Esempio n. 1
0
void CreateSequenceTestDense(const DeviceDescriptor device, bool readOnly)
{
    size_t numAxes = 4;
    size_t maxDimSize = 30;
    NDShape sampleShape = CreateShape(numAxes, maxDimSize);
    auto sampleSize = sampleShape.TotalSize();

    size_t batchCount = 1;
    size_t maxSequenceLen = 60;

    // Test without using seqStartFlag
    auto seqLenList = GenerateSequenceLengths(batchCount, maxSequenceLen);
    auto data = GenerateSequences<ElementType>(seqLenList, sampleShape);
    auto seq = data[0];
    auto testValue = Value::CreateSequence(sampleShape, seq, device, readOnly);
    CheckValue(testValue, sampleShape, data, seqLenList);

    // Test seqStartFlag is true
    seqLenList = GenerateSequenceLengths(batchCount, maxSequenceLen);
    data = GenerateSequences<ElementType>(seqLenList, sampleShape);
    seq = data[0];
    testValue = Value::CreateSequence(sampleShape, seq, true, device, readOnly);
    CheckValue(testValue, sampleShape, data, seqLenList, { true });

    // Test seqStartFlag is false
    seqLenList = GenerateSequenceLengths(batchCount, maxSequenceLen);
    data = GenerateSequences<ElementType>(seqLenList, sampleShape);
    seq = data[0];
    testValue = Value::CreateSequence(sampleShape, seq, false, device, readOnly);
    CheckValue(testValue, sampleShape, data, seqLenList, { false });

    vector<ElementType> wrongSeq(sampleSize * 2 - 1, 0);
    VerifyException([&sampleShape, &wrongSeq, &device, &readOnly]() {
        Value::CreateSequence(sampleShape, wrongSeq, device, readOnly);
    }, "The expected exception has not been caught: The number of data is not a multiple of the sample size.");

    auto emptySeq = vector<ElementType>(0);
    VerifyException([&sampleShape, &emptySeq, &device, &readOnly]() {
        Value::CreateSequence(sampleShape, emptySeq, device, readOnly);
    }, "The expected exception has not been caught: The sequence length is 0");
}
Esempio n. 2
0
ValuePtr CreateBatchWithVariableSequence(const NDShape& sampleShape, size_t batchSize, const std::vector<size_t>& sequenceSize, const std::vector<ElementType>& batchData, const DeviceDescriptor& device, bool readOnly = false)
{
    auto shapeSize = sampleShape.TotalSize();
    if (batchData.size() % shapeSize != 0)
        InvalidArgument("The number of elements (%zu) in the vector containing batch data must be a multiple of the size (%zu) of the sample shape '%S'.",
                        batchData.size(), shapeSize, sampleShape.AsString().c_str());

    if (sequenceSize.size() != batchSize)
        InvalidArgument("The number of sequences (%zu) in the vector containing sequence size must match batch size (%zu)", sequenceSize.size(), batchSize);

    std::vector<NDArrayViewPtr> sequencesView(batchSize);
    size_t curBatchDataIdx = 0;
    for (size_t i = 0; i < batchSize; i++)
    {
        auto sequenceDataShape = sampleShape.AppendShape({sequenceSize[i]});
        sequencesView[i] = MakeSharedObject<NDArrayView>(sequenceDataShape, batchData.data() + curBatchDataIdx, shapeSize * sequenceSize[i], DeviceDescriptor::CPUDevice());
        curBatchDataIdx += shapeSize * sequenceSize[i];
    }

    return Value::Create(sampleShape, sequencesView, {}, device, readOnly, true);
}
Esempio n. 3
0
    /*static*/ NDArrayViewPtr Variable::CreateValueFromParameterInitializer(const NDShape& shape, const ParameterInitializer& initConfig, const DeviceDescriptor& device)
    {
        auto dataType = AsDataType<ElementType>();
        auto value = MakeSharedObject<NDArrayView>(dataType, shape, device);
        auto valueMatrix = value->template GetWritableMatrix<ElementType>();
        auto initializerType = initConfig[InitializerTypeAttributeName].Value<std::wstring>();
        if (initializerType == Microsoft::MSR::CNTK::ConstantInitializerTypeName)
        {
            auto constantInitValue = initConfig[ValueAttributeName].Value<double>();
            valueMatrix->SetValue((ElementType)constantInitValue);
        }
        else if (initializerType == Microsoft::MSR::CNTK::BilinearInitializerTypeName)
        {
            auto kernelWidth = initConfig[KernelWidthAttributeName].Value<size_t>();
            auto kernelHeight = initConfig[KernelHeightAttributeName].Value<size_t>();

            Microsoft::MSR::CNTK::LearnableParameter<ElementType>::InitBilinear(*valueMatrix, AsTensorShape(shape), kernelWidth, kernelHeight, AsCNTKImplDeviceId(device));
        }
        else
        {
            auto randomSeed = (unsigned long)initConfig[RandomSeedAttributeName].Value<size_t>();
            if (randomSeed == SentinelValueForAutoSelectRandomSeed)
                randomSeed = s_currentRandomSeed++;

            auto scale = initConfig[ScaleAttributeName].Value<double>();
            int outputRank = DefaultParamInitOutputRank, filterRank = DefaultParamInitFilterRank;
            if (initializerType != Microsoft::MSR::CNTK::UniformInitializerTypeName)
            {
                outputRank = initConfig[OutputRankAttributeName].Value<int>();
                filterRank = initConfig[FilterRankAttributeName].Value<int>();

                if (outputRank == SentinelValueForInferParamInitRank)
                    outputRank = DefaultParamInitOutputRank;

                if (filterRank == SentinelValueForInferParamInitRank)
                    filterRank = DefaultParamInitFilterRank;

                if ((filterRank + outputRank) > shape.Rank())
                    InvalidArgument("Sum of filter rank (%d) and output rank (%d) of the parameter initializer cannot exceed the Parameter's rank(%d)", filterRank, outputRank, (int)shape.Rank());
            }

            Microsoft::MSR::CNTK::LearnableParameter<ElementType>::InitRandom(*valueMatrix, AsTensorShape(shape), initializerType, randomSeed, (ElementType)scale,
                                                                              filterRank, outputRank, /*initOnCPUOnly=*/true,
                                                                              AsCNTKImplDeviceId(device));
        }

        return value;
    }
Esempio n. 4
0
void RunEvaluationClassifier(FunctionPtr evalFunc, const DeviceDescriptor& device)
{
    const std::wstring inputNodeName = L"features";

    Variable inputVar;
    if (!GetInputVariableByName(evalFunc, inputNodeName, inputVar))
    {
        fprintf(stderr, "Input variable %S is not available.\n", inputNodeName.c_str());
        throw("Input variable not found error.");
    }

    // Evaluate the network in several runs 
    size_t iterationCount = 4;
    unsigned int randSeed = 2;
    srand(randSeed);
    size_t numSamples = 3;
    std::vector<float> inputData(inputVar.Shape().TotalSize() * numSamples);
    for (size_t t = 0; t < iterationCount; ++t)
    {
        for (size_t i = 0; i < inputData.size(); ++i)
        {
            inputData[i] = ((float)rand()) / RAND_MAX;
        }

        // Create input data shape. Adding sequence length and numSamples as axes.
        // Todo: remove sequence length when only numSamples is supported.
        // Todo: add convenience APIs to simplify data preparation here.
        NDShape inputShape = inputVar.Shape().AppendShape({1, numSamples});
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData, true));

        // Define output.
        ValuePtr outputValue;
        auto outputVar = evalFunc->Output();
        std::unordered_map<Variable, ValuePtr> outputs = {{outputVar, outputValue}};

        // Evaluate the model
        evalFunc->Forward({{inputVar, inputValue}}, outputs, device);

        // Get output value
        outputValue = outputs[outputVar];

        // Todo: remove sequence length when only numSamples is supported.
        // Todo: add convenience APIs to simplify retrieval of output results.
        NDShape outputShape = outputVar.Shape().AppendShape({1, numSamples});
        std::vector<float> outputData(outputShape.TotalSize());
        NDArrayViewPtr cpuArrayOutput = MakeSharedObject<NDArrayView>(outputShape, outputData, false);
        cpuArrayOutput->CopyFrom(*outputValue->Data());

        assert(outputData.size() == outputVar.Shape()[0] * numSamples);
        fprintf(stderr, "Evaluation result:\n");
        size_t dataIndex = 0;
        auto outputDim = outputVar.Shape()[0];
        for (size_t i = 0; i < numSamples; i++)
        {
            fprintf(stderr, "Iteration:%lu, Sample %lu:\n", t, i);
            fprintf(stderr, "    ");
            dataIndex = i * outputDim;
            for (size_t j = 0; j < std::min((size_t)10, outputDim); j++)
            {
                fprintf(stderr, "%f ", outputData[dataIndex++]);
            }
            if (outputDim > 10)
            {
                fprintf(stderr, "...");
            }
            fprintf(stderr, "\n");
        }
    }
}
Esempio n. 5
0
void TestReduceSum(size_t sampleRank, const DeviceDescriptor& device)
{
    size_t numSequences = 7;
    size_t maxAllowedSequenceLength = 11;
    size_t maxDimSize = 23;
    NDShape inputShape(sampleRank);
    for (size_t i = 0; i < sampleRank; ++i)
        inputShape[i] = (rand() % maxDimSize) + 1;

    auto sequenceLengths = GenerateSequenceLengths(numSequences, maxAllowedSequenceLength);
    auto sequences = GenerateSequences<float>(sequenceLengths, inputShape);
    ValuePtr sequencesValue = Value::Create(inputShape, sequences, device, true);

    // Test ReduceSum along a static axis
    {
        auto testReduceSum = [&sequences, &sequenceLengths, inputShape, sequencesValue, device, sampleRank](int reductionAxis, bool useNegativeAxisIndex)
        {
            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            auto inputVar = InputVariable(inputShape, DataType::Float, L"input");
            FunctionPtr reduceSumFunc;

            bool reduceAll = (reductionAxis < 0);
            if (reduceAll)
                reduceSumFunc = ReduceSum(inputVar);
            else
                reduceSumFunc = ReduceSum(inputVar, Axis(useNegativeAxisIndex ? (reductionAxis - (int)sampleRank) : reductionAxis));

            NDShape outputShape = reduceSumFunc->Output().Shape();
            NDShape outputDataShape = outputShape;
            if (!reduceAll)
                outputDataShape = outputDataShape.AppendShape({ maxActualSequenceLength, numSequences });

            std::vector<float> outputData(outputDataShape.TotalSize());
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputDataShape, outputData, false), reduceAll ? nullptr : sequencesValue->Mask()->DeepClone());

            std::unordered_map<Variable, ValuePtr> outputs = { { reduceSumFunc->Output(), outputValue } };
            reduceSumFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            std::vector<size_t> inputShapeStrides = GetStrides(inputShape);
            std::vector<size_t> outputShapeStrides = GetStrides(outputShape);

            std::vector<float> expectedPerFrameTotals(outputShape.TotalSize() * maxActualSequenceLength * numSequences, 0.0f);
            float expectedTotal = 0.0f;
            for (size_t i = 0; i < numSequences; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                for (size_t j = 0; j < currentSequenceLength; ++j)
                {
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                    {
                        auto inputIdx = UnflattenedShape(k, inputShapeStrides);
                        auto outputIdx = inputIdx;
                        if (!reduceAll)
                            outputIdx[reductionAxis] = 0;
                        else
                            outputIdx = {};

                        auto flatOutputIdx = FlattenedIndex(outputIdx, outputShapeStrides);
                        float value = sequences[i][(j * inputShape.TotalSize()) + k];
                        expectedPerFrameTotals[(((i * maxActualSequenceLength) + j) * outputShape.TotalSize()) + flatOutputIdx] += value;
                        expectedTotal += value;
                    }
                }
            }

            if (reduceAll)
                FloatingPointVectorCompare(outputData, std::vector<float>({ expectedTotal }), "testReduceSum: Forward prop results do not match expected results");
            else
                FloatingPointVectorCompare(outputData, expectedPerFrameTotals, "testReduceSum: Forward prop results do not match expected results");
        };

        // Reduce over all axes
        testReduceSum(-1, false);

        int reductionAxis = 0;
        testReduceSum(reductionAxis, true);

        if (reductionAxis < (inputShape.Rank() - 1))
            reductionAxis++;

        testReduceSum(reductionAxis, false);

        if (reductionAxis < (inputShape.Rank() - 1))
            reductionAxis++;

        testReduceSum(reductionAxis, true);
    }

    // Test ReduceSum along a dynamic axis
    {
        auto testReduceSum = [&sequences, &sequenceLengths, inputShape, sequencesValue, device](const Axis& axis)
        {
            if (!axis.IsDynamicAxis())
                RuntimeError("Called the dynamic axis ReduceSum test with a static axis");

            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            auto inputVar = InputVariable({ inputShape }, DataType::Float, L"input");
            FunctionPtr reduceSumFunc = ReduceSum(inputVar, axis);

            NDShape maskShape = { ((axis == Axis::DefaultBatchAxis()) ? maxActualSequenceLength : 1), ((axis == Axis::DefaultBatchAxis()) ? 1 : numSequences) };
            NDShape outputShape = reduceSumFunc->Output().Shape();
            auto outputDataShape = outputShape.AppendShape(maskShape);

            std::vector<float> outputData(outputDataShape.TotalSize());
            auto maskPtr = MakeSharedObject<NDMask>(maskShape, device);
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputDataShape, outputData, false), maskPtr);

            std::unordered_map<Variable, ValuePtr> outputs = { { reduceSumFunc->Output(), outputValue } };
            reduceSumFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            std::vector<float> expectedTotals(outputDataShape.TotalSize(), 0.0f);
            for (size_t i = 0; i < numSequences; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                for (size_t j = 0; j < currentSequenceLength; ++j)
                {
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                    {
                        float value = sequences[i][(j * inputShape.TotalSize()) + k];
                        if (axis == Axis::DefaultBatchAxis())
                            expectedTotals[(j * inputShape.TotalSize()) + k] += value;
                        else
                            expectedTotals[(i * inputShape.TotalSize()) + k] += value;
                    }
                }
            }

            FloatingPointVectorCompare(outputData, expectedTotals, "testReduceSum: Forward prop results do not match expected results");
        };

        testReduceSum(Axis::DefaultDynamicAxis());
    }
}
Esempio n. 6
0
void TestSlice(size_t sampleRank, const DeviceDescriptor& device)
{
    size_t numSequences = 7;
    size_t maxAllowedSequenceLength = 11;
    size_t maxDimSize = 23;
    size_t minDimSize = 5;
    NDShape inputShape(sampleRank);
    for (size_t i = 0; i < sampleRank; ++i)
        inputShape[i] = (rand() % maxDimSize) + minDimSize;

    auto sequenceLengths = GenerateSequenceLengths(numSequences, maxAllowedSequenceLength);
    auto sequences = GenerateSequences<float>(sequenceLengths, inputShape);
    ValuePtr sequencesValue = Value::Create(inputShape, sequences, device, true);

    // Test slice along a static axis
    {
        auto testStaticAxisSlice = [&sequences, &sequenceLengths, inputShape, sequencesValue, device, sampleRank](int sliceAxis, int beginOffset, int endOffset, bool useNegativeAxisIndex)
        {
            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            auto inputVar = InputVariable(inputShape, DataType::Float, L"input");
            auto sliceFunc = Slice(inputVar, Axis(useNegativeAxisIndex ? (sliceAxis - (int)sampleRank) : sliceAxis), beginOffset, endOffset);

            NDShape outputShape = sliceFunc->Output().Shape();
            auto outputDataShape = outputShape.AppendShape({ maxActualSequenceLength, numSequences });
            std::vector<float> outputData(outputDataShape.TotalSize());
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputDataShape, outputData, false), sequencesValue->Mask()->DeepClone());

            std::unordered_map<Variable, ValuePtr> outputs = { { sliceFunc->Output(), outputValue } };
            sliceFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            std::vector<size_t> inputShapeStrides = GetStrides(inputShape);
            std::vector<size_t> outputShapeStrides = GetStrides(outputShape);

            size_t sliceStartOffset = (beginOffset >= 0) ? beginOffset : (inputShape[sliceAxis] + beginOffset);
            std::vector<float> expectedOutputValues(outputShape.TotalSize() * maxActualSequenceLength * numSequences);
            for (size_t i = 0; i < numSequences; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                for (size_t j = 0; j < currentSequenceLength; ++j)
                {
                    for (size_t k = 0; k < outputShape.TotalSize(); ++k)
                    {
                        auto outputIdx = UnflattenedShape(k, outputShapeStrides);
                        auto inputIdx = outputIdx;
                        inputIdx[sliceAxis] += sliceStartOffset;
                        auto flatInputIdx = FlattenedIndex(inputIdx, inputShapeStrides);
                        expectedOutputValues[(((i * maxActualSequenceLength) + j) * outputShape.TotalSize()) + k] = sequences[i][(j * inputShape.TotalSize()) + flatInputIdx];
                    }
                }
            }

            FloatingPointVectorCompare(outputData, expectedOutputValues, "testStaticAxisSlice: Forward prop results do not match expected results");
        };

        int sliceAxis = 0;
        testStaticAxisSlice(sliceAxis, 3, 5, true);

        if (sliceAxis < (inputShape.Rank() - 1))
            sliceAxis++;

        testStaticAxisSlice(sliceAxis, -1, 0, false);

        if (sliceAxis < (inputShape.Rank() - 1))
            sliceAxis++;

        testStaticAxisSlice(sliceAxis, -3, -1, true);
    }

    // Test slice along a dynamic axis
    {
        auto testDynamicAxisSlice = [&sequences, &sequenceLengths, inputShape, sequencesValue, device](const Axis& axis, int beginOffset, int endOffset)
        {
            if (!axis.IsDynamicAxis())
                RuntimeError("Called the dynamic axis slice test with a static axis");

            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            int endAndBeginOffsetDiff = endOffset - beginOffset;
            size_t maxSliceLength = (endAndBeginOffsetDiff > 0) ? endAndBeginOffsetDiff : maxActualSequenceLength + endAndBeginOffsetDiff;

            auto inputVar = InputVariable(inputShape, DataType::Float, L"input");
            auto sliceFunc = Slice(inputVar, axis, beginOffset, endOffset);
            sliceFunc = sliceFunc + sliceFunc;

            size_t outputSequenceAxisLength = (axis == Axis::DefaultDynamicAxis()) ? maxSliceLength : maxActualSequenceLength;
            size_t outputBatchAxisLength = (axis == Axis::DefaultBatchAxis()) ? maxSliceLength : numSequences;
            NDShape outputShape = sliceFunc->Output().Shape().AppendShape({ outputSequenceAxisLength, outputBatchAxisLength });
            std::vector<float> outputData(outputShape.TotalSize(), 0);
            NDMaskPtr mask;
            if (endAndBeginOffsetDiff < 0)
            {
                ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData, false));
                mask = MakeSharedObject<NDMask>(std::initializer_list<size_t>({ outputSequenceAxisLength, outputBatchAxisLength }), device);
            }
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData, false), mask);

            std::unordered_map<Variable, ValuePtr> outputs = { { sliceFunc->Output(), outputValue } };
            sliceFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            size_t startSequenceIdx = (axis == Axis::DefaultBatchAxis()) ? ((beginOffset >= 0) ? beginOffset : (numSequences + beginOffset)) : 0;
            size_t endSequenceIdx = (axis == Axis::DefaultBatchAxis()) ? ((endOffset > 0) ? endOffset : (numSequences + endOffset)) : numSequences;

            std::vector<float> expectedOutputValues(inputShape.TotalSize() * outputSequenceAxisLength * outputBatchAxisLength);
            for (size_t i = startSequenceIdx; i < endSequenceIdx; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                size_t startFrameIdx = (axis == Axis::DefaultDynamicAxis()) ? ((beginOffset >= 0) ? beginOffset : (currentSequenceLength + beginOffset)) : 0;
                size_t endFrameIdx = (axis == Axis::DefaultDynamicAxis()) ? ((endOffset > 0) ? endOffset : (currentSequenceLength + endOffset)) : currentSequenceLength;
                size_t j = startFrameIdx;
                for (; j < endFrameIdx; ++j)
                {
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                        expectedOutputValues[((((i - startSequenceIdx) * outputSequenceAxisLength) + (j - startFrameIdx)) * inputShape.TotalSize()) + k] = 2 * sequences[i][(j * inputShape.TotalSize()) + k];
                }

                // Zero out the invalid portions of the actual output
                for (; j < (outputSequenceAxisLength + startFrameIdx); ++j)
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                        outputData[((((i - startSequenceIdx) * outputSequenceAxisLength) + (j - startFrameIdx)) * inputShape.TotalSize()) + k] = 0;
            }

            FloatingPointVectorCompare(outputData, expectedOutputValues, "testDynamicAxisSlice: Forward prop results do not match expected results");
        };

        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 0, 1);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 0, 2);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), -1, 0);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), -2, 0);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 0, -1);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 1, 0);
    }
}
Esempio n. 7
0
    NDArrayView::NDArrayView(const NDShape& viewShape, const SparseIndexType* colStarts, const SparseIndexType* rowIndices, const ElementType* nonZeroValues, size_t numNonZeroValues, const DeviceDescriptor& device, bool readOnly/* = false*/)
        : NDArrayView(AsDataType<ElementType>(), device, StorageFormat::SparseCSC, viewShape, false, AllocateTensorView<ElementType>(viewShape, StorageFormat::SparseCSC, device))
    {
        if ((colStarts == nullptr) || (rowIndices == nullptr) || (nonZeroValues == nullptr) || (numNonZeroValues == 0) || (numNonZeroValues > viewShape.TotalSize()))
            InvalidArgument("Invalid sparse CSC format initial data specified for NDArrayView construction");

        auto sparseMatrix = GetWritableMatrix<ElementType>(1);
        sparseMatrix->SetMatrixFromCSCFormat(colStarts, rowIndices, nonZeroValues, numNonZeroValues, sparseMatrix->GetNumRows(), sparseMatrix->GetNumCols());
        m_isReadOnly = readOnly;
    }
Esempio n. 8
0
void TestTimesAndPlus(size_t inputDim,
                      size_t outputDim,
                      size_t numSamples,
                      const DeviceDescriptor& device,
                      size_t numIterations,
                      bool usePreAllocatedOutputs,
                      bool outputOnSpecifiedDevice,
                      bool testSaveAndReLoad,
                      unsigned int seed = 1)
{
    Parameter timesParam(MakeSharedObject<NDArrayView>((ElementType)0.5, NDShape({ outputDim, inputDim }), device), L"timesParameters");
    Parameter plusParam(MakeSharedObject<NDArrayView>((ElementType)1.2, std::initializer_list<size_t>({ outputDim }), device), L"plusParameters");

    Variable inputVar({ inputDim }, AsDataType<ElementType>(), L"input");
    auto timesAndPlusFunc = Plus(plusParam, Times(timesParam, inputVar));

    if (testSaveAndReLoad)
        SaveAndReloadModel<ElementType>(timesAndPlusFunc, { &inputVar, &timesParam, &plusParam }, device);

    srand(seed);
    for (size_t iterIdx = 0; iterIdx < numIterations; ++iterIdx)
    {
        std::vector<ElementType> inputData(inputDim * numSamples);
        for (size_t i = 0; i < inputData.size(); ++i)
            inputData[i] = ((ElementType)rand()) / RAND_MAX;

        NDShape inputShape = inputVar.Shape().AppendShape({ 1, numSamples });
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData.data(), inputData.size(), DeviceDescriptor::CPUDevice(), true));

        NDShape outputShape = timesAndPlusFunc->Output().Shape().AppendShape({ 1, numSamples });
        std::vector<ElementType> outputData(outputShape.TotalSize());
        ValuePtr outputValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), outputAllocationDevice, false));
            else
                outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, outputAllocationDevice));
        }

        std::unordered_map<Variable, ValuePtr> outputs = { { timesAndPlusFunc->Output(), outputValue } };
        auto backpropState = timesAndPlusFunc->Forward({ { inputVar, inputValue } }, outputs, device, { timesAndPlusFunc->Output() });

        if (!usePreAllocatedOutputs)
            outputValue = outputs[timesAndPlusFunc->Output()];

        // Perform backprop
        std::vector<ElementType> rootGradientsData(outputShape.TotalSize(), 1);
        ValuePtr rootGradientValue;
        if (device.Type() == DeviceKind::CPU)
            rootGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), device, true));
        else
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), DeviceDescriptor::CPUDevice(), true);
            NDArrayViewPtr gpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), outputShape, device);
            gpuArrayView->CopyFrom(*cpuArrayView);
            rootGradientValue = MakeSharedObject<Value>(gpuArrayView);
        }

        std::vector<ElementType> plusParameterGradientData(plusParam.Shape().TotalSize());
        std::vector<ElementType> timesParameterGradientData(timesParam.Shape().TotalSize());
        ValuePtr plusParameterGradientValue, timesParameterGradientValue;
        if (usePreAllocatedOutputs)
        {
            auto outputAllocationDevice = outputOnSpecifiedDevice ? device : DeviceDescriptor::CPUDevice();
            if (outputAllocationDevice.Type() == DeviceKind::CPU)
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(plusParam.Shape(), plusParameterGradientData.data(), plusParameterGradientData.size(), outputAllocationDevice, false));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(timesParam.Shape(), timesParameterGradientData.data(), timesParameterGradientData.size(), outputAllocationDevice, false));
            }
            else
            {
                plusParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), plusParam.Shape(), outputAllocationDevice));
                timesParameterGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), timesParam.Shape(), outputAllocationDevice));
            }
        }

        std::unordered_map<Variable, ValuePtr> paramGradients = { { plusParam, plusParameterGradientValue }, { timesParam, timesParameterGradientValue } };
        timesAndPlusFunc->Backward(backpropState, { { timesAndPlusFunc->Output(), rootGradientValue } }, paramGradients);

        if (!usePreAllocatedOutputs)
        {
            plusParameterGradientValue = paramGradients[plusParam];
            timesParameterGradientValue = paramGradients[timesParam];
        }

        // Verify forward prop results
        if (!usePreAllocatedOutputs || (outputOnSpecifiedDevice && (device.Type() != DeviceKind::CPU)))
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(outputShape, outputData.data(), outputData.size(), DeviceDescriptor::CPUDevice(), false);
            cpuArrayView->CopyFrom(*outputValue->Data());
        }

        std::vector<ElementType> expectedOutputValues(outputShape.TotalSize());
        for (size_t i = 0; i < numSamples; ++i)
        {
            ElementType expectedVal = (ElementType)1.2;
            for (size_t j = 0; j < inputDim; ++j)
                expectedVal += (ElementType)(inputData[i * inputDim + j] * 0.5);

            for (size_t j = 0; j < outputDim; ++j)
                expectedOutputValues[i * outputDim + j] = expectedVal;
        }

        FloatingPointVectorCompare(outputData, expectedOutputValues, "TestTimesAndPlus: Forward prop results do not match expected results");

        // Verify backward prop results
        if (device.Type() != DeviceKind::CPU)
        {
            NDArrayViewPtr cpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), plusParam.Shape(), DeviceDescriptor::CPUDevice());
            cpuArrayView->CopyFrom(*plusParameterGradientValue->Data());
            const ElementType* cpuArrayViewBuffer = cpuArrayView->DataBuffer<ElementType>();
            memcpy(plusParameterGradientData.data(), cpuArrayViewBuffer, plusParam.Shape().TotalSize() * sizeof(ElementType));

            cpuArrayView = MakeSharedObject<NDArrayView>(AsDataType<ElementType>(), timesParam.Shape(), DeviceDescriptor::CPUDevice());
            cpuArrayView->CopyFrom(*timesParameterGradientValue->Data());
            cpuArrayViewBuffer = cpuArrayView->DataBuffer<ElementType>();
            memcpy(timesParameterGradientData.data(), cpuArrayViewBuffer, timesParam.Shape().TotalSize() * sizeof(ElementType));
        }

        for (size_t i = 0; i < outputDim; ++i)
            if (plusParameterGradientData[i] != numSamples)
                throw std::runtime_error("TestTimesAndPlus: Backprop prop results do not match expected results for Plus params gradients");

        std::vector<ElementType> expectedTimesParamsGradientValues(timesParam.Shape().TotalSize());
        for (size_t i = 0; i < inputDim; ++i)
        {
            ElementType expectedVal = 0;
            for (size_t j = 0; j < numSamples; ++j)
                expectedVal += inputData[j * inputDim + i];

            for (size_t j = 0; j < outputDim; ++j)
                expectedTimesParamsGradientValues[i * outputDim + j] = expectedVal;
        }

        FloatingPointVectorCompare(timesParameterGradientData, expectedTimesParamsGradientValues, "TestTimesAndPlus: Backprop prop results do not match expected results for Times params gradients");
    }
}
Esempio n. 9
0
void TestFeedForwardNetworkCreation(const DeviceDescriptor& device, bool testSaveAndReLoad)
{
    using namespace std::placeholders;

    const size_t inputDim = 937;
    const size_t numOutputClasses = 9304;
    const size_t numHiddenLayers = 6;
    const size_t hiddenLayersDim = 2048;

    Variable inputVar({ inputDim }, DataType::Float, L"features");
    auto classifierOutputFunction = FullyConnectedFeedForwardClassifierNet(inputVar, numOutputClasses, hiddenLayersDim, numHiddenLayers, device, std::bind(Sigmoid, _1, L""), L"classifierOutput");
    Variable classifierOutput = classifierOutputFunction;

    Variable labelsVar({ numOutputClasses }, DataType::Float, L"Labels");
    auto trainingLossFunction = CNTK::CrossEntropyWithSoftmax(classifierOutput, labelsVar, L"LossFunction");
    Variable trainingLoss = trainingLossFunction;
    auto predictionFunction = CNTK::ClassificationError(classifierOutput, labelsVar, L"ClassificationError");
    Variable prediction = predictionFunction;

    auto ffNet = CNTK::Combine({ trainingLoss.Owner(), prediction.Owner(), classifierOutput.Owner() }, L"ClassifierModel");

    // Now test the structure
    if (ffNet->Parameters().size() != ((numHiddenLayers * 2) + 1))
        throw std::runtime_error("TestFeedForwardNetworkCreation: Function does not have expected Parameter count");

    if (ffNet->Arguments().size() != 2)
        throw std::runtime_error("TestFeedForwardNetworkCreation: Function does not have expected Argument count");

    if (ffNet->Outputs().size() != 3)
        throw std::runtime_error("TestFeedForwardNetworkCreation: Function does not have expected Output count");

    if (testSaveAndReLoad)
        SaveAndReloadModel<float>(ffNet, { &inputVar, &labelsVar, &trainingLoss, &prediction, &classifierOutput }, device);

    // Run Forward and backward a few times
    size_t iterationCount = 4;
    unsigned int randSeed = 2;
    srand(randSeed);
    size_t numSamples = 3;
    for (size_t i = 0; i < iterationCount; ++i)
    {
        std::vector<float> inputData(inputDim * numSamples);
        for (size_t i = 0; i < inputData.size(); ++i)
            inputData[i] = ((float)rand()) / RAND_MAX;

        NDShape inputShape = inputVar.Shape().AppendShape({ 1, numSamples });
        ValuePtr inputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(inputShape, inputData.data(), inputData.size(), DeviceDescriptor::CPUDevice(), true));

        std::vector<float> labelData(numOutputClasses * numSamples, 0);
        for (size_t i = 0; i < numSamples; ++i)
            labelData[(i*numOutputClasses) + (rand() % numOutputClasses)] = 1;

        NDShape labelShape = labelsVar.Shape().AppendShape({ 1, numSamples });
        ValuePtr labelValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(labelShape, labelData.data(), labelData.size(), DeviceDescriptor::CPUDevice(), true));

        ValuePtr outputValue, predictionErrorValue;
        std::unordered_map<Variable, ValuePtr> outputs = { { classifierOutput, outputValue }, { prediction, predictionErrorValue } };
        auto backpropState = ffNet->Forward({ { inputVar, inputValue }, { labelsVar, labelValue } }, outputs, device, { trainingLoss });

        // Perform backprop
        NDShape outputShape = trainingLoss.Shape();
        std::vector<float> rootGradientsData(outputShape.TotalSize(), 1);
        ValuePtr rootGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, rootGradientsData.data(), rootGradientsData.size(), DeviceDescriptor::CPUDevice(), true));
        std::unordered_map<Variable, ValuePtr> paramGradients;
        auto allParams = ffNet->Parameters();
        for (auto iter = allParams.begin(); iter != allParams.end(); ++iter)
            paramGradients[*iter] = nullptr;
        
        ffNet->Backward(backpropState, { { trainingLoss, rootGradientValue } }, paramGradients);
    }
}
Esempio n. 10
0
 NDMask::NDMask(const NDShape& shape, const DeviceDescriptor& device/* = DeviceDescriptor::DefaultDevice()*/)
     : NDMask(shape, AllocateMatrix(shape, device))
 {
     if (shape.NumAxes() > 2)
         LogicError("NDMask instances with more than 2 axes are currently unsupported");
 }
Esempio n. 11
0
void TestTensorPlus(size_t numAxesLeftOperand, size_t numAxesRightOperand, const DeviceDescriptor& device, bool useConstantInputsOnly)
{
    srand(1);

    size_t maxDimSize = 15;
    NDShape leftInputShape(numAxesLeftOperand);
    for (size_t i = 0; i < numAxesLeftOperand; ++i)
        leftInputShape[i] = (rand() % maxDimSize) + 1;

    NDShape rightInputShape(numAxesRightOperand);
    for (size_t i = 0; i < std::min(numAxesLeftOperand, numAxesRightOperand); ++i)
        rightInputShape[i] = leftInputShape[i];

    for (size_t i = std::min(numAxesLeftOperand, numAxesRightOperand); i < numAxesRightOperand; ++i)
        rightInputShape[i] = (rand() % maxDimSize) + 1;

    std::vector<ElementType> leftInputData(leftInputShape.TotalSize());
    for (size_t i = 0; i < leftInputData.size(); ++i)
        leftInputData[i] = ((ElementType)rand()) / RAND_MAX;

    auto leftInputValueShape = leftInputShape.AppendShape({ 1, 1 });
    auto leftInputValue = MakeSharedObject<NDArrayView>(leftInputValueShape, leftInputData, true);

    std::vector<ElementType> rightInputData(rightInputShape.TotalSize());
    for (size_t i = 0; i < rightInputData.size(); ++i)
        rightInputData[i] = ((ElementType)rand()) / RAND_MAX;

    auto rightInputValueShape = rightInputShape.AppendShape({ 1, 1 });
    auto rightInputValue = MakeSharedObject<NDArrayView>(rightInputValueShape, rightInputData, true);

    Variable leftInputVar, rightInputVar;
    if (useConstantInputsOnly)
    {
        leftInputValue = leftInputValue->DeepClone(device, false);
        rightInputValue = rightInputValue->DeepClone(device, false);

        leftInputVar = Parameter(leftInputValue, L"leftInput");
        rightInputVar = Parameter(rightInputValue, L"rightInput");
    }
    else
    {
        leftInputVar = InputVariable(leftInputShape, AsDataType<ElementType>(), true, L"leftInput");
        rightInputVar = InputVariable(rightInputShape, AsDataType<ElementType>(), true, L"rightInput");
    }

    auto plusFunc = Plus(leftInputVar, rightInputVar);

    NDShape outputShape = plusFunc->Output().Shape();
    if (!useConstantInputsOnly)
        outputShape = outputShape.AppendShape({ 1, 1 });

    std::vector<ElementType> outputData(outputShape.TotalSize());
    ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData, false));

    std::unordered_map<Variable, ValuePtr> outputs = { { plusFunc->Output(), outputValue } };
    BackPropStatePtr backPropState;
    if (useConstantInputsOnly)
        backPropState = plusFunc->Forward(std::unordered_map<Variable, ValuePtr>({}), outputs, device, { plusFunc->Output() });
    else
        backPropState = plusFunc->Forward({ { leftInputVar, MakeSharedObject<Value>(leftInputValue) }, { rightInputVar, MakeSharedObject<Value>(rightInputValue) } }, outputs, device, { plusFunc->Output() });

    // Perform backprop
    std::vector<ElementType> rootGradientsData(outputShape.TotalSize(), 1);
    ValuePtr rootGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, rootGradientsData, true));

    std::vector<ElementType> leftInputGradientsData(leftInputValueShape.TotalSize());
    ValuePtr leftInputGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(leftInputValueShape, leftInputGradientsData, false));
    std::vector<ElementType> rightInputGradientsData(rightInputValueShape.TotalSize());
    ValuePtr rightInputGradientValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(rightInputValueShape, rightInputGradientsData, false));

    std::unordered_map<Variable, ValuePtr> gradients = { { leftInputVar, leftInputGradientValue }, { rightInputVar, rightInputGradientValue } };
    plusFunc->Backward(backPropState, { { plusFunc->Output(), rootGradientValue } }, gradients);

    // Verify forward prop results
    auto& smallerInput = (numAxesLeftOperand < numAxesRightOperand) ? leftInputData : rightInputData;
    auto& largerInput = (numAxesLeftOperand < numAxesRightOperand) ? rightInputData : leftInputData;
    std::vector<ElementType> expectedOutputValues = largerInput;
    for (size_t i = 0; i < (expectedOutputValues.size() / smallerInput.size()); ++i)
    {
        for (size_t j = 0; j < smallerInput.size(); ++j)
            expectedOutputValues[(i * smallerInput.size()) + j] += smallerInput[j];
    }

    FloatingPointVectorCompare(outputData, expectedOutputValues, "Forward prop results do not match expected results");

    auto& smallerInputGradients = (numAxesLeftOperand < numAxesRightOperand) ? leftInputGradientsData : rightInputGradientsData;
    auto& largerInputGradients = (numAxesLeftOperand < numAxesRightOperand) ? rightInputGradientsData : leftInputGradientsData;
    std::vector<ElementType> expectedLargerInputGradientValues(largerInputGradients.size(), (ElementType)1);
    std::vector<ElementType> expectedSmallerInputGradientValues(smallerInputGradients.size(), (ElementType)(largerInputGradients.size() / smallerInputGradients.size()));
    FloatingPointVectorCompare(smallerInputGradients, expectedSmallerInputGradientValues, "TestTimesAndPlus: Backward prop results do not match expected results");
    FloatingPointVectorCompare(largerInputGradients, expectedLargerInputGradientValues, "TestTimesAndPlus: Backward prop results do not match expected results");
}
Esempio n. 12
0
void CheckValue(const ValuePtr testValue, const NDShape& sampleShape, const vector<vector<ElementType>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    size_t sampleSize = sampleShape.TotalSize();
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i] * sampleSize)
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                          i, seqLenList[i] * sampleSize, expectedData[i].size());
        }
    }

    // Check shape 
    auto valueRank = testValue->Shape().Rank();
    auto sampleRank = sampleShape.Rank();
    auto shapeIsCorrect = !((valueRank < sampleRank + 1) || (valueRank > sampleRank + 2) || (sampleShape != testValue->Shape().SubShape(0, sampleRank)));

    BOOST_TEST(shapeIsCorrect, "The Value does not have the expected shape.");

    size_t numOfSequences;
    if (valueRank == sampleShape.Rank() + 1)
    {
        // no batch axis, only sequence axis
        numOfSequences = 1;
    }
    else
    {
        assert(valueRank == sampleShape.Rank() + 2);
        numOfSequences = testValue->Shape()[valueRank - 1];
    }

    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value 
    vector<ElementType> outputData(testValue->Shape().TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(testValue->Shape(), outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sIndex = 0; sIndex < seqLen * sampleSize; sIndex++, oIndex++)
        {
            if (expectedData[seq][sIndex] != outputData[oIndex])
            {
                ReportFailure("Data does match at position %" PRIu64 ", expected: %f, actual: %f\n", oIndex, expectedData[seq][sIndex], outputData[oIndex]);
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * sampleSize;
    }
}