Esempio n. 1
0
void NDMask::MarkSectionAs(const std::vector<size_t>& sectionOffset, const NDShape& sectionShape, MaskKind maskKind)
{
    // TODO: Implement batching of masking operation for masks residing on GPUs to avoid making
    // GPU invocations for each MaskSection call.

    if (sectionOffset.size() > m_maskShape.Rank())
        LogicError("NDMask::MaskSection: The sectionOffset cannot have dimensionality higher than the rank of 'this' mask");

    if (sectionShape.Rank() > m_maskShape.Rank())
        LogicError("NDMask::MaskSection: The section shape cannot have an axes count higher than the rank of 'this' mask");

    std::vector<size_t> offset(m_maskShape.Rank(), 0);
    for (size_t i = 0; i < sectionOffset.size(); ++i)
        offset[i] = sectionOffset[i];

    NDShape shape = sectionShape.AppendShape(NDShape(m_maskShape.Rank() - sectionShape.Rank(), NDShape::InferredDimension));

    auto maskMatrix = GetMatrix();
    size_t rowOffset = offset[0];
    size_t colOffset = offset[1];
    size_t sliceRowLength = (shape[0] != NDShape::InferredDimension) ? shape[0] : (maskMatrix->GetNumRows() - rowOffset);
    size_t sliceColLength = (shape[1] != NDShape::InferredDimension) ? shape[1] : (maskMatrix->GetNumCols() - colOffset);
    if ((rowOffset == 0) && (sliceRowLength == maskMatrix->GetNumRows()))
        maskMatrix->ColumnSlice(colOffset, sliceColLength).SetValue((char)maskKind);
    else
    {
        // Since Matrix does not support strides in the row dimension, we will need to create separate slices for each column
        for (size_t i = colOffset; i < (colOffset + sliceColLength); ++i)
        {
            auto column = maskMatrix->ColumnSlice(i, 1);
            column.Reshape(1, maskMatrix->GetNumRows());
            column.ColumnSlice(rowOffset, sliceRowLength).SetValue((char)maskKind);
        }
    }
}
Esempio n. 2
0
void CheckValue(const ValuePtr testValue, const size_t dimension, const vector<vector<size_t>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i])
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                i, seqLenList[i], expectedData[i].size());
        }
    }

    // Check shape
    NDShape shape = testValue->Shape();
    size_t valueRank = shape.Rank();
    if (valueRank < 2 || valueRank > 3 || shape[0] != dimension)
    {
        ReportFailure("The shape of the value does not match\n");
    }
    size_t numOfSequences = valueRank == 2 ? 1 : shape[2]; 
    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value
    vector<ElementType> outputData(shape.TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(shape, outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sample = 0; sample < seqLen; sample++)
        {
            for (size_t c = 0; c < dimension; c++, oIndex++)
            {
                if (outputData[oIndex] != 0)
                {
                    if (outputData[oIndex] != 1)
                    {
                        ReportFailure("OneHot vector contains value other than 0 and 1 at seqNo=%" PRIu64 " sampleNo=%" PRIu64 " position=%" PRIu64 "\n", seq, sample, c);
                    }
                    if (c != expectedData[seq][sample])
                    {
                        ReportFailure("OneHot Index does match at seqNo=%" PRIu64 ", sampleNo=%" PRIu64 ", expected: %" PRIu64 ", actual: %" PRIu64 "\n", seq, sample, expectedData[seq][sample], c);
                    }
                }
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * dimension;
    }
}
Esempio n. 3
0
NDMask::NDMask(const NDShape& shape, const DeviceDescriptor& device)
    : NDMask(shape, AllocateMatrix(shape, device))
{
    if (shape.Rank() > 2)
        LogicError("NDMask instances with more than 2 axes are currently unsupported");

    Clear();
}
Esempio n. 4
0
    /*static*/ NDArrayViewPtr Variable::CreateValueFromParameterInitializer(const NDShape& shape, const ParameterInitializer& initConfig, const DeviceDescriptor& device)
    {
        auto dataType = AsDataType<ElementType>();
        auto value = MakeSharedObject<NDArrayView>(dataType, shape, device);
        auto valueMatrix = value->template GetWritableMatrix<ElementType>();
        auto initializerType = initConfig[InitializerTypeAttributeName].Value<std::wstring>();
        if (initializerType == Microsoft::MSR::CNTK::ConstantInitializerTypeName)
        {
            auto constantInitValue = initConfig[ValueAttributeName].Value<double>();
            valueMatrix->SetValue((ElementType)constantInitValue);
        }
        else if (initializerType == Microsoft::MSR::CNTK::BilinearInitializerTypeName)
        {
            auto kernelWidth = initConfig[KernelWidthAttributeName].Value<size_t>();
            auto kernelHeight = initConfig[KernelHeightAttributeName].Value<size_t>();

            Microsoft::MSR::CNTK::LearnableParameter<ElementType>::InitBilinear(*valueMatrix, AsTensorShape(shape), kernelWidth, kernelHeight, AsCNTKImplDeviceId(device));
        }
        else
        {
            auto randomSeed = (unsigned long)initConfig[RandomSeedAttributeName].Value<size_t>();
            if (randomSeed == SentinelValueForAutoSelectRandomSeed)
                randomSeed = s_currentRandomSeed++;

            auto scale = initConfig[ScaleAttributeName].Value<double>();
            int outputRank = DefaultParamInitOutputRank, filterRank = DefaultParamInitFilterRank;
            if (initializerType != Microsoft::MSR::CNTK::UniformInitializerTypeName)
            {
                outputRank = initConfig[OutputRankAttributeName].Value<int>();
                filterRank = initConfig[FilterRankAttributeName].Value<int>();

                if (outputRank == SentinelValueForInferParamInitRank)
                    outputRank = DefaultParamInitOutputRank;

                if (filterRank == SentinelValueForInferParamInitRank)
                    filterRank = DefaultParamInitFilterRank;

                if ((filterRank + outputRank) > shape.Rank())
                    InvalidArgument("Sum of filter rank (%d) and output rank (%d) of the parameter initializer cannot exceed the Parameter's rank(%d)", filterRank, outputRank, (int)shape.Rank());
            }

            Microsoft::MSR::CNTK::LearnableParameter<ElementType>::InitRandom(*valueMatrix, AsTensorShape(shape), initializerType, randomSeed, (ElementType)scale,
                                                                              filterRank, outputRank, /*initOnCPUOnly=*/true,
                                                                              AsCNTKImplDeviceId(device));
        }

        return value;
    }
Esempio n. 5
0
void CheckValue(const ValuePtr testValue, const NDShape& sampleShape, const vector<vector<ElementType>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    size_t sampleSize = sampleShape.TotalSize();
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i] * sampleSize)
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                          i, seqLenList[i] * sampleSize, expectedData[i].size());
        }
    }

    // Check shape 
    auto valueRank = testValue->Shape().Rank();
    auto sampleRank = sampleShape.Rank();
    auto shapeIsCorrect = !((valueRank < sampleRank + 1) || (valueRank > sampleRank + 2) || (sampleShape != testValue->Shape().SubShape(0, sampleRank)));

    BOOST_TEST(shapeIsCorrect, "The Value does not have the expected shape.");

    size_t numOfSequences;
    if (valueRank == sampleShape.Rank() + 1)
    {
        // no batch axis, only sequence axis
        numOfSequences = 1;
    }
    else
    {
        assert(valueRank == sampleShape.Rank() + 2);
        numOfSequences = testValue->Shape()[valueRank - 1];
    }

    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value 
    vector<ElementType> outputData(testValue->Shape().TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(testValue->Shape(), outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sIndex = 0; sIndex < seqLen * sampleSize; sIndex++, oIndex++)
        {
            if (expectedData[seq][sIndex] != outputData[oIndex])
            {
                ReportFailure("Data does match at position %" PRIu64 ", expected: %f, actual: %f\n", oIndex, expectedData[seq][sIndex], outputData[oIndex]);
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * sampleSize;
    }
}