void
FiniteStrainHyperElasticViscoPlastic::computeElasticStrain()
{
  RankTwoTensor iden;
  iden.addIa(1.0);
  _ee = 0.5 * (_ce[_qp]-iden);
}
Пример #2
0
/**
 * Get unitary flow tensor in deviatoric direction, modified Cam-Clay
 */
void
RedbackMechMaterialCC::getFlowTensor(const RankTwoTensor & sig, Real q, Real p, Real pc, RankTwoTensor & flow_tensor)
{
  if (pc > 0)
    pc *= -1;

  flow_tensor = 3.0 * sig.deviatoric() / (_slope_yield_surface * _slope_yield_surface);
  flow_tensor.addIa((2.0 * p - pc) / 3.0); //(p > 0 ? 1:-1)
                                           // TODO: do we need to normalise? If so, do we need the sqrt(3/2) factor?
  // flow_tensor /= std::pow(2.0/3.0,0.5)*flow_tensor.L2norm();
}
void
FiniteStrainHyperElasticViscoPlastic::computeElasticPlasticDeformGrad()
{
  RankTwoTensor iden;
  iden.addIa(1.0);

  RankTwoTensor val;
  for (unsigned int i = 0; i < _num_flow_rate_uos; ++i)
    val += _flow_rate(i) * _flow_dirn[i] * _dt_substep;

  _fp_tmp_inv = _fp_tmp_old_inv * (iden - val);
  _fp_tmp_inv = std::pow(_fp_tmp_inv.det(), -1.0/3.0) * _fp_tmp_inv;
  _fe = _dfgrd_tmp * _fp_tmp_inv;
}
Пример #4
0
/**
 * Get flow tensor in deviatoric direction, modified Cam-Clay
 */
void
RedbackMechMaterialCC::getFlowTensor(const RankTwoTensor & sig,
                                     Real /*q*/,
                                     Real p,
                                     Real /*q_y*/,
                                     Real /*p_y*/,
                                     Real yield_stress,
                                     RankTwoTensor & flow_tensor)
{
  Real pc = -yield_stress;

  flow_tensor = 3.0 * sig.deviatoric() / (_slope_yield_surface * _slope_yield_surface);
  flow_tensor.addIa((2.0 * p - pc - 2*_shift_ellipse) / 3.0);
}
void
ComputeRSphericalFiniteStrain::computeProperties()
{
    // Method from Rashid, 1993
    RankTwoTensor ave_Fhat;
    Real ave_dfgrd_det = 0.0;

    for (_qp = 0; _qp < _qrule->n_points(); ++_qp)
    {
        // Deformation gradient calculation in cylindrical coordinates
        RankTwoTensor A;    // Deformation gradient
        RankTwoTensor Fbar; // Old Deformation gradient

        // Step through calculating the current and old deformation gradients
        // Only diagonal components are nonzero because this is a 1D material
        // Note: x_disp is the radial displacement
        A(0,0) = (*_grad_disp[0])[_qp](0);
        Fbar(0,0) = (*_grad_disp_old[0])[_qp](0);

        // The polar and azimuthal strains are functions of radial displacement
        if (!MooseUtils::relativeFuzzyEqual(_q_point[_qp](0), 0.0))
        {
            A(1,1) = (*_disp[0])[_qp] / _q_point[_qp](0);
            Fbar(1,1) = _disp_old_0[_qp] / _q_point[_qp](0);
        }

        // The polar and azimuthal strains are equalivalent in this 1D problem
        A(2,2) = A(1,1);
        Fbar(2,2) = Fbar(1,1);

        // Gauss point deformation gradient
        _deformation_gradient[_qp] = A;
        _deformation_gradient[_qp].addIa(1.0);

        // very nearly A = gradU - gradUold, adapted to cylindrical coords
        A -= Fbar;

        // Fbar = ( I + gradUold)
        Fbar.addIa(1.0);

        // Incremental deformation gradient _Fhat = I + A Fbar^-1
        _Fhat[_qp] = A * Fbar.inverse();
        _Fhat[_qp].addIa(1.0);

        computeQpStrain();
    }
}
Пример #6
0
void
FiniteStrainMaterial::computeQpStrain(const RankTwoTensor & Fhat)
{
  //Cinv - I = A A^T - A - A^T;
  RankTwoTensor A; //A = I - Fhatinv
  A.addIa(1.0);
  A -= Fhat.inverse();
  RankTwoTensor Cinv_I = A*A.transpose() - A - A.transpose();

  //strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ...
  _strain_increment[_qp] = -Cinv_I*0.5 + Cinv_I*Cinv_I*0.25;

  /*RankTwoTensor Chat = Fhat.transpose()*Fhat;
  RankTwoTensor A = Chat;
  A.addIa(-1.0);

  RankTwoTensor B = Chat*0.25;
  B.addIa(-0.75);
  _strain_increment[_qp] = -B*A;*/

  RankTwoTensor D = _strain_increment[_qp]/_t_step;
  _strain_rate[_qp] = D;

  //Calculate rotation R_incr
  RankTwoTensor invFhat(Fhat.inverse());

  std::vector<Real> a(3);
  a[0] = invFhat(1,2) - invFhat(2,1);
  a[1] = invFhat(2,0) - invFhat(0,2);
  a[2] = invFhat(0,1) - invFhat(1,0);
  Real q = (a[0]*a[0] + a[1]*a[1] + a[2]*a[2])/4.0;
  Real trFhatinv_1 = invFhat.trace() - 1.0;
  Real p = trFhatinv_1*trFhatinv_1/4.0;
  // Real y = 1.0/((q + p)*(q + p)*(q + p));

  /*Real C1 = std::sqrt(p * (1 + (p*(q+q+(q+p))) * (1-(q+p)) * y));
  Real C2 = 0.125 + q * 0.03125 * (p*p - 12*(p-1)) / (p*p);
  Real C3 = 0.5 * std::sqrt( (p*q*(3-q) + p*p*p + q*q)*y );
  */

  Real C1 = std::sqrt(p + 3.0*p*p*(1.0 - (p + q))/((p+q)*(p+q)) - 2.0*p*p*p*(1-(p+q))/((p+q)*(p+q)*(p+q))); //cos theta_a
  Real C2 = 0.0;
  if (q > 0.01)
    C2 = (1.0 - C1)/(4.0*q); // (1-cos theta_a)/4q
  else //alternate form for small q
    C2 = 0.125 + q*0.03125*(p*p - 12*(p-1))/(p*p) + q*q*(p - 2.0)*(p*p - 10.0*p + 32.0)/(p*p*p) + q*q*q*(1104.0 - 992.0*p + 376.0*p*p - 72*p*p*p + 5.0*p*p*p*p)/(512.0*p*p*p*p);

  Real C3 = 0.5*std::sqrt((p*q*(3.0 - q) + p*p*p + q*q)/((p + q)*(p + q)*(p + q))); //sin theta_a/(2 sqrt(q))

  //Calculate incremental rotation. Note that this value is the transpose of that from Rashid, 93, so we transpose it before storing
  RankTwoTensor R_incr;
  R_incr.addIa(C1);
  for (unsigned int i=0; i<3; ++i)
    for (unsigned int j = 0; j < 3; ++j)
      R_incr(i,j) += C2*a[i]*a[j];

  R_incr(0,1) += C3*a[2];
  R_incr(0,2) -= C3*a[1];
  R_incr(1,0) -= C3*a[2];
  R_incr(1,2) += C3*a[0];
  R_incr(2,0) += C3*a[1];
  R_incr(2,1) -= C3*a[0];
  _rotation_increment[_qp] = R_incr.transpose();
}
Пример #7
0
bool
TensorMechanicsPlasticJ2::returnMap(const RankTwoTensor & trial_stress,
                                    Real intnl_old,
                                    const RankFourTensor & E_ijkl,
                                    Real ep_plastic_tolerance,
                                    RankTwoTensor & returned_stress,
                                    Real & returned_intnl,
                                    std::vector<Real> & dpm,
                                    RankTwoTensor & delta_dp,
                                    std::vector<Real> & yf,
                                    bool & trial_stress_inadmissible) const
{
  if (!(_use_custom_returnMap))
    return TensorMechanicsPlasticModel::returnMap(trial_stress,
                                                  intnl_old,
                                                  E_ijkl,
                                                  ep_plastic_tolerance,
                                                  returned_stress,
                                                  returned_intnl,
                                                  dpm,
                                                  delta_dp,
                                                  yf,
                                                  trial_stress_inadmissible);

  yf.resize(1);

  Real yf_orig = yieldFunction(trial_stress, intnl_old);

  yf[0] = yf_orig;

  if (yf_orig < _f_tol)
  {
    // the trial_stress is admissible
    trial_stress_inadmissible = false;
    return true;
  }

  trial_stress_inadmissible = true;
  Real mu = E_ijkl(0, 1, 0, 1);

  // Perform a Newton-Raphson to find dpm when
  // residual = 3*mu*dpm - trial_equivalent_stress + yieldStrength(intnl_old + dpm) = 0
  Real trial_equivalent_stress = yf_orig + yieldStrength(intnl_old);
  Real residual;
  Real jac;
  dpm[0] = 0;
  unsigned int iter = 0;
  do
  {
    residual = 3.0 * mu * dpm[0] - trial_equivalent_stress + yieldStrength(intnl_old + dpm[0]);
    jac = 3.0 * mu + dyieldStrength(intnl_old + dpm[0]);
    dpm[0] += -residual / jac;
    if (iter > _max_iters) // not converging
      return false;
    iter++;
  } while (residual * residual > _f_tol * _f_tol);

  // set the returned values
  yf[0] = 0;
  returned_intnl = intnl_old + dpm[0];
  RankTwoTensor nn = 1.5 * trial_stress.deviatoric() /
                     trial_equivalent_stress; // = dyieldFunction_dstress(trial_stress, intnl_old) =
                                              // the normal to the yield surface, at the trial
                                              // stress
  returned_stress = 2.0 / 3.0 * nn * yieldStrength(returned_intnl);
  returned_stress.addIa(1.0 / 3.0 * trial_stress.trace());
  delta_dp = nn * dpm[0];

  return true;
}