void FiniteStrainHyperElasticViscoPlastic::computeElasticStrain() { RankTwoTensor iden; iden.addIa(1.0); _ee = 0.5 * (_ce[_qp]-iden); }
/** * Get unitary flow tensor in deviatoric direction, modified Cam-Clay */ void RedbackMechMaterialCC::getFlowTensor(const RankTwoTensor & sig, Real q, Real p, Real pc, RankTwoTensor & flow_tensor) { if (pc > 0) pc *= -1; flow_tensor = 3.0 * sig.deviatoric() / (_slope_yield_surface * _slope_yield_surface); flow_tensor.addIa((2.0 * p - pc) / 3.0); //(p > 0 ? 1:-1) // TODO: do we need to normalise? If so, do we need the sqrt(3/2) factor? // flow_tensor /= std::pow(2.0/3.0,0.5)*flow_tensor.L2norm(); }
void FiniteStrainHyperElasticViscoPlastic::computeElasticPlasticDeformGrad() { RankTwoTensor iden; iden.addIa(1.0); RankTwoTensor val; for (unsigned int i = 0; i < _num_flow_rate_uos; ++i) val += _flow_rate(i) * _flow_dirn[i] * _dt_substep; _fp_tmp_inv = _fp_tmp_old_inv * (iden - val); _fp_tmp_inv = std::pow(_fp_tmp_inv.det(), -1.0/3.0) * _fp_tmp_inv; _fe = _dfgrd_tmp * _fp_tmp_inv; }
/** * Get flow tensor in deviatoric direction, modified Cam-Clay */ void RedbackMechMaterialCC::getFlowTensor(const RankTwoTensor & sig, Real /*q*/, Real p, Real /*q_y*/, Real /*p_y*/, Real yield_stress, RankTwoTensor & flow_tensor) { Real pc = -yield_stress; flow_tensor = 3.0 * sig.deviatoric() / (_slope_yield_surface * _slope_yield_surface); flow_tensor.addIa((2.0 * p - pc - 2*_shift_ellipse) / 3.0); }
void ComputeRSphericalFiniteStrain::computeProperties() { // Method from Rashid, 1993 RankTwoTensor ave_Fhat; Real ave_dfgrd_det = 0.0; for (_qp = 0; _qp < _qrule->n_points(); ++_qp) { // Deformation gradient calculation in cylindrical coordinates RankTwoTensor A; // Deformation gradient RankTwoTensor Fbar; // Old Deformation gradient // Step through calculating the current and old deformation gradients // Only diagonal components are nonzero because this is a 1D material // Note: x_disp is the radial displacement A(0,0) = (*_grad_disp[0])[_qp](0); Fbar(0,0) = (*_grad_disp_old[0])[_qp](0); // The polar and azimuthal strains are functions of radial displacement if (!MooseUtils::relativeFuzzyEqual(_q_point[_qp](0), 0.0)) { A(1,1) = (*_disp[0])[_qp] / _q_point[_qp](0); Fbar(1,1) = _disp_old_0[_qp] / _q_point[_qp](0); } // The polar and azimuthal strains are equalivalent in this 1D problem A(2,2) = A(1,1); Fbar(2,2) = Fbar(1,1); // Gauss point deformation gradient _deformation_gradient[_qp] = A; _deformation_gradient[_qp].addIa(1.0); // very nearly A = gradU - gradUold, adapted to cylindrical coords A -= Fbar; // Fbar = ( I + gradUold) Fbar.addIa(1.0); // Incremental deformation gradient _Fhat = I + A Fbar^-1 _Fhat[_qp] = A * Fbar.inverse(); _Fhat[_qp].addIa(1.0); computeQpStrain(); } }
void FiniteStrainMaterial::computeQpStrain(const RankTwoTensor & Fhat) { //Cinv - I = A A^T - A - A^T; RankTwoTensor A; //A = I - Fhatinv A.addIa(1.0); A -= Fhat.inverse(); RankTwoTensor Cinv_I = A*A.transpose() - A - A.transpose(); //strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ... _strain_increment[_qp] = -Cinv_I*0.5 + Cinv_I*Cinv_I*0.25; /*RankTwoTensor Chat = Fhat.transpose()*Fhat; RankTwoTensor A = Chat; A.addIa(-1.0); RankTwoTensor B = Chat*0.25; B.addIa(-0.75); _strain_increment[_qp] = -B*A;*/ RankTwoTensor D = _strain_increment[_qp]/_t_step; _strain_rate[_qp] = D; //Calculate rotation R_incr RankTwoTensor invFhat(Fhat.inverse()); std::vector<Real> a(3); a[0] = invFhat(1,2) - invFhat(2,1); a[1] = invFhat(2,0) - invFhat(0,2); a[2] = invFhat(0,1) - invFhat(1,0); Real q = (a[0]*a[0] + a[1]*a[1] + a[2]*a[2])/4.0; Real trFhatinv_1 = invFhat.trace() - 1.0; Real p = trFhatinv_1*trFhatinv_1/4.0; // Real y = 1.0/((q + p)*(q + p)*(q + p)); /*Real C1 = std::sqrt(p * (1 + (p*(q+q+(q+p))) * (1-(q+p)) * y)); Real C2 = 0.125 + q * 0.03125 * (p*p - 12*(p-1)) / (p*p); Real C3 = 0.5 * std::sqrt( (p*q*(3-q) + p*p*p + q*q)*y ); */ Real C1 = std::sqrt(p + 3.0*p*p*(1.0 - (p + q))/((p+q)*(p+q)) - 2.0*p*p*p*(1-(p+q))/((p+q)*(p+q)*(p+q))); //cos theta_a Real C2 = 0.0; if (q > 0.01) C2 = (1.0 - C1)/(4.0*q); // (1-cos theta_a)/4q else //alternate form for small q C2 = 0.125 + q*0.03125*(p*p - 12*(p-1))/(p*p) + q*q*(p - 2.0)*(p*p - 10.0*p + 32.0)/(p*p*p) + q*q*q*(1104.0 - 992.0*p + 376.0*p*p - 72*p*p*p + 5.0*p*p*p*p)/(512.0*p*p*p*p); Real C3 = 0.5*std::sqrt((p*q*(3.0 - q) + p*p*p + q*q)/((p + q)*(p + q)*(p + q))); //sin theta_a/(2 sqrt(q)) //Calculate incremental rotation. Note that this value is the transpose of that from Rashid, 93, so we transpose it before storing RankTwoTensor R_incr; R_incr.addIa(C1); for (unsigned int i=0; i<3; ++i) for (unsigned int j = 0; j < 3; ++j) R_incr(i,j) += C2*a[i]*a[j]; R_incr(0,1) += C3*a[2]; R_incr(0,2) -= C3*a[1]; R_incr(1,0) -= C3*a[2]; R_incr(1,2) += C3*a[0]; R_incr(2,0) += C3*a[1]; R_incr(2,1) -= C3*a[0]; _rotation_increment[_qp] = R_incr.transpose(); }
bool TensorMechanicsPlasticJ2::returnMap(const RankTwoTensor & trial_stress, Real intnl_old, const RankFourTensor & E_ijkl, Real ep_plastic_tolerance, RankTwoTensor & returned_stress, Real & returned_intnl, std::vector<Real> & dpm, RankTwoTensor & delta_dp, std::vector<Real> & yf, bool & trial_stress_inadmissible) const { if (!(_use_custom_returnMap)) return TensorMechanicsPlasticModel::returnMap(trial_stress, intnl_old, E_ijkl, ep_plastic_tolerance, returned_stress, returned_intnl, dpm, delta_dp, yf, trial_stress_inadmissible); yf.resize(1); Real yf_orig = yieldFunction(trial_stress, intnl_old); yf[0] = yf_orig; if (yf_orig < _f_tol) { // the trial_stress is admissible trial_stress_inadmissible = false; return true; } trial_stress_inadmissible = true; Real mu = E_ijkl(0, 1, 0, 1); // Perform a Newton-Raphson to find dpm when // residual = 3*mu*dpm - trial_equivalent_stress + yieldStrength(intnl_old + dpm) = 0 Real trial_equivalent_stress = yf_orig + yieldStrength(intnl_old); Real residual; Real jac; dpm[0] = 0; unsigned int iter = 0; do { residual = 3.0 * mu * dpm[0] - trial_equivalent_stress + yieldStrength(intnl_old + dpm[0]); jac = 3.0 * mu + dyieldStrength(intnl_old + dpm[0]); dpm[0] += -residual / jac; if (iter > _max_iters) // not converging return false; iter++; } while (residual * residual > _f_tol * _f_tol); // set the returned values yf[0] = 0; returned_intnl = intnl_old + dpm[0]; RankTwoTensor nn = 1.5 * trial_stress.deviatoric() / trial_equivalent_stress; // = dyieldFunction_dstress(trial_stress, intnl_old) = // the normal to the yield surface, at the trial // stress returned_stress = 2.0 / 3.0 * nn * yieldStrength(returned_intnl); returned_stress.addIa(1.0 / 3.0 * trial_stress.trace()); delta_dp = nn * dpm[0]; return true; }