nc, NBEdgeCont& ec) {
    // For "real" nodes we simply use the node id.
    // For internal nodes (geometry vectors describing edge geometry in the parlance of this format)
    // we use the id of the edge and do not bother with
    // compression (each direction gets its own internal node).
    // XXX add option for generating numerical ids in case the input network has string ids and the target process needs integers
    OutputDevice& device = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_nodes_unsplitted.txt");
    writeHeader(device, oc);
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    const bool haveGeo = gch.usingGeoProjection();
    const SUMOReal geoScale = pow(10.0f, haveGeo ? 5 : 2); // see NIImporter_DlrNavteq::GEO_SCALE
    device.setPrecision(0);
    if (!haveGeo) {
        WRITE_WARNING("DlrNavteq node data will be written in (floating point) cartesian coordinates");
    }
    // write format specifier
    device << "# NODE_ID\tIS_BETWEEN_NODE\tamount_of_geocoordinates\tx1\ty1\t[x2 y2  ... xn  yn]\n";
    // write normal nodes
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* n = (*i).second;
        Position pos = n->getPosition();
        gch.cartesian2geo(pos);
        pos.mul(geoScale);
        device << n->getID() << "\t0\t1\t" << pos.x() << "\t" << pos.y() << "\n";
    }
    // write "internal" nodes
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        NBEdge* e = (*i).second;
        const PositionVector& geom = e->getGeometry();
        if (geom.size() > 2) {
            std::string internalNodeID = e->getID();
            if (internalNodeID == UNDEFINED ||
                    (nc.retrieve(internalNodeID) != 0)) {
                // need to invent a new name to avoid clashing with the id of a 'real' node or a reserved name
                internalNodeID += "_geometry";
            }
            device << internalNodeID << "\t1\t" << geom.size() - 2;
            for (size_t ii = 1; ii < geom.size() - 1; ++ii) {
                Position pos = geom[(int)ii];
                gch.cartesian2geo(pos);
                pos.mul(geoScale);
                device << "\t" << pos.x() << "\t" << pos.y();
            }
            device << "\n";
        }
    }
    device.close();
}
Esempio n. 8
0
void
NWWriter_SUMO::writeRoundabout(OutputDevice& into, const std::vector<std::string>& edgeIDs,
                               const NBEdgeCont& ec) {
    std::vector<std::string> validEdgeIDs;
    std::vector<std::string> invalidEdgeIDs;
    std::vector<std::string> nodeIDs;
    for (std::vector<std::string>::const_iterator i = edgeIDs.begin(); i != edgeIDs.end(); ++i) {
        const NBEdge* edge = ec.retrieve(*i);
        if (edge != 0) {
            nodeIDs.push_back(edge->getToNode()->getID());
            validEdgeIDs.push_back(edge->getID());
        } else {
            invalidEdgeIDs.push_back(*i);
        }
    }
    std::sort(nodeIDs.begin(), nodeIDs.end());
    if (validEdgeIDs.size() > 0) {
        into.openTag(SUMO_TAG_ROUNDABOUT);
        into.writeAttr(SUMO_ATTR_NODES, joinToString(nodeIDs, " "));
        into.writeAttr(SUMO_ATTR_EDGES, joinToString(validEdgeIDs, " "));
        into.closeTag();
        if (invalidEdgeIDs.size() > 0) {
            WRITE_WARNING("Writing incomplete roundabout. Edges: '"
                          + joinToString(invalidEdgeIDs, " ") + "' no longer exist'");
        }
    }
}
Esempio n. 9
0
void
NWWriter_XML::writeTrafficLights(const OptionsCont& oc, NBTrafficLightLogicCont& tc, NBEdgeCont& ec) {
    OutputDevice& device = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".tll.xml");
    device.writeXMLHeader("tlLogics", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/tllogic_file.xsd\"");
    NWWriter_SUMO::writeTrafficLights(device, tc);
    // we also need to remember the associations between tlLogics and connections
    // since the information in con.xml is insufficient
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        NBEdge* e = (*i).second;
        // write this edge's tl-controlled connections
        const std::vector<NBEdge::Connection> connections = e->getConnections();
        for (std::vector<NBEdge::Connection>::const_iterator c = connections.begin(); c != connections.end(); ++c) {
            if (c->tlID != "") {
                NWWriter_SUMO::writeConnection(device, *e, *c, false, NWWriter_SUMO::TLL);
            }
        }
    }
    device.close();
}
unsigned int
NBNodeCont::removeUnwishedNodes(NBDistrictCont& dc, NBEdgeCont& ec,
                                NBJoinedEdgesMap& je, NBTrafficLightLogicCont& tlc,
                                bool removeGeometryNodes) {
    unsigned int no = 0;
    std::vector<NBNode*> toRemove;
    for (NodeCont::iterator i = myNodes.begin(); i != myNodes.end(); i++) {
        NBNode* current = (*i).second;
        bool remove = false;
        std::vector<std::pair<NBEdge*, NBEdge*> > toJoin;
        // check for completely empty nodes
        if (current->getOutgoingEdges().size() == 0 && current->getIncomingEdges().size() == 0) {
            // remove if empty
            remove = true;
        }
        // check for nodes which are only geometry nodes
        if (removeGeometryNodes) {
            if ((current->getOutgoingEdges().size() == 1 && current->getIncomingEdges().size() == 1)
                    ||
                    (current->getOutgoingEdges().size() == 2 && current->getIncomingEdges().size() == 2)) {
                // ok, one in, one out or two in, two out
                //  -> ask the node whether to join
                remove = current->checkIsRemovable();
                if (remove) {
                    toJoin = current->getEdgesToJoin();
                }
            }
        }
        // remove the node and join the geometries when wished
        if (!remove) {
            continue;
        }
        for (std::vector<std::pair<NBEdge*, NBEdge*> >::iterator j = toJoin.begin(); j != toJoin.end(); j++) {
            NBEdge* begin = (*j).first;
            NBEdge* continuation = (*j).second;
            begin->append(continuation);
            continuation->getToNode()->replaceIncoming(continuation, begin, 0);
            tlc.replaceRemoved(continuation, -1, begin, -1);
            je.appended(begin->getID(), continuation->getID());
            ec.erase(dc, continuation);
        }
        toRemove.push_back(current);
        no++;
    }
    // erase all
    for (std::vector<NBNode*>::iterator j = toRemove.begin(); j != toRemove.end(); ++j) {
        erase(*j);
    }
    return no;
}
void
NBNodeCont::joinSimilarEdges(NBDistrictCont& dc, NBEdgeCont& ec, NBTrafficLightLogicCont& tlc) {
    // magic values
    SUMOReal distanceThreshold = 7; // don't merge edges further apart
    SUMOReal lengthThreshold = 0.05; // don't merge edges with higher relative length-difference

    for (NodeCont::iterator i = myNodes.begin(); i != myNodes.end(); i++) {
        // count the edges to other nodes outgoing from the current node
        std::map<NBNode*, EdgeVector> connectionCount;
        const EdgeVector& outgoing = (*i).second->getOutgoingEdges();
        for (EdgeVector::const_iterator j = outgoing.begin(); j != outgoing.end(); j++) {
            NBEdge* e = (*j);
            NBNode* connected = e->getToNode();
            if (connectionCount.find(connected) == connectionCount.end()) {
                connectionCount[connected] = EdgeVector();
            }
            connectionCount[connected].push_back(e);
        }
        // check whether more than a single edge connect another node and join them
        std::map<NBNode*, EdgeVector>::iterator k;
        for (k = connectionCount.begin(); k != connectionCount.end(); k++) {
            // possibly we do not have anything to join...
            if ((*k).second.size() < 2) {
                continue;
            }
            // for the edges that seem to be a single street,
            //  check whether the geometry is similar
            const EdgeVector& ev = (*k).second;
            const NBEdge* const first = ev.front();
            EdgeVector::const_iterator jci; // join candidate iterator
            for (jci = ev.begin() + 1; jci != ev.end(); ++jci) {
                const SUMOReal relativeLengthDifference = fabs(first->getLoadedLength() - (*jci)->getLoadedLength()) / first->getLoadedLength();
                if ((!first->isNearEnough2BeJoined2(*jci, distanceThreshold)) ||
                        (relativeLengthDifference > lengthThreshold) ||
                        (first->getSpeed() != (*jci)->getSpeed())
                        // @todo check vclass
                   ) {
                    break;
                }
            }
            // @bug If there are 3 edges of which 2 can be joined, no joining will
            //   take place with the current implementation
            if (jci == ev.end()) {
                ec.joinSameNodeConnectingEdges(dc, tlc, ev);
            }
        }
    }
}
Esempio n. 12
0
void NBPTLine::write(OutputDevice& device, NBEdgeCont& ec) {
    device.openTag(SUMO_TAG_PT_LINE);
    device.writeAttr(SUMO_ATTR_ID, myPTLineId);
    if (!myName.empty()) {
        device.writeAttr(SUMO_ATTR_NAME, StringUtils::escapeXML(myName));
    }

    device.writeAttr(SUMO_ATTR_LINE, StringUtils::escapeXML(myRef));
    device.writeAttr(SUMO_ATTR_TYPE, myType);
    if (myInterval > 0) {
        // write seconds 
        device.writeAttr(SUMO_ATTR_PERIOD, 60 * myInterval);
    }
    if (myNightService != "") {
        device.writeAttr("nightService", myNightService);
    }
    device.writeAttr("completeness", toString((double)myPTStops.size() / (double)myNumOfStops));

    std::vector<std::string> validEdgeIDs;
    // filter out edges that have been removed due to joining junctions
    // (therest of the route is valid)
    for (NBEdge* e : myRoute) {
        if (ec.retrieve(e->getID())) {
            validEdgeIDs.push_back(e->getID());
        }
    }
    if (!myRoute.empty()) {
        device.openTag(SUMO_TAG_ROUTE);
        device.writeAttr(SUMO_ATTR_EDGES, validEdgeIDs);
        device.closeTag();
    }

    for (auto& myPTStop : myPTStops) {
        device.openTag(SUMO_TAG_BUS_STOP);
        device.writeAttr(SUMO_ATTR_ID, myPTStop->getID());
        device.writeAttr(SUMO_ATTR_NAME, StringUtils::escapeXML(myPTStop->getName()));
        device.closeTag();
    }
//    device.writeAttr(SUMO_ATTR_LANE, myLaneId);
//    device.writeAttr(SUMO_ATTR_STARTPOS, myStartPos);
//    device.writeAttr(SUMO_ATTR_ENDPOS, myEndPos);
//    device.writeAttr(SUMO_ATTR_FRIENDLY_POS, "true");
    device.closeTag();

}
Esempio n. 13
0
void
NWWriter_DlrNavteq::writeProhibitedManoeuvres(const OptionsCont& oc, const NBNodeCont& nc, const NBEdgeCont& ec) {
    OutputDevice& device = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_prohibited_manoeuvres.txt");
    writeHeader(device, oc);
    // need to invent id for relation
    std::set<std::string> reservedRelIDs;
    if (oc.isSet("reserved-ids")) {
        NBHelpers::loadPrefixedIDsFomFile(oc.getString("reserved-ids"), "rel:", reservedRelIDs);
    }
    std::vector<std::string> avoid = ec.getAllNames(); // already used for tls RELATREC_ID
    avoid.insert(avoid.end(), reservedRelIDs.begin(), reservedRelIDs.end());
    IDSupplier idSupplier("", avoid); // @note: use a global relRecIDsupplier if this is used more often
    // write format specifier
    device << "#No driving allowed from ID1 to ID2 or the complete chain from ID1 to IDn\n";
    device << "#RELATREC_ID\tPERMANENT_ID_INFO\tVALIDITY_PERIOD\tTHROUGH_TRAFFIC\tVEHICLE_TYPE\tNAVTEQ_LINK_ID1\t[NAVTEQ_LINK_ID2 ...]\n";
    // write record for every pair of incoming/outgoing edge that are not connected despite having common permissions
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* n = (*i).second;
        const EdgeVector& incoming = n->getIncomingEdges();
        const EdgeVector& outgoing = n->getOutgoingEdges();
        for (EdgeVector::const_iterator j = incoming.begin(); j != incoming.end(); ++j) {
            NBEdge* inEdge = *j;
            const SVCPermissions inPerm = inEdge->getPermissions();
            for (EdgeVector::const_iterator k = outgoing.begin(); k != outgoing.end(); ++k) {
                NBEdge* outEdge = *k;
                const SVCPermissions outPerm = outEdge->getPermissions();
                const SVCPermissions commonPerm = inPerm & outPerm;
                if (commonPerm != 0 && commonPerm != SVC_PEDESTRIAN && !inEdge->isConnectedTo(outEdge)) {
                    device
                            << idSupplier.getNext() << "\t"
                            << 1 << "\t" // permanent id
                            << UNDEFINED << "\t"
                            << 1 << "\t"
                            << getAllowedTypes(SVCAll) << "\t"
                            << inEdge->getID() << "\t" << outEdge->getID() << "\n";
                }
            }
        }
    }
    device.close();
}
Esempio n. 14
0
void
NIImporter_OpenDrive::addE2EConnectionsSecure(const NBEdgeCont &ec, const NBNode * const node,
        const NIImporter_OpenDrive::OpenDriveEdge &from, const NIImporter_OpenDrive::OpenDriveEdge &to,
        std::vector<NIImporter_OpenDrive::Connection> &connections) {
    // positive direction (from is incoming, to is outgoing)
    NBEdge *fromEdge = ec.retrieve("-" + from.id);
    if (fromEdge==0||!node->hasIncoming(fromEdge)) {
        fromEdge = ec.retrieve(from.id);
    }
    NBEdge *toEdge = ec.retrieve("-" + to.id);
    if (toEdge==0||!node->hasOutgoing(toEdge)) {
        toEdge = ec.retrieve(to.id);
    }
    if (fromEdge!=0&&toEdge!=0) {
        Connection c(fromEdge, "", toEdge);
        setLaneConnections(c,
                           from, c.from->getID()[0]!='-', c.from->getID()[0]=='-' ? SUMO_TAG_OPENDRIVE_RIGHT : SUMO_TAG_OPENDRIVE_LEFT,
                           to, c.to->getID()[0]!='-', c.to->getID()[0]=='-' ? SUMO_TAG_OPENDRIVE_RIGHT : SUMO_TAG_OPENDRIVE_LEFT);
        connections.push_back(c);
    }
    // negative direction (to is incoming, from is outgoing)
    fromEdge = ec.retrieve("-" + from.id);
    if (fromEdge==0||!node->hasOutgoing(fromEdge)) {
        fromEdge = ec.retrieve(from.id);
    }
    toEdge = ec.retrieve("-" + to.id);
    if (toEdge==0||!node->hasIncoming(toEdge)) {
        toEdge = ec.retrieve(to.id);
    }
    if (fromEdge!=0&&toEdge!=0) {
        Connection c(toEdge, "", fromEdge);
        setLaneConnections(c,
                           to, c.to->getID()[0]!='-', c.to->getID()[0]=='-' ? SUMO_TAG_OPENDRIVE_RIGHT : SUMO_TAG_OPENDRIVE_LEFT,
                           from, c.from->getID()[0]!='-', c.from->getID()[0]=='-' ? SUMO_TAG_OPENDRIVE_RIGHT : SUMO_TAG_OPENDRIVE_LEFT);
        connections.push_back(c);
    }
}
void
NBTrafficLightLogicCont::setTLControllingInformation(const NBEdgeCont& ec, const NBNodeCont& nc) {
    Definitions definitions = getDefinitions();
    // set the information about all participants, first
    for (Definitions::iterator it = definitions.begin(); it != definitions.end(); it++) {
        (*it)->setParticipantsInformation();
    }
    // clear previous information because tlDefs may have been removed in NETEDIT
    ec.clearControllingTLInformation();
    // insert the information about the tl-controlling
    for (Definitions::iterator it = definitions.begin(); it != definitions.end(); it++) {
        (*it)->setTLControllingInformation();
    }
    // handle rail signals which are not instantiated as normal definitions
    for (std::map<std::string, NBNode*>::const_iterator it = nc.begin(); it != nc.end(); it ++) {
        NBNode* n = it->second;
        if (n->getType() == NODETYPE_RAIL_SIGNAL || n->getType() == NODETYPE_RAIL_CROSSING) {
            NBOwnTLDef dummy(n->getID(), n, 0, TLTYPE_STATIC);
            dummy.setParticipantsInformation();
            dummy.setTLControllingInformation();
            n->removeTrafficLight(&dummy);
        }
    }
}
Esempio n. 16
0
bool
NIVissimDisturbance::addToNode(NBNode* node, NBDistrictCont& dc,
                               NBNodeCont& nc, NBEdgeCont& ec) {
    myNode = 0;
    NIVissimConnection* pc =
        NIVissimConnection::dictionary(myEdge.getEdgeID());
    NIVissimConnection* bc =
        NIVissimConnection::dictionary(myDisturbance.getEdgeID());
    if (pc == nullptr && bc == nullptr) {
        // This has not been tested completely, yet
        // Both competing abstract edges are normal edges
        // We have to find a crossing point, build a node here,
        //  split both edges and add the connections
        NIVissimEdge* e1 = NIVissimEdge::dictionary(myEdge.getEdgeID());
        NIVissimEdge* e2 = NIVissimEdge::dictionary(myDisturbance.getEdgeID());
        WRITE_WARNING("Ugly split to prohibit '" + toString<int>(e1->getID()) + "' by '" + toString<int>(e2->getID()) + "'.");
        Position pos = e1->crossesEdgeAtPoint(e2);
        std::string id1 = toString<int>(e1->getID()) + "x" + toString<int>(e2->getID());
        std::string id2 = toString<int>(e2->getID()) + "x" + toString<int>(e1->getID());
        NBNode* node1 = nc.retrieve(id1);
        NBNode* node2 = nc.retrieve(id2);
        NBNode* node = nullptr;
        assert(node1 == 0 || node2 == 0);
        if (node1 == nullptr && node2 == nullptr) {
            refusedProhibits++;
            return false;
            /*            node = new NBNode(id1, pos.x(), pos.y(), "priority");
                        if(!myNodeCont.insert(node)) {
                             "nope, NIVissimDisturbance" << endl;
                            throw 1;
                        }*/
        } else {
            node = node1 == nullptr ? node2 : node1;
        }
        ec.splitAt(dc, ec.retrievePossiblySplit(toString<int>(e1->getID()), myEdge.getPosition()), node);
        ec.splitAt(dc, ec.retrievePossiblySplit(toString<int>(e2->getID()), myDisturbance.getPosition()), node);
        // !!! in some cases, one of the edges is not being build because it's too short
        // !!! what to do in these cases?
        NBEdge* mayDriveFrom = ec.retrieve(toString<int>(e1->getID()) + "[0]");
        NBEdge* mayDriveTo = ec.retrieve(toString<int>(e1->getID()) + "[1]");
        NBEdge* mustStopFrom = ec.retrieve(toString<int>(e2->getID()) + "[0]");
        NBEdge* mustStopTo = ec.retrieve(toString<int>(e2->getID()) + "[1]");
        if (mayDriveFrom != nullptr && mayDriveTo != nullptr && mustStopFrom != nullptr && mustStopTo != nullptr) {
            node->addSortedLinkFoes(
                NBConnection(mayDriveFrom, mayDriveTo),
                NBConnection(mayDriveFrom, mayDriveTo));
        } else {
            refusedProhibits++;
            return false;
            // !!! warning
        }
//        }
    } else if (pc != nullptr && bc == nullptr) {
        // The prohibited abstract edge is a connection, the other
        //  is not;
        // The connection will be prohibitesd by all connections
        //  outgoing from the "real" edge

        NBEdge* e = ec.retrievePossiblySplit(toString<int>(myDisturbance.getEdgeID()), myDisturbance.getPosition());
        if (e == nullptr) {
            WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' by '" + toString<int>(myDisturbance.getEdgeID()) + "'. Have not found disturbance.");
            refusedProhibits++;
            return false;
        }
        if (e->getFromNode() == e->getToNode()) {
            WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' by '" + toString<int>(myDisturbance.getEdgeID()) + "'. Disturbance connects same node.");
            refusedProhibits++;
            // What to do with self-looping edges?
            return false;
        }
        // get the begin of the prohibited connection
        std::string id_pcoe = toString<int>(pc->getFromEdgeID());
        std::string id_pcie = toString<int>(pc->getToEdgeID());
        NBEdge* pcoe = ec.retrievePossiblySplit(id_pcoe, id_pcie, true);
        NBEdge* pcie = ec.retrievePossiblySplit(id_pcie, id_pcoe, false);
        // check whether it's ending node is the node the prohibited
        //  edge end at
        if (pcoe != nullptr && pcie != nullptr && pcoe->getToNode() == e->getToNode()) {
            // if so, simply prohibit the connections
            NBNode* node = e->getToNode();
            const EdgeVector& connected = e->getConnectedEdges();
            for (EdgeVector::const_iterator i = connected.begin(); i != connected.end(); i++) {
                node->addSortedLinkFoes(
                    NBConnection(e, *i),
                    NBConnection(pcoe, pcie));
            }
        } else {
            WRITE_WARNING("Would have to split edge '" + e->getID() + "' to build a prohibition");
            refusedProhibits++;
            // quite ugly - why was it not build?
            return false;
            /*
            std::string nid1 = e->getID() + "[0]";
            std::string nid2 = e->getID() + "[1]";

            if(ec.splitAt(e, node)) {
                node->addSortedLinkFoes(
                        NBConnection(
                            ec.retrieve(nid1),
                            ec.retrieve(nid2)
                        ),
                        getConnection(node, myEdge.getEdgeID())
                    );
            }
            */
        }
    } else if (bc != nullptr && pc == nullptr) {
        // The prohibiting abstract edge is a connection, the other
        //  is not;
        // We have to split the other one and add the prohibition
        //  description

        NBEdge* e = ec.retrievePossiblySplit(toString<int>(myEdge.getEdgeID()), myEdge.getPosition());
        if (e == nullptr) {
            WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' - it was not built.");
            return false;
        }
        std::string nid1 = e->getID() + "[0]";
        std::string nid2 = e->getID() + "[1]";
        if (e->getFromNode() == e->getToNode()) {
            WRITE_WARNING("Could not prohibit '" + toString<int>(myEdge.getEdgeID()) + "' by '" + toString<int>(myDisturbance.getEdgeID()) + "'.");
            refusedProhibits++;
            // What to do with self-looping edges?
            return false;
        }
        // get the begin of the prohibiting connection
        std::string id_bcoe = toString<int>(bc->getFromEdgeID());
        std::string id_bcie = toString<int>(bc->getToEdgeID());
        NBEdge* bcoe = ec.retrievePossiblySplit(id_bcoe, id_bcie, true);
        NBEdge* bcie = ec.retrievePossiblySplit(id_bcie, id_bcoe, false);
        // check whether it's ending node is the node the prohibited
        //  edge end at
        if (bcoe != nullptr && bcie != nullptr && bcoe->getToNode() == e->getToNode()) {
            // if so, simply prohibit the connections
            NBNode* node = e->getToNode();
            const EdgeVector& connected = e->getConnectedEdges();
            for (EdgeVector::const_iterator i = connected.begin(); i != connected.end(); i++) {
                node->addSortedLinkFoes(
                    NBConnection(bcoe, bcie),
                    NBConnection(e, *i));
            }
        } else {
            WRITE_WARNING("Would have to split edge '" + e->getID() + "' to build a prohibition");
            refusedProhibits++;
            return false;
            /*
            // quite ugly - why was it not build?
            if(ec.splitAt(e, node)) {
                node->addSortedLinkFoes(
                        getConnection(node, myDisturbance.getEdgeID()),
                        NBConnection(
                            ec.retrieve(nid1),
                            ec.retrieve(nid2)
                        )
                    );
            }
            */
        }
    } else {
        // both the prohibiting and the prohibited abstract edges
        //  are connections
        // We can retrieve the conected edges and add the desription
        NBConnection conn1 = getConnection(node, myDisturbance.getEdgeID());
        NBConnection conn2 = getConnection(node, myEdge.getEdgeID());
        if (!conn1.check(ec) || !conn2.check(ec)) {
            refusedProhibits++;
            return false;
        }
        node->addSortedLinkFoes(conn1, conn2);
    }
    return true;
}
void
NBRampsComputer::buildOffRamp(NBNode* cur, NBNodeCont& nc, NBEdgeCont& ec, NBDistrictCont& dc, SUMOReal rampLength, bool dontSplit, std::set<NBEdge*>& incremented) {
    NBEdge* potHighway, *potRamp, *prev;
    getOffRampEdges(cur, &potHighway, &potRamp, &prev);
    // compute the number of lanes to append
    const unsigned int firstLaneNumber = prev->getNumLanes();
    int toAdd = (potRamp->getNumLanes() + potHighway->getNumLanes()) - firstLaneNumber;
    NBEdge* first = prev;
    NBEdge* last = prev;
    NBEdge* curr = prev;
    if (toAdd > 0 && find(incremented.begin(), incremented.end(), prev) == incremented.end()) {
        SUMOReal currLength = 0;
        while (curr != 0 && currLength + curr->getGeometry().length() - POSITION_EPS < rampLength) {
            if (find(incremented.begin(), incremented.end(), curr) == incremented.end()) {
                curr->incLaneNo(toAdd);
                curr->invalidateConnections(true);
                incremented.insert(curr);
                moveRampRight(curr, toAdd);
                currLength += curr->getLength(); // !!! loaded length?
                last = curr;
            }
            NBNode* prevN = curr->getFromNode();
            if (prevN->getIncomingEdges().size() == 1) {
                curr = prevN->getIncomingEdges()[0];
                if (curr->getNumLanes() != firstLaneNumber) {
                    // the number of lanes changes along the computation; we'll stop...
                    curr = 0;
                } else if (last->isTurningDirectionAt(curr)) {
                    // turnarounds certainly should not be included in a ramp
                    curr = 0;
                } else if (curr == potHighway || curr == potRamp) {
                    // circular connectivity. do not split!
                    curr = 0;
                }
            } else {
                // ambigous; and, in fact, what should it be? ...stop
                curr = 0;
            }
        }
        // check whether a further split is necessary
        if (curr != 0 && !dontSplit && currLength - POSITION_EPS < rampLength && curr->getNumLanes() == firstLaneNumber && find(incremented.begin(), incremented.end(), curr) == incremented.end()) {
            // there is enough place to build a ramp; do it
            bool wasFirst = first == curr;
            Position pos = curr->getGeometry().positionAtOffset(curr->getGeometry().length() - (rampLength  - currLength));
            NBNode* rn = new NBNode(curr->getID() + "-AddedOffRampNode", pos);
            if (!nc.insert(rn)) {
                throw ProcessError("Ups - could not build on-ramp for edge '" + curr->getID() + "' (node could not be build)!");
            }
            std::string name = curr->getID();
            bool ok = ec.splitAt(dc, curr, rn, curr->getID(), curr->getID() + "-AddedOffRampEdge", curr->getNumLanes(), curr->getNumLanes() + toAdd);
            if (!ok) {
                WRITE_ERROR("Ups - could not build on-ramp for edge '" + curr->getID() + "'!");
                return;
            }
            curr = ec.retrieve(name + "-AddedOffRampEdge");
            incremented.insert(curr);
            last = curr;
            moveRampRight(curr, toAdd);
            if (wasFirst) {
                first = curr;
            }
        }
        if (curr == prev && dontSplit) {
            WRITE_WARNING("Could not build off-ramp for edge '"  + curr->getID() + "' due to option '--ramps.no-split'");
            return;
        }
    }
    // set connections from added ramp to ramp/highway
    if (!first->addLane2LaneConnections(potRamp->getNumLanes(), potHighway, 0, MIN2(first->getNumLanes() - 1, potHighway->getNumLanes()), NBEdge::L2L_VALIDATED, true)) {
        throw ProcessError("Could not set connection!");
    }
    if (!first->addLane2LaneConnections(0, potRamp, 0, potRamp->getNumLanes(), NBEdge::L2L_VALIDATED, false)) {
        throw ProcessError("Could not set connection!");
    }
    // patch ramp geometry
    PositionVector p = potRamp->getGeometry();
    p.pop_front();
    p.push_front(first->getLaneShape(0)[-1]);
    potRamp->setGeometry(p);
}
void
NIVissimDistrictConnection::dict_BuildDistricts(NBDistrictCont& dc,
        NBEdgeCont& ec,
        NBNodeCont& nc/*,
                                                                                NBDistribution &distc*/) {
    // add the sources and sinks
    //  their normalised probability is computed within NBDistrict
    //   to avoid SUMOReal code writing and more securty within the converter
    //  go through the district table
    for (std::map<int, std::vector<int> >::iterator k = myDistrictsConnections.begin(); k != myDistrictsConnections.end(); k++) {
        // get the connections
        const std::vector<int>& connections = (*k).second;
        // retrieve the current district
        NBDistrict* district =
            dc.retrieve(toString<int>((*k).first));
        NBNode* districtNode = nc.retrieve("District" + district->getID());
        assert(district != 0 && districtNode != 0);

        for (std::vector<int>::const_iterator l = connections.begin(); l != connections.end(); l++) {
            NIVissimDistrictConnection* c = dictionary(*l);
            // get the edge to connect the parking place to
            NBEdge* e = ec.retrieve(toString<int>(c->myEdgeID));
            if (e == 0) {
                e = ec.retrievePossiblySplit(toString<int>(c->myEdgeID), c->myPosition);
            }
            if (e == 0) {
                WRITE_WARNING("Could not build district '" + toString<int>((*k).first) + "' - edge '" + toString<int>(c->myEdgeID) + "' is missing.");
                continue;
            }
            std::string id = "ParkingPlace" + toString<int>(*l);
            NBNode* parkingPlace = nc.retrieve(id);
            if (parkingPlace == 0) {
                SUMOReal pos = c->getPosition();
                if (pos < e->getLength() - pos) {
                    parkingPlace = e->getFromNode();
                    parkingPlace->invalidateIncomingConnections();
                } else {
                    parkingPlace = e->getToNode();
                    parkingPlace->invalidateOutgoingConnections();
                }
            }
            assert(
                e->getToNode() == parkingPlace
                ||
                e->getFromNode() == parkingPlace);

            // build the connection to the source
            if (e->getFromNode() == parkingPlace) {
                id = "VissimFromParkingplace" + toString<int>((*k).first) + "-" + toString<int>(c->myID);
                NBEdge* source =
                    new NBEdge(id, districtNode, parkingPlace,
                               "Connection", c->getMeanSpeed(/*distc*/) / (SUMOReal) 3.6, 3, -1,
                               NBEdge::UNSPECIFIED_WIDTH, NBEdge::UNSPECIFIED_OFFSET);
                if (!ec.insert(source)) { // !!! in den Konstruktor
                    throw 1; // !!!
                }
                SUMOReal percNormed =
                    c->myPercentages[(*k).first];
                if (!district->addSource(source, percNormed)) {
                    throw 1;
                }
            }

            // build the connection to the destination
            if (e->getToNode() == parkingPlace) {
                id = "VissimToParkingplace"  + toString<int>((*k).first) + "-" + toString<int>(c->myID);
                NBEdge* destination =
                    new NBEdge(id, parkingPlace, districtNode,
                               "Connection", (SUMOReal) 100 / (SUMOReal) 3.6, 2, -1,
                               NBEdge::UNSPECIFIED_WIDTH, NBEdge::UNSPECIFIED_OFFSET);
                if (!ec.insert(destination)) { // !!! (in den Konstruktor)
                    throw 1; // !!!
                }
                SUMOReal percNormed2 =
                    c->myPercentages[(*k).first];
                if (!district->addSink(destination, percNormed2)) {
                    throw 1; // !!!
                }
            }

            /*
            if(e->getToNode()==districtNode) {
            SUMOReal percNormed =
                c->myPercentages[(*k).first];
            district->addSink(e, percNormed);
            }
            if(e->getFromNode()==districtNode) {
            SUMOReal percNormed =
                c->myPercentages[(*k).first];
            district->addSource(e, percNormed);
            }
            */
        }

        /*
        // add them as sources and sinks to the current district
        for(std::vector<int>::const_iterator l=connections.begin(); l!=connections.end(); l++) {
            // get the current connections
            NIVissimDistrictConnection *c = dictionary(*l);
            // get the edge to connect the parking place to
            NBEdge *e = NBEdgeCont::retrieve(toString<int>(c->myEdgeID));
            Position edgepos = c->geomPosition();
            NBNode *edgeend = e->tryGetNodeAtPosition(c->myPosition,
                e->getLength()/4.0);
            if(edgeend==0) {
                // Edge splitting omitted on build district connections by now
                assert(false);
            }

            // build the district-node if not yet existing
            std::string id = "VissimParkingplace" + district->getID();
            NBNode *districtNode = nc.retrieve(id);
            assert(districtNode!=0);

            if(e->getToNode()==edgeend) {
                // build the connection to the source
                id = std::string("VissimFromParkingplace")
                    + toString<int>((*k).first) + "-"
                    + toString<int>(c->myID);
                NBEdge *source =
                    new NBEdge(id, id, districtNode, edgeend,
                    "Connection", 100/3.6, 2, 100, 0,
                    NBEdge::EDGEFUNCTION_SOURCE);
                NBEdgeCont::insert(source); // !!! (in den Konstruktor)
                SUMOReal percNormed =
                    c->myPercentages[(*k).first];
                district->addSource(source, percNormed);
            } else {
                // build the connection to the destination
                id = std::string("VissimToParkingplace")
                    + toString<int>((*k).first) + "-"
                    + toString<int>(c->myID);
                NBEdge *destination =
                    new NBEdge(id, id, edgeend, districtNode,
                    "Connection", 100/3.6, 2, 100, 0,
                    NBEdge::EDGEFUNCTION_SINK);
                NBEdgeCont::insert(destination); // !!! (in den Konstruktor)

                // add both the source and the sink to the district
                SUMOReal percNormed =
                    c->myPercentages[(*k).first];
                district->addSink(destination, percNormed);
            }
        }
        */
    }
}
void
NBNodeCont::joinNodeClusters(NodeClusters clusters,
                             NBDistrictCont& dc, NBEdgeCont& ec, NBTrafficLightLogicCont& tlc) {
    for (NodeClusters::iterator i = clusters.begin(); i != clusters.end(); ++i) {
        std::set<NBNode*> cluster = *i;
        assert(cluster.size() > 1);
        Position pos;
        bool setTL;
        std::string id;
        TrafficLightType type;
        analyzeCluster(cluster, id, pos, setTL, type);
        if (!insert(id, pos)) {
            // should not fail
            WRITE_WARNING("Could not join junctions " + id);
            continue;
        }
        NBNode* newNode = retrieve(id);
        if (setTL) {
            NBTrafficLightDefinition* tlDef = new NBOwnTLDef(id, newNode, 0, type);
            if (!tlc.insert(tlDef)) {
                // actually, nothing should fail here
                delete tlDef;
                throw ProcessError("Could not allocate tls '" + id + "'.");
            }
        }
        // collect edges
        std::set<NBEdge*> allEdges;
        for (std::set<NBNode*>::const_iterator j = cluster.begin(); j != cluster.end(); ++j) {
            const EdgeVector& edges = (*j)->getEdges();
            allEdges.insert(edges.begin(), edges.end());
        }

        // remap and remove edges which are completely within the new intersection
        for (std::set<NBEdge*>::iterator j = allEdges.begin(); j != allEdges.end();) {
            NBEdge* e = (*j);
            NBNode* from = e->getFromNode();
            NBNode* to = e->getToNode();
            if (cluster.count(from) > 0 && cluster.count(to) > 0) {
                for (std::set<NBEdge*>::iterator l = allEdges.begin(); l != allEdges.end(); ++l) {
                    if (e != *l) {
                        (*l)->replaceInConnections(e, e->getConnections());
                    }
                }
                ec.erase(dc, e);
                allEdges.erase(j++); // erase does not invalidate the other iterators
            } else {
                ++j;
            }
        }

        // remap edges which are incoming / outgoing
        for (std::set<NBEdge*>::iterator j = allEdges.begin(); j != allEdges.end(); ++j) {
            NBEdge* e = (*j);
            std::vector<NBEdge::Connection> conns = e->getConnections();
            const bool outgoing = cluster.count(e->getFromNode()) > 0;
            NBNode* from = outgoing ? newNode : e->getFromNode();
            NBNode* to   = outgoing ? e->getToNode() : newNode;
            e->reinitNodes(from, to);
            // re-add connections which previously existed and may still valid.
            // connections to removed edges will be ignored
            for (std::vector<NBEdge::Connection>::iterator k = conns.begin(); k != conns.end(); ++k) {
                e->addLane2LaneConnection((*k).fromLane, (*k).toEdge, (*k).toLane, NBEdge::L2L_USER, false, (*k).mayDefinitelyPass);
            }
        }
        // remove original nodes
        registerJoinedCluster(cluster);
        for (std::set<NBNode*>::const_iterator j = cluster.begin(); j != cluster.end(); ++j) {
            erase(*j);
        }
    }
}
void
NIImporter_OpenStreetMap::insertEdge(Edge* e, int index, NBNode* from, NBNode* to,
                                     const std::vector<int> &passed, NBEdgeCont& ec, NBTypeCont& tc) {
    // patch the id
    std::string id = e->id;
    if (index >= 0) {
        id = id + "#" + toString(index);
    }
    // convert the shape
    PositionVector shape;
    for (std::vector<int>::const_iterator i = passed.begin(); i != passed.end(); ++i) {
        NIOSMNode* n = myOSMNodes.find(*i)->second;
        Position pos(n->lon, n->lat);
        if (!NILoader::transformCoordinates(pos, true)) {
            throw ProcessError("Unable to project coordinates for edge " + id + ".");
        }
        shape.push_back_noDoublePos(pos);
    }

    std::string type = e->myHighWayType;
    if (!tc.knows(type)) {
        if (type.find(compoundTypeSeparator) != std::string::npos) {
            // this edge has a combination type which does not yet exist in the TypeContainer
            StringTokenizer tok = StringTokenizer(type, compoundTypeSeparator);
            std::set<std::string> types;
            while (tok.hasNext()) {
                std::string t = tok.next();
                if (tc.knows(t)) {
                    types.insert(t);
                } else {
                    WRITE_WARNING("Discarding edge " + id + " with type \"" + type + "\" (unknown compound \"" + t + "\").");
                    return;
                }
            }

            if (types.size() == 2 &&
                    types.count("railway.tram") == 1) {
                // compound types concern mostly the special case of tram tracks on a normal road.
                // in this case we simply discard the tram information since the default for road is to allow all vclasses
                types.erase("railway.tram");
                std::string otherCompound = *(types.begin());
                // XXX if otherCompound does not allow all vehicles (e.g. SVC_DELIVERY), tram will still not be allowed
                type = otherCompound;
            } else {
                // other cases not implemented yet
                WRITE_WARNING("Discarding edge " + id + " with unknown type \"" + type + "\".");
                return;
            }
        } else {
            // we do not know the type -> something else, ignore
            //WRITE_WARNING("Discarding edge " + id + " with unknown type \"" + type + "\".");
            return;
        }
    }



    // otherwise it is not an edge and will be ignored
    int noLanes = tc.getNumLanes(type);
    SUMOReal speed = tc.getSpeed(type);
    bool defaultsToOneWay = tc.getIsOneWay(type);
    SUMOVehicleClasses allowedClasses = tc.getAllowedClasses(type);
    SUMOVehicleClasses disallowedClasses = tc.getDisallowedClasses(type);
    // check directions
    bool addSecond = true;
    if (e->myIsOneWay == "true" || e->myIsOneWay == "yes" || e->myIsOneWay == "1" || (defaultsToOneWay && e->myIsOneWay != "no" && e->myIsOneWay != "false" && e->myIsOneWay != "0")) {
        addSecond = false;
    }
    // if we had been able to extract the number of lanes, override the highway type default
    if (e->myNoLanes >= 0) {
        if (!addSecond) {
            noLanes = e->myNoLanes;
        } else {
            noLanes = e->myNoLanes / 2;
        }
    }
    // if we had been able to extract the maximum speed, override the type's default
    if (e->myMaxSpeed != MAXSPEED_UNGIVEN) {
        speed = (SUMOReal)(e->myMaxSpeed / 3.6);
    }

    if (noLanes != 0 && speed != 0) {
        if (e->myIsOneWay != "" && e->myIsOneWay != "false" && e->myIsOneWay != "no" && e->myIsOneWay != "true" && e->myIsOneWay != "yes" && e->myIsOneWay != "-1" && e->myIsOneWay != "1") {
            WRITE_WARNING("New value for oneway found: " + e->myIsOneWay);
        }
        LaneSpreadFunction lsf = addSecond ? LANESPREAD_RIGHT : LANESPREAD_CENTER;
        if (e->myIsOneWay != "-1") {
            NBEdge* nbe = new NBEdge(id, from, to, type, speed, noLanes, tc.getPriority(type),
                                     tc.getWidth(type), NBEdge::UNSPECIFIED_OFFSET, shape, e->streetName, lsf);
            nbe->setVehicleClasses(allowedClasses, disallowedClasses);
            if (!ec.insert(nbe)) {
                delete nbe;
                throw ProcessError("Could not add edge '" + id + "'.");
            }
        }
        if (addSecond) {
            if (e->myIsOneWay != "-1") {
                id = "-" + id;
            }
            NBEdge* nbe = new NBEdge(id, to, from, type, speed, noLanes, tc.getPriority(type),
                                     tc.getWidth(type), NBEdge::UNSPECIFIED_OFFSET, shape.reverse(), e->streetName, lsf);
            nbe->setVehicleClasses(allowedClasses, disallowedClasses);
            if (!ec.insert(nbe)) {
                delete nbe;
                throw ProcessError("Could not add edge '-" + id + "'.");
            }
        }
    }
}
void
NBNodeCont::removeIsolatedRoads(NBDistrictCont& dc, NBEdgeCont& ec, NBTrafficLightLogicCont& tc) {
    UNUSED_PARAMETER(tc);
    // Warn of isolated edges, i.e. a single edge with no connection to another edge
    int edgeCounter = 0;
    const std::vector<std::string>& edgeNames = ec.getAllNames();
    for (std::vector<std::string>::const_iterator it = edgeNames.begin(); it != edgeNames.end(); ++it) {
        // Test whether this node starts at a dead end, i.e. it has only one adjacent node
        // to which an edge exists and from which an edge may come.
        NBEdge* e = ec.retrieve(*it);
        if (e == 0) {
            continue;
        }
        NBNode* from = e->getFromNode();
        const EdgeVector& outgoingEdges = from->getOutgoingEdges();
        if (outgoingEdges.size() != 1) {
            // At this node, several edges or no edge start; so, this node is no dead end.
            continue;
        }
        const EdgeVector& incomingEdges = from->getIncomingEdges();
        if (incomingEdges.size() > 1) {
            // At this node, several edges end; so, this node is no dead end.
            continue;
        } else if (incomingEdges.size() == 1) {
            NBNode* fromNodeOfIncomingEdge = incomingEdges[0]->getFromNode();
            NBNode* toNodeOfOutgoingEdge = outgoingEdges[0]->getToNode();
            if (fromNodeOfIncomingEdge != toNodeOfOutgoingEdge) {
                // At this node, an edge ends which is not the inverse direction of
                // the starting node.
                continue;
            }
        }
        // Now we know that the edge e starts a dead end.
        // Next we test if the dead end is isolated, i.e. does not lead to a junction
        bool hasJunction = false;
        EdgeVector road;
        NBEdge* eOld = 0;
        NBNode* to;
        std::set<NBNode*> adjacentNodes;
        do {
            road.push_back(e);
            eOld = e;
            from = e->getFromNode();
            to = e->getToNode();
            const EdgeVector& outgoingEdgesOfToNode = to->getOutgoingEdges();
            const EdgeVector& incomingEdgesOfToNode = to->getIncomingEdges();
            adjacentNodes.clear();
            for (EdgeVector::const_iterator itOfOutgoings = outgoingEdgesOfToNode.begin(); itOfOutgoings != outgoingEdgesOfToNode.end(); ++itOfOutgoings) {
                if ((*itOfOutgoings)->getToNode() != from        // The back path
                        && (*itOfOutgoings)->getToNode() != to   // A loop / dummy edge
                   ) {
                    e = *itOfOutgoings; // Probably the next edge
                }
                adjacentNodes.insert((*itOfOutgoings)->getToNode());
            }
            for (EdgeVector::const_iterator itOfIncomings = incomingEdgesOfToNode.begin(); itOfIncomings != incomingEdgesOfToNode.end(); ++itOfIncomings) {
                adjacentNodes.insert((*itOfIncomings)->getFromNode());
            }
            adjacentNodes.erase(to);  // Omit loops
            if (adjacentNodes.size() > 2) {
                hasJunction = true;
            }
        } while (!hasJunction && eOld != e);
        if (!hasJunction) {
            edgeCounter +=  int(road.size());
            std::string warningString = "Removed a road without junctions: ";
            for (EdgeVector::iterator roadIt = road.begin(); roadIt != road.end(); ++roadIt) {
                if (roadIt == road.begin()) {
                    warningString += (*roadIt)->getID();
                } else {
                    warningString += ", " + (*roadIt)->getID();
                }

                NBNode* fromNode = (*roadIt)->getFromNode();
                NBNode* toNode = (*roadIt)->getToNode();
                ec.erase(dc, *roadIt);
                if (fromNode->getIncomingEdges().size() == 0 && fromNode->getOutgoingEdges().size() == 0) {
                    // Node is empty; can be removed
                    erase(fromNode);
                }
                if (toNode->getIncomingEdges().size() == 0 && toNode->getOutgoingEdges().size() == 0) {
                    // Node is empty; can be removed
                    erase(toNode);
                }
            }
            WRITE_WARNING(warningString);
        }
    }
    if (edgeCounter > 0 && !OptionsCont::getOptions().getBool("remove-edges.isolated")) {
        WRITE_WARNING("Detected isolated roads. Use the option --remove-edges.isolated to get a list of all affected edges.");
    }
}
void
NBRampsComputer::buildOnRamp(NBNode* cur, NBNodeCont& nc, NBEdgeCont& ec, NBDistrictCont& dc, SUMOReal rampLength, bool dontSplit, std::set<NBEdge*>& incremented) {
    NBEdge* potHighway, *potRamp, *cont;
    getOnRampEdges(cur, &potHighway, &potRamp, &cont);
    // compute the number of lanes to append
    const unsigned int firstLaneNumber = potHighway->getNumLanes();
    int toAdd = (potRamp->getNumLanes() + firstLaneNumber) - cont->getNumLanes();
    NBEdge* first = cont;
    NBEdge* last = cont;
    NBEdge* curr = cont;
    if (toAdd > 0 && find(incremented.begin(), incremented.end(), cont) == incremented.end()) {
        SUMOReal currLength = 0;
        while (curr != 0 && currLength + curr->getGeometry().length() - POSITION_EPS < rampLength) {
            if (find(incremented.begin(), incremented.end(), curr) == incremented.end()) {
                curr->incLaneNo(toAdd);
                curr->invalidateConnections(true);
                incremented.insert(curr);
                moveRampRight(curr, toAdd);
                currLength += curr->getLength(); // !!! loaded length?
                last = curr;
            }
            NBNode* nextN = curr->getToNode();
            if (nextN->getOutgoingEdges().size() == 1) {
                curr = nextN->getOutgoingEdges()[0];
                if (curr->getNumLanes() != firstLaneNumber) {
                    // the number of lanes changes along the computation; we'll stop...
                    curr = 0;
                }
            } else {
                // ambigous; and, in fact, what should it be? ...stop
                curr = 0;
            }
        }
        // check whether a further split is necessary
        if (curr != 0 && !dontSplit && currLength - POSITION_EPS < rampLength && curr->getNumLanes() == firstLaneNumber && find(incremented.begin(), incremented.end(), curr) == incremented.end()) {
            // there is enough place to build a ramp; do it
            bool wasFirst = first == curr;
            NBNode* rn = new NBNode(curr->getID() + "-AddedOnRampNode", curr->getGeometry().positionAtLengthPosition(rampLength - currLength));
            if (!nc.insert(rn)) {
                throw ProcessError("Ups - could not build on-ramp for edge '" + curr->getID() + "' (node could not be build)!");
            }
            std::string name = curr->getID();
            bool ok = ec.splitAt(dc, curr, rn, curr->getID() + ADDED_ON_RAMP_EDGE, curr->getID(), curr->getNumLanes() + toAdd, curr->getNumLanes());
            if (!ok) {
                WRITE_ERROR("Ups - could not build on-ramp for edge '" + curr->getID() + "'!");
                return;
            }
            //ec.retrieve(name)->invalidateConnections();
            curr = ec.retrieve(name + ADDED_ON_RAMP_EDGE);
            curr->invalidateConnections(true);
            incremented.insert(curr);
            last = curr;
            moveRampRight(curr, toAdd);
            if (wasFirst) {
                first = curr;
            }
        }
    }
    // set connections from ramp/highway to added ramp
    if (!potHighway->addLane2LaneConnections(0, first, potRamp->getNumLanes(), MIN2(first->getNumLanes() - potRamp->getNumLanes(), potHighway->getNumLanes()), NBEdge::L2L_VALIDATED, true, true)) {
        throw ProcessError("Could not set connection!");
    }
    if (!potRamp->addLane2LaneConnections(0, first, 0, potRamp->getNumLanes(), NBEdge::L2L_VALIDATED, true, true)) {
        throw ProcessError("Could not set connection!");
    }
    // patch ramp geometry
    PositionVector p = potRamp->getGeometry();
    p.pop_back();
    p.push_back(first->getLaneShape(0)[0]);
    potRamp->setGeometry(p);
    // set connections from added ramp to following highway
    NBNode* nextN = last->getToNode();
    if (nextN->getOutgoingEdges().size() == 1) {
        NBEdge* next = nextN->getOutgoingEdges()[0];//const EdgeVector& o1 = cont->getToNode()->getOutgoingEdges();
        if (next->getNumLanes() < last->getNumLanes()) {
            last->addLane2LaneConnections(last->getNumLanes() - next->getNumLanes(), next, 0, next->getNumLanes(), NBEdge::L2L_VALIDATED);
        }
    }
}
Esempio n. 23
0
void
NIVissimEdge::buildNBEdge(NBDistrictCont& dc, NBNodeCont& nc, NBEdgeCont& ec,
                          SUMOReal sameNodesOffset) {
    // build the edge
    std::pair<NIVissimConnectionCluster*, NBNode*> fromInf, toInf;
    NBNode* fromNode, *toNode;
    fromNode = toNode = 0;
    sort(myConnectionClusters.begin(), myConnectionClusters.end(), connection_cluster_position_sorter(myID));
    sort(myDistrictConnections.begin(), myDistrictConnections.end());
    ConnectionClusters tmpClusters = myConnectionClusters;
    if (tmpClusters.size() != 0) {
        sort(tmpClusters.begin(), tmpClusters.end(), connection_cluster_position_sorter(myID));
        // get or build the from-node
        //  A node may have to be build when the edge starts or ends at
        //  a parking place or something like this
        fromInf = getFromNode(nc, tmpClusters);
        fromNode = fromInf.second;
        // get or build the to-node
        //if(tmpClusters.size()>0) {
        toInf = getToNode(nc, tmpClusters);
        toNode = toInf.second;
        if (fromInf.first != 0 && toNode != 0 && fromInf.first->around(toNode->getPosition())) {
            WRITE_WARNING("Will not build edge '" + toString(myID) + "'.");
            myAmWithinJunction = true;
            return;
        }
        //}
        // if both nodes are the same, resolve the problem otherwise
        if (fromNode == toNode) {
            std::pair<NBNode*, NBNode*> tmp = resolveSameNode(nc, sameNodesOffset, fromNode, toNode);
            if (fromNode != tmp.first) {
                fromInf.first = 0;
            }
            if (toNode != tmp.second) {
                toInf.first = 0;
            }
            fromNode = tmp.first;
            toNode = tmp.second;
        }
    }

    //
    if (fromNode == 0) {
        fromInf.first = 0;
        Position pos = myGeom[0];
        fromNode = new NBNode(toString<int>(myID) + "-SourceNode", pos, NODETYPE_NOJUNCTION);
        if (!nc.insert(fromNode)) {
            throw ProcessError("Could not insert node '" + fromNode->getID() + "' to nodes container.");
        }
    }
    if (toNode == 0) {
        toInf.first = 0;
        Position pos = myGeom[-1];
        toNode = new NBNode(toString<int>(myID) + "-DestinationNode", pos, NODETYPE_NOJUNCTION);
        if (!nc.insert(toNode)) {
            throw ProcessError("Could not insert node '" + toNode->getID() + "' to nodes container.");
        }
    }

    // build the edge
    SUMOReal avgSpeed = 0;
    int i;
    for (i = 0; i < (int) myNoLanes; i++) {
        if (myLaneSpeeds.size() <= (size_t) i || myLaneSpeeds[i] == -1) {
            myLanesWithMissingSpeeds.push_back(toString(myID) + "_" + toString(i));
            avgSpeed += OptionsCont::getOptions().getFloat("vissim.default-speed");
        } else {
            avgSpeed += myLaneSpeeds[i];
        }
    }
    avgSpeed /= (SUMOReal) myLaneSpeeds.size();
    avgSpeed *= OptionsCont::getOptions().getFloat("vissim.speed-norm");

    if (fromNode == toNode) {
        WRITE_WARNING("Could not build edge '" + toString(myID) + "'; would connect same node.");
        return;
    }

    NBEdge* buildEdge = new NBEdge(toString<int>(myID), fromNode, toNode, myType,
                                   avgSpeed / (SUMOReal) 3.6, myNoLanes, -1,
                                   NBEdge::UNSPECIFIED_WIDTH, NBEdge::UNSPECIFIED_OFFSET,
                                   myGeom, myName, LANESPREAD_CENTER, true);
    for (i = 0; i < (int) myNoLanes; i++) {
        if ((int) myLaneSpeeds.size() <= i || myLaneSpeeds[i] == -1) {
            buildEdge->setSpeed(i, OptionsCont::getOptions().getFloat("vissim.default-speed") / (SUMOReal) 3.6);
        } else {
            buildEdge->setSpeed(i, myLaneSpeeds[i] / (SUMOReal) 3.6);
        }
    }
    ec.insert(buildEdge);
    // check whether the edge contains any other clusters
    if (tmpClusters.size() > 0) {
        bool cont = true;
        for (ConnectionClusters::iterator j = tmpClusters.begin(); cont && j != tmpClusters.end(); ++j) {
            // split the edge at the previously build node
            std::string nextID = buildEdge->getID() + "[1]";
            cont = ec.splitAt(dc, buildEdge, (*j)->getNBNode());
            // !!! what to do if the edge could not be split?
            buildEdge = ec.retrieve(nextID);
        }
    }
}
Esempio n. 24
0
void
NWWriter_XML::writeEdgesAndConnections(const OptionsCont& oc, NBNodeCont& nc, NBEdgeCont& ec) {
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    bool useGeo = oc.exists("proj.plain-geo") && oc.getBool("proj.plain-geo");
    const bool geoAccuracy = useGeo || gch.usingInverseGeoProjection();

    OutputDevice& edevice = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".edg.xml");
    edevice.writeXMLHeader("edges", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/edges_file.xsd\"");
    OutputDevice& cdevice = OutputDevice::getDevice(oc.getString("plain-output-prefix") + ".con.xml");
    cdevice.writeXMLHeader("connections", NWFrame::MAJOR_VERSION + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" xsi:noNamespaceSchemaLocation=\"http://sumo-sim.org/xsd/connections_file.xsd\"");
    bool noNames = !oc.getBool("output.street-names");
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        // write the edge itself to the edges-files
        NBEdge* e = (*i).second;
        edevice.openTag(SUMO_TAG_EDGE);
        edevice.writeAttr(SUMO_ATTR_ID, e->getID());
        edevice.writeAttr(SUMO_ATTR_FROM, e->getFromNode()->getID());
        edevice.writeAttr(SUMO_ATTR_TO, e->getToNode()->getID());
        if (!noNames && e->getStreetName() != "") {
            edevice.writeAttr(SUMO_ATTR_NAME, StringUtils::escapeXML(e->getStreetName()));
        }
        edevice.writeAttr(SUMO_ATTR_PRIORITY, e->getPriority());
        // write the type if given
        if (e->getTypeID() != "") {
            edevice.writeAttr(SUMO_ATTR_TYPE, e->getTypeID());
        }
        edevice.writeAttr(SUMO_ATTR_NUMLANES, e->getNumLanes());
        if (!e->hasLaneSpecificSpeed()) {
            edevice.writeAttr(SUMO_ATTR_SPEED, e->getSpeed());
        }
        // write non-default geometry
        if (!e->hasDefaultGeometry()) {
            PositionVector geom = e->getGeometry();
            if (useGeo) {
                for (int i = 0; i < (int) geom.size(); i++) {
                    gch.cartesian2geo(geom[i]);
                }
            }
            if (geoAccuracy) {
                edevice.setPrecision(GEO_OUTPUT_ACCURACY);
            }
            edevice.writeAttr(SUMO_ATTR_SHAPE, geom);
            if (geoAccuracy) {
                edevice.setPrecision();
            }
        }
        // write the spread type if not default ("right")
        if (e->getLaneSpreadFunction() != LANESPREAD_RIGHT) {
            edevice.writeAttr(SUMO_ATTR_SPREADTYPE, toString(e->getLaneSpreadFunction()));
        }
        // write the length if it was specified
        if (e->hasLoadedLength()) {
            edevice.writeAttr(SUMO_ATTR_LENGTH, e->getLoadedLength());
        }
        // some attributes can be set by edge default or per lane. Write as default if possible (efficiency)
        if (e->getLaneWidth() != NBEdge::UNSPECIFIED_WIDTH && !e->hasLaneSpecificWidth()) {
            edevice.writeAttr(SUMO_ATTR_WIDTH, e->getLaneWidth());
        }
        if (e->getOffset() != NBEdge::UNSPECIFIED_OFFSET && !e->hasLaneSpecificOffset()) {
            edevice.writeAttr(SUMO_ATTR_OFFSET, e->getOffset());
        }
        if (!e->needsLaneSpecificOutput()) {
            edevice.closeTag();
        } else {
            for (unsigned int i = 0; i < e->getLanes().size(); ++i) {
                const NBEdge::Lane& lane = e->getLanes()[i];
                edevice.openTag(SUMO_TAG_LANE);
                edevice.writeAttr(SUMO_ATTR_INDEX, i);
                // write allowed lanes
                NWWriter_SUMO::writePermissions(edevice, lane.permissions);
                NWWriter_SUMO::writePreferences(edevice, lane.preferred);
                // write other attributes
                if (lane.width != NBEdge::UNSPECIFIED_WIDTH && e->hasLaneSpecificWidth()) {
                    edevice.writeAttr(SUMO_ATTR_WIDTH, lane.width);
                }
                if (lane.offset != NBEdge::UNSPECIFIED_OFFSET && e->hasLaneSpecificOffset()) {
                    edevice.writeAttr(SUMO_ATTR_OFFSET, lane.offset);
                }
                if (e->hasLaneSpecificSpeed()) {
                    edevice.writeAttr(SUMO_ATTR_SPEED, lane.speed);
                }
                edevice.closeTag();
            }
            edevice.closeTag();
        }
        // write this edge's connections to the connections-files
        e->sortOutgoingConnectionsByIndex();
        const std::vector<NBEdge::Connection> connections = e->getConnections();
        for (std::vector<NBEdge::Connection>::const_iterator c = connections.begin(); c != connections.end(); ++c) {
            NWWriter_SUMO::writeConnection(cdevice, *e, *c, false, NWWriter_SUMO::PLAIN);
        }
        if (connections.size() > 0) {
            cdevice << "\n";
        }
    }

    // write loaded prohibitions to the connections-file
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NWWriter_SUMO::writeProhibitions(cdevice, i->second->getProhibitions());
    }
    edevice.close();
    cdevice.close();
}
Esempio n. 25
0
void
NWWriter_DlrNavteq::writeNodesUnsplitted(const OptionsCont& oc, NBNodeCont& nc, NBEdgeCont& ec, std::map<NBEdge*, std::string>& internalNodes) {
    // For "real" nodes we simply use the node id.
    // For internal nodes (geometry vectors describing edge geometry in the parlance of this format)
    // we use the id of the edge and do not bother with
    // compression (each direction gets its own internal node).
    OutputDevice& device = OutputDevice::getDevice(oc.getString("dlr-navteq-output") + "_nodes_unsplitted.txt");
    writeHeader(device, oc);
    const GeoConvHelper& gch = GeoConvHelper::getFinal();
    const bool haveGeo = gch.usingGeoProjection();
    const double geoScale = pow(10.0f, haveGeo ? 5 : 2); // see NIImporter_DlrNavteq::GEO_SCALE
    device.setPrecision(oc.getInt("dlr-navteq.precision"));
    if (!haveGeo) {
        WRITE_WARNING("DlrNavteq node data will be written in (floating point) cartesian coordinates");
    }
    // write format specifier
    device << "# NODE_ID\tIS_BETWEEN_NODE\tamount_of_geocoordinates\tx1\ty1\t[x2 y2  ... xn  yn]\n";
    // write header
    Boundary boundary = gch.getConvBoundary();
    Position min(boundary.xmin(), boundary.ymin());
    Position max(boundary.xmax(), boundary.ymax());
    gch.cartesian2geo(min);
    min.mul(geoScale);
    gch.cartesian2geo(max);
    max.mul(geoScale);
    int multinodes = 0;
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        if ((*i).second->getGeometry().size() > 2) {
            multinodes++;
        }
    }
    device << "# [xmin_region] " << min.x() << "\n";
    device << "# [xmax_region] " << max.x() << "\n";
    device << "# [ymin_region] " << min.y() << "\n";
    device << "# [ymax_region] " << max.y() << "\n";
    device << "# [elements_multinode] " << multinodes << "\n";
    device << "# [elements_normalnode] " << nc.size() << "\n";
    device << "# [xmin] " << min.x() << "\n";
    device << "# [xmax] " << max.x() << "\n";
    device << "# [ymin] " << min.y() << "\n";
    device << "# [ymax] " << max.y() << "\n";
    // write normal nodes
    for (std::map<std::string, NBNode*>::const_iterator i = nc.begin(); i != nc.end(); ++i) {
        NBNode* n = (*i).second;
        Position pos = n->getPosition();
        gch.cartesian2geo(pos);
        pos.mul(geoScale);
        device << n->getID() << "\t0\t1\t" << pos.x() << "\t" << pos.y() << "\n";
    }
    // write "internal" nodes
    std::vector<std::string> avoid;
    std::set<std::string> reservedNodeIDs;
    const bool numericalIDs = oc.getBool("numerical-ids");
    if (oc.isSet("reserved-ids")) {
        NBHelpers::loadPrefixedIDsFomFile(oc.getString("reserved-ids"), "node:", reservedNodeIDs); // backward compatibility
        NBHelpers::loadPrefixedIDsFomFile(oc.getString("reserved-ids"), "junction:", reservedNodeIDs); // selection format
    }
    if (numericalIDs) {
        avoid = nc.getAllNames();
        std::vector<std::string> avoid2 = ec.getAllNames();
        avoid.insert(avoid.end(), avoid2.begin(), avoid2.end());
        avoid.insert(avoid.end(), reservedNodeIDs.begin(), reservedNodeIDs.end());
    }
    IDSupplier idSupplier("", avoid);
    for (std::map<std::string, NBEdge*>::const_iterator i = ec.begin(); i != ec.end(); ++i) {
        NBEdge* e = (*i).second;
        PositionVector geom = e->getGeometry();
        if (geom.size() > 2) {
            // the import NIImporter_DlrNavteq checks for the presence of a
            // negated edge id to determine spread type. We may need to do some
            // shifting to make this consistent
            const bool hasOppositeID = ec.getOppositeByID(e->getID()) != nullptr;
            if (e->getLaneSpreadFunction() == LANESPREAD_RIGHT && !hasOppositeID) {
                // need to write center-line geometry instead
                try {
                    geom.move2side(e->getTotalWidth() / 2);
                } catch (InvalidArgument& exception) {
                    WRITE_WARNING("Could not reconstruct shape for edge:'" + e->getID() + "' (" + exception.what() + ").");
                }
            } else if (e->getLaneSpreadFunction() == LANESPREAD_CENTER && hasOppositeID) {
                // need to write left-border geometry instead
                try {
                    geom.move2side(-e->getTotalWidth() / 2);
                } catch (InvalidArgument& exception) {
                    WRITE_WARNING("Could not reconstruct shape for edge:'" + e->getID() + "' (" + exception.what() + ").");
                }
            }

            std::string internalNodeID = e->getID();
            if (internalNodeID == UNDEFINED
                    || (nc.retrieve(internalNodeID) != nullptr)
                    || reservedNodeIDs.count(internalNodeID) > 0
               ) {
                // need to invent a new name to avoid clashing with the id of a 'real' node or a reserved name
                if (numericalIDs) {
                    internalNodeID = idSupplier.getNext();
                } else {
                    internalNodeID += "_geometry";
                }
            }
            internalNodes[e] = internalNodeID;
            device << internalNodeID << "\t1\t" << geom.size() - 2;
            for (int ii = 1; ii < (int)geom.size() - 1; ++ii) {
                Position pos = geom[(int)ii];
                gch.cartesian2geo(pos);
                pos.mul(geoScale);
                device << "\t" << pos.x() << "\t" << pos.y();
            }
            device << "\n";
        }
    }
    device.close();
}