Esempio n. 1
0
void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
                                    bool add_demangled, bool add_mangled,
                                    NameToIndexMap &name_to_index_map) const {
  if (add_demangled || add_mangled) {
    static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
    Timer scoped_timer(func_cat, "%s", LLVM_PRETTY_FUNCTION);
    std::lock_guard<std::recursive_mutex> guard(m_mutex);

    // Create the name index vector to be able to quickly search by name
    NameToIndexMap::Entry entry;
    const size_t num_indexes = indexes.size();
    for (size_t i = 0; i < num_indexes; ++i) {
      entry.value = indexes[i];
      assert(i < m_symbols.size());
      const Symbol *symbol = &m_symbols[entry.value];

      const Mangled &mangled = symbol->GetMangled();
      if (add_demangled) {
        entry.cstring = mangled.GetDemangledName(symbol->GetLanguage());
        if (entry.cstring)
          name_to_index_map.Append(entry);
      }

      if (add_mangled) {
        entry.cstring = mangled.GetMangledName();
        if (entry.cstring)
          name_to_index_map.Append(entry);
      }
    }
  }
}
Esempio n. 2
0
void
Symtab::AppendSymbolNamesToMap (const IndexCollection &indexes,
                                bool add_demangled,
                                bool add_mangled,
                                NameToIndexMap &name_to_index_map) const
{
    if (add_demangled || add_mangled)
    {
        Timer scoped_timer (__PRETTY_FUNCTION__, "%s", __PRETTY_FUNCTION__);
        Mutex::Locker locker (m_mutex);

        // Create the name index vector to be able to quickly search by name
        NameToIndexMap::Entry entry;
        const size_t num_indexes = indexes.size();
        for (size_t i=0; i<num_indexes; ++i)
        {
            entry.value = indexes[i];
            assert (i < m_symbols.size());
            const Symbol *symbol = &m_symbols[entry.value];

            const Mangled &mangled = symbol->GetMangled();
            if (add_demangled)
            {
                entry.cstring = mangled.GetDemangledName().GetCString();
                if (entry.cstring && entry.cstring[0])
                    name_to_index_map.Append (entry);
            }
                
            if (add_mangled)
            {
                entry.cstring = mangled.GetMangledName().GetCString();
                if (entry.cstring && entry.cstring[0])
                    name_to_index_map.Append (entry);
            }
        }
    }
}
Esempio n. 3
0
static void parseImm(CursorState* cursor,CallIndirectImm& outImm)
{
	if(cursor->nextToken->type == t_name
	|| cursor->nextToken->type == t_decimalInt
	|| cursor->nextToken->type == t_hexInt)
	{
		// Parse the callee type as a legacy naked name or index referring to a type declaration.
		outImm.type.index = parseAndResolveNameOrIndexRef(
			cursor,
			cursor->moduleState->typeNameToIndexMap,
			cursor->moduleState->module.types.size(),
			"type");
	}
	else
	{
		// Parse the callee type, as a reference or explicit declaration.
		const Token* firstTypeToken = cursor->nextToken;
		std::vector<std::string> paramDisassemblyNames;
		NameToIndexMap paramNameToIndexMap;
		const UnresolvedFunctionType unresolvedFunctionType = parseFunctionTypeRefAndOrDecl(
			cursor,
			paramNameToIndexMap,
			paramDisassemblyNames);
		outImm.type.index = resolveFunctionType(cursor->moduleState,unresolvedFunctionType).index;

		// Disallow named parameters.
		if(paramNameToIndexMap.size())
		{
			auto paramNameIt = paramNameToIndexMap.begin();
			parseErrorf(
				cursor->parseState,
				firstTypeToken,
				"call_indirect callee type declaration may not declare parameter names ($%s)",
				paramNameIt->key.getString().c_str());
		}
	}
}
Esempio n. 4
0
static void parseControlImm(CursorState* cursor,Name& outBranchTargetName,ControlStructureImm& imm)
{
	tryParseName(cursor,outBranchTargetName);
	cursor->functionState->labelDisassemblyNames.push_back(outBranchTargetName.getString());
	
	FunctionType functionType;
	
	// For backward compatibility, handle a naked result type.
	ValueType singleResultType;
	if(tryParseValueType(cursor, singleResultType))
	{
		functionType = FunctionType(TypeTuple(singleResultType));
	}
	else
	{
		// Parse the callee type, as a reference or explicit declaration.
		const Token* firstTypeToken = cursor->nextToken;
		std::vector<std::string> paramDisassemblyNames;
		NameToIndexMap paramNameToIndexMap;
		const UnresolvedFunctionType unresolvedFunctionType = parseFunctionTypeRefAndOrDecl(
			cursor,
			paramNameToIndexMap,
			paramDisassemblyNames);
		
		// Disallow named parameters.
		if(paramNameToIndexMap.size())
		{
			auto paramNameIt = paramNameToIndexMap.begin();
			parseErrorf(
				cursor->parseState,
				firstTypeToken,
				"block type declaration may not declare parameter names ($%s)",
				paramNameIt->key.getString().c_str());
		}

		if(!unresolvedFunctionType.reference)
		{
			// If there wasn't a type reference, just use the inline declared params and results.
			functionType = unresolvedFunctionType.explicitType;
		}
		else
		{
			// If there was a type reference, resolve it. This also verifies that if there were also
			// params and/or results declared inline that they match the resolved type reference.
			const Uptr referencedFunctionTypeIndex = resolveFunctionType(
				cursor->moduleState,
				unresolvedFunctionType
				).index;
			functionType = cursor->moduleState->module.types[referencedFunctionTypeIndex];
		}
	}

	// Translate the function type into an indexed block type.
	if(functionType.params().size() == 0 && functionType.results().size() == 0)
	{
		imm.type.format = IndexedBlockType::noParametersOrResult;
		imm.type.resultType = ValueType::any;
	}
	else if(functionType.params().size() == 0 && functionType.results().size() == 1)
	{
		imm.type.format = IndexedBlockType::oneResult;
		imm.type.resultType = functionType.results()[0];
	}
	else
	{
		imm.type.format = IndexedBlockType::functionType;
		imm.type.index = getUniqueFunctionTypeIndex(cursor->moduleState, functionType).index;
	}
}