static bool shouldScaleColumns(RenderTable* table) { // A special case. If this table is not fixed width and contained inside // a cell, then don't bloat the maxwidth by examining percentage growth. bool scale = true; while (table) { Length tw = table->style()->width(); if ((tw.isVariable() || tw.isPercent()) && !table->isPositioned()) { RenderBlock* cb = table->containingBlock(); while (cb && !cb->isCanvas() && !cb->isTableCell() && cb->style()->width().isVariable() && !cb->isPositioned()) cb = cb->containingBlock(); table = 0; if (cb && cb->isTableCell() && (cb->style()->width().isVariable() || cb->style()->width().isPercent())) { if (tw.isPercent()) scale = false; else { RenderTableCell* cell = static_cast<RenderTableCell*>(cb); if (cell->colSpan() > 1 || cell->table()->style()->width().isVariable()) scale = false; else table = cell->table(); } } } else table = 0; } return scale; }
void AccessibilityTableCell::columnIndexRange(std::pair<unsigned, unsigned>& columnRange) { if (!m_renderer || !m_renderer->isTableCell()) return; RenderTableCell* renderCell = toRenderTableCell(m_renderer); columnRange.first = renderCell->col(); columnRange.second = renderCell->colSpan(); }
void AccessibilityTableCell::columnIndexRange(pair<int, int>& columnRange) { if (!m_renderer) return; RenderTableCell* renderCell = static_cast<RenderTableCell*>(m_renderer); columnRange.first = renderCell->col(); columnRange.second = renderCell->colSpan(); }
AccessibilityObject* AccessibilityTableColumn::headerObjectForSection(RenderTableSection* section, bool thTagRequired) { if (!section) return nullptr; unsigned numCols = section->numColumns(); if (m_columnIndex >= numCols) return nullptr; if (!section->numRows()) return nullptr; RenderTableCell* cell = nullptr; // also account for cells that have a span for (int testCol = m_columnIndex; testCol >= 0; --testCol) { // Run down the rows in case initial rows are invalid (like when a <caption> is used). unsigned rowCount = section->numRows(); for (unsigned testRow = 0; testRow < rowCount; testRow++) { RenderTableCell* testCell = section->primaryCellAt(testRow, testCol); // No cell at this index, keep checking more rows and columns. if (!testCell) continue; // If we've reached a cell that doesn't even overlap our column it can't be the header. if ((testCell->col() + (testCell->colSpan()-1)) < m_columnIndex) break; // If this does not have an element (like a <caption>) then check the next row if (!testCell->element()) continue; // If th is required, but we found an element that doesn't have a th tag, we can stop looking. if (thTagRequired && !testCell->element()->hasTagName(thTag)) break; cell = testCell; break; } } if (!cell) return nullptr; return axObjectCache()->getOrCreate(cell); }
AccessibilityObject* AccessibilityTableColumn::headerObjectForSection(RenderTableSection* section, bool thTagRequired) { if (!section) return 0; int numCols = section->numColumns(); if (m_columnIndex >= numCols) return 0; if (!section->numRows()) return 0; RenderTableCell* cell = 0; // also account for cells that have a span for (int testCol = m_columnIndex; testCol >= 0; --testCol) { RenderTableCell* testCell = section->primaryCellAt(0, testCol); if (!testCell) continue; // we've reached a cell that doesn't even overlap our column // it can't be our header if ((testCell->col() + (testCell->colSpan()-1)) < m_columnIndex) break; Node* node = testCell->node(); if (!node) continue; if (thTagRequired && !node->hasTagName(thTag)) continue; cell = testCell; } if (!cell) return 0; return m_parentTable->axObjectCache()->getOrCreate(cell); }
int FixedTableLayout::calcWidthArray() { // FIXME: We might want to wait until we have all of the first row before computing for the first time. int usedWidth = 0; // iterate over all <col> elements unsigned nEffCols = m_table->numEffCols(); m_width.resize(nEffCols); m_width.fill(Length(Auto)); unsigned currentEffectiveColumn = 0; for (RenderTableCol* col = m_table->firstColumn(); col; col = col->nextColumn()) { // RenderTableCols don't have the concept of preferred logical width, but we need to clear their dirty bits // so that if we call setPreferredWidthsDirty(true) on a col or one of its descendants, we'll mark it's // ancestors as dirty. col->clearPreferredLogicalWidthsDirtyBits(); // Width specified by column-groups that have column child does not affect column width in fixed layout tables if (col->isTableColumnGroupWithColumnChildren()) continue; Length colStyleLogicalWidth = col->style().logicalWidth(); int effectiveColWidth = 0; if (colStyleLogicalWidth.isFixed() && colStyleLogicalWidth.value() > 0) effectiveColWidth = colStyleLogicalWidth.value(); unsigned span = col->span(); while (span) { unsigned spanInCurrentEffectiveColumn; if (currentEffectiveColumn >= nEffCols) { m_table->appendColumn(span); nEffCols++; m_width.append(Length()); spanInCurrentEffectiveColumn = span; } else { if (span < m_table->spanOfEffCol(currentEffectiveColumn)) { m_table->splitColumn(currentEffectiveColumn, span); nEffCols++; m_width.append(Length()); } spanInCurrentEffectiveColumn = m_table->spanOfEffCol(currentEffectiveColumn); } if ((colStyleLogicalWidth.isFixed() || colStyleLogicalWidth.isPercent()) && colStyleLogicalWidth.isPositive()) { m_width[currentEffectiveColumn] = colStyleLogicalWidth; m_width[currentEffectiveColumn] *= spanInCurrentEffectiveColumn; usedWidth += effectiveColWidth * spanInCurrentEffectiveColumn; } span -= spanInCurrentEffectiveColumn; currentEffectiveColumn++; } } // Iterate over the first row in case some are unspecified. RenderTableSection* section = m_table->topNonEmptySection(); if (!section) return usedWidth; unsigned currentColumn = 0; RenderTableRow* firstRow = section->firstRow(); for (RenderTableCell* cell = firstRow->firstCell(); cell; cell = cell->nextCell()) { Length logicalWidth = cell->styleOrColLogicalWidth(); unsigned span = cell->colSpan(); int fixedBorderBoxLogicalWidth = 0; // FIXME: Support other length types. If the width is non-auto, it should probably just use // RenderBox::computeLogicalWidthInRegionUsing to compute the width. if (logicalWidth.isFixed() && logicalWidth.isPositive()) { fixedBorderBoxLogicalWidth = cell->adjustBorderBoxLogicalWidthForBoxSizing(logicalWidth.value()); logicalWidth.setValue(Fixed, fixedBorderBoxLogicalWidth); } unsigned usedSpan = 0; while (usedSpan < span && currentColumn < nEffCols) { float eSpan = m_table->spanOfEffCol(currentColumn); // Only set if no col element has already set it. if (m_width[currentColumn].isAuto() && logicalWidth.type() != Auto) { m_width[currentColumn] = logicalWidth; m_width[currentColumn] *= eSpan / span; usedWidth += fixedBorderBoxLogicalWidth * eSpan / span; } usedSpan += eSpan; ++currentColumn; } // FixedTableLayout doesn't use min/maxPreferredLogicalWidths, but we need to clear the // dirty bit on the cell so that we'll correctly mark its ancestors dirty // in case we later call setPreferredLogicalWidthsDirty(true) on it later. if (cell->preferredLogicalWidthsDirty()) cell->setPreferredLogicalWidthsDirty(false); } return usedWidth; }
int FixedTableLayout::calcWidthArray(int) { int usedWidth = 0; // iterate over all <col> elements unsigned nEffCols = m_table->numEffCols(); m_width.resize(nEffCols); m_width.fill(Length(Auto)); unsigned currentEffectiveColumn = 0; for (RenderTableCol* col = m_table->firstColumn(); col; col = col->nextColumn()) { col->computePreferredLogicalWidths(); // Width specified by column-groups that have column child does not affect column width in fixed layout tables if (col->isTableColumnGroupWithColumnChildren()) continue; Length colStyleLogicalWidth = col->style()->logicalWidth(); int effectiveColWidth = 0; if (colStyleLogicalWidth.isFixed() && colStyleLogicalWidth.value() > 0) effectiveColWidth = colStyleLogicalWidth.value(); unsigned span = col->span(); while (span) { unsigned spanInCurrentEffectiveColumn; if (currentEffectiveColumn >= nEffCols) { m_table->appendColumn(span); nEffCols++; m_width.append(Length()); spanInCurrentEffectiveColumn = span; } else { if (span < m_table->spanOfEffCol(currentEffectiveColumn)) { m_table->splitColumn(currentEffectiveColumn, span); nEffCols++; m_width.append(Length()); } spanInCurrentEffectiveColumn = m_table->spanOfEffCol(currentEffectiveColumn); } if ((colStyleLogicalWidth.isFixed() || colStyleLogicalWidth.isPercent()) && colStyleLogicalWidth.isPositive()) { m_width[currentEffectiveColumn] = colStyleLogicalWidth; m_width[currentEffectiveColumn] *= spanInCurrentEffectiveColumn; usedWidth += effectiveColWidth * spanInCurrentEffectiveColumn; } span -= spanInCurrentEffectiveColumn; currentEffectiveColumn++; } } // Iterate over the first row in case some are unspecified. RenderTableSection* section = m_table->topNonEmptySection(); if (!section) return usedWidth; unsigned currentColumn = 0; RenderObject* firstRow = section->firstChild(); for (RenderObject* child = firstRow->firstChild(); child; child = child->nextSibling()) { if (!child->isTableCell()) continue; RenderTableCell* cell = toRenderTableCell(child); if (cell->preferredLogicalWidthsDirty()) cell->computePreferredLogicalWidths(); Length logicalWidth = cell->styleOrColLogicalWidth(); unsigned span = cell->colSpan(); int fixedBorderBoxLogicalWidth = 0; if (logicalWidth.isFixed() && logicalWidth.isPositive()) { fixedBorderBoxLogicalWidth = cell->adjustBorderBoxLogicalWidthForBoxSizing(logicalWidth.value()); logicalWidth.setValue(fixedBorderBoxLogicalWidth); } unsigned usedSpan = 0; while (usedSpan < span && currentColumn < nEffCols) { float eSpan = m_table->spanOfEffCol(currentColumn); // Only set if no col element has already set it. if (m_width[currentColumn].isAuto() && logicalWidth.type() != Auto) { m_width[currentColumn] = logicalWidth; m_width[currentColumn] *= eSpan / span; usedWidth += fixedBorderBoxLogicalWidth * eSpan / span; } usedSpan += eSpan; ++currentColumn; } } return usedWidth; }
int FixedTableLayout::calcWidthArray() { int usedWidth = 0; // iterate over all <col> elements RenderObject *child = table->firstChild(); int cCol = 0; int nEffCols = table->numEffCols(); width.resize( nEffCols ); width.fill( Length( Variable ) ); #ifdef DEBUG_LAYOUT qDebug("FixedTableLayout::calcWidthArray()" ); qDebug(" col elements:"); #endif Length grpWidth; while ( child ) { if ( child->isTableCol() ) { RenderTableCol *col = static_cast<RenderTableCol *>(child); int span = col->span(); if ( col->firstChild() ) { grpWidth = col->style()->width(); } else { Length w = col->style()->width(); if ( w.isVariable() ) w = grpWidth; int effWidth = 0; if ( w.isFixed() && w.value() > 0 ) { effWidth = w.value(); effWidth = KMIN( effWidth, 32760 ); } #ifdef DEBUG_LAYOUT qDebug(" col element: effCol=%d, span=%d: %d w=%d type=%d", cCol, span, effWidth, w.value(), w.type()); #endif int usedSpan = 0; int i = 0; while ( usedSpan < span ) { if( cCol + i >= nEffCols ) { table->appendColumn( span - usedSpan ); nEffCols++; width.resize( nEffCols ); width[nEffCols-1] = Length(); } int eSpan = table->spanOfEffCol( cCol+i ); if ( (w.isFixed() || w.isPercent()) && w.value() > 0 ) { width[cCol+i] = Length( w.value() * eSpan, w.type() ); usedWidth += effWidth * eSpan; #ifdef DEBUG_LAYOUT qDebug(" setting effCol %d (span=%d) to width %d(type=%d)", cCol+i, eSpan, width[cCol+i].value(), width[cCol+i].type() ); #endif } usedSpan += eSpan; i++; } cCol += i; } } else { break; } RenderObject *next = child->firstChild(); if ( !next ) next = child->nextSibling(); if ( !next && child->parent()->isTableCol() ) { next = child->parent()->nextSibling(); grpWidth = Length(); } child = next; } #ifdef DEBUG_LAYOUT qDebug(" first row:"); #endif // iterate over the first row in case some are unspecified. RenderTableSection *section = table->head; if ( !section ) section = table->firstBody; if ( !section ) section = table->foot; if ( section && section->firstChild() ) { cCol = 0; // get the first cell in the first row child = section->firstChild()->firstChild(); while ( child ) { if ( child->isTableCell() ) { RenderTableCell *cell = static_cast<RenderTableCell *>(child); Length w = cell->styleOrColWidth(); int span = cell->colSpan(); int effWidth = 0; if ( (w.isFixed() || w.isPercent()) && w.value() > 0 ) { effWidth = w.value(); effWidth = kMin( effWidth, 32760 ); } #ifdef DEBUG_LAYOUT qDebug(" table cell: effCol=%d, span=%d: %d", cCol, span, effWidth); #endif int usedSpan = 0; int i = 0; while ( usedSpan < span ) { Q_ASSERT( cCol + i < nEffCols ); int eSpan = table->spanOfEffCol( cCol+i ); // only set if no col element has already set it. if ( width[cCol+i].isVariable() && !w.isVariable() ) { width[cCol+i] = Length( w.value()*eSpan, w.type() ); usedWidth += effWidth*eSpan; #ifdef DEBUG_LAYOUT qDebug(" setting effCol %d (span=%d) to width %d(type=%d)", cCol+i, eSpan, width[cCol+i].value(), width[cCol+i].type() ); #endif } #ifdef DEBUG_LAYOUT else { qDebug(" width of col %d already defined (span=%d)", cCol, table->spanOfEffCol( cCol ) ); } #endif usedSpan += eSpan; i++; } cCol += i; } else { Q_ASSERT( false ); } child = child->nextSibling(); } } return usedWidth; }
/* This method takes care of colspans. effWidth is the same as width for cells without colspans. If we have colspans, they get modified. */ int AutoTableLayout::calcEffectiveWidth() { int tMaxWidth = 0; unsigned int nEffCols = layoutStruct.size(); int hspacing = table->borderHSpacing(); #ifdef DEBUG_LAYOUT qDebug("AutoTableLayout::calcEffectiveWidth for %d cols", nEffCols ); #endif for ( unsigned int i = 0; i < nEffCols; i++ ) { layoutStruct[i].effWidth = layoutStruct[i].width; layoutStruct[i].effMinWidth = layoutStruct[i].minWidth; layoutStruct[i].effMaxWidth = layoutStruct[i].maxWidth; } for ( unsigned int i = 0; i < spanCells.size(); i++ ) { RenderTableCell *cell = spanCells[i]; if ( !cell || cell == (RenderTableCell *)-1 ) break; int span = cell->colSpan(); Length w = cell->styleOrColWidth(); if ( !w.isRelative() && w.value() == 0 ) w = Length(); // make it Variable int col = table->colToEffCol( cell->col() ); unsigned int lastCol = col; int cMinWidth = cell->minWidth() + hspacing; int cMaxWidth = cell->maxWidth() + hspacing; int totalPercent = 0; int minWidth = 0; int maxWidth = 0; bool allColsArePercent = true; bool allColsAreFixed = true; bool haveVariable = false; int fixedWidth = 0; #ifdef DEBUG_LAYOUT int cSpan = span; #endif while ( lastCol < nEffCols && span > 0 ) { switch( layoutStruct[lastCol].width.type() ) { case Percent: totalPercent += layoutStruct[lastCol].width.value(); allColsAreFixed = false; break; case Fixed: if (layoutStruct[lastCol].width.value() > 0) { fixedWidth += layoutStruct[lastCol].width.value(); allColsArePercent = false; // IE resets effWidth to Variable here, but this breaks the konqueror about page and seems to be some bad // legacy behavior anyway. mozilla doesn't do this so I decided we don't either. break; } // fall through case Variable: haveVariable = true; // fall through default: // If the column is a percentage width, do not let the spanning cell overwrite the // width value. This caused a mis-rendering on amazon.com. // Sample snippet: // <table border=2 width=100%>< // <tr><td>1</td><td colspan=2>2-3</tr> // <tr><td>1</td><td colspan=2 width=100%>2-3</td></tr> // </table> if (!layoutStruct[lastCol].effWidth.isPercent()) { layoutStruct[lastCol].effWidth = Length(); allColsArePercent = false; } else totalPercent += layoutStruct[lastCol].effWidth.value(); allColsAreFixed = false; } span -= table->spanOfEffCol( lastCol ); minWidth += layoutStruct[lastCol].effMinWidth; maxWidth += layoutStruct[lastCol].effMaxWidth; lastCol++; cMinWidth -= hspacing; cMaxWidth -= hspacing; } #ifdef DEBUG_LAYOUT qDebug(" colspan cell %p at effCol %d, span %d, type %d, value %d cmin=%d min=%d fixedwidth=%d", cell, col, cSpan, w.type(), w.value(), cMinWidth, minWidth, fixedWidth ); #endif // adjust table max width if needed if ( w.isPercent() ) { if ( totalPercent > w.value() || allColsArePercent ) { // can't satify this condition, treat as variable w = Length(); } else { int spanMax = kMax( maxWidth, cMaxWidth ); #ifdef DEBUG_LAYOUT qDebug(" adjusting tMaxWidth (%d): spanMax=%d, value=%d, totalPercent=%d", tMaxWidth, spanMax, w.value(), totalPercent ); #endif tMaxWidth = kMax( tMaxWidth, spanMax * 100 / w.value() ); // all non percent columns in the span get percent values to sum up correctly. int percentMissing = w.value() - totalPercent; int totalWidth = 0; for ( unsigned int pos = col; pos < lastCol; pos++ ) { if ( !(layoutStruct[pos].width.isPercent() ) ) totalWidth += layoutStruct[pos].effMaxWidth; } for ( unsigned int pos = col; pos < lastCol && totalWidth > 0; pos++ ) { if ( !(layoutStruct[pos].width.isPercent() ) ) { int percent = percentMissing * layoutStruct[pos].effMaxWidth / totalWidth; #ifdef DEBUG_LAYOUT qDebug(" col %d: setting percent value %d effMaxWidth=%d totalWidth=%d", pos, percent, layoutStruct[pos].effMaxWidth, totalWidth ); #endif totalWidth -= layoutStruct[pos].effMaxWidth; percentMissing -= percent; if ( percent > 0 ) layoutStruct[pos].effWidth = Length( percent, Percent ); else layoutStruct[pos].effWidth = Length(); } } } } // make sure minWidth and maxWidth of the spanning cell are honoured if ( cMinWidth > minWidth ) { if ( allColsAreFixed ) { #ifdef DEBUG_LAYOUT qDebug("extending minWidth of cols %d-%d to %dpx currentMin=%d accroding to fixed sum %d", col, lastCol-1, cMinWidth, minWidth, fixedWidth ); #endif for ( unsigned int pos = col; fixedWidth > 0 && pos < lastCol; pos++ ) { int w = kMax( int( layoutStruct[pos].effMinWidth ), cMinWidth * layoutStruct[pos].width.value() / fixedWidth ); #ifdef DEBUG_LAYOUT qDebug(" col %d: min=%d, effMin=%d, new=%d", pos, layoutStruct[pos].effMinWidth, layoutStruct[pos].effMinWidth, w ); #endif fixedWidth -= layoutStruct[pos].width.value(); cMinWidth -= w; layoutStruct[pos].effMinWidth = w; } } else if ( allColsArePercent ) { int maxw = maxWidth; int minw = minWidth; int cminw = cMinWidth; for ( unsigned int pos = col; maxw > 0 && pos < lastCol; pos++ ) { if ( layoutStruct[pos].effWidth.isPercent() && layoutStruct[pos].effWidth.value()>0 && fixedWidth <= cMinWidth) { int w = layoutStruct[pos].effMinWidth; w = kMax( w, cminw*layoutStruct[pos].effWidth.value()/totalPercent ); w = kMin(layoutStruct[pos].effMinWidth+(cMinWidth-minw), w); #ifdef DEBUG_LAYOUT qDebug(" col %d: min=%d, effMin=%d, new=%d", pos, layoutStruct[pos].effMinWidth, layoutStruct[pos].effMinWidth, w ); #endif maxw -= layoutStruct[pos].effMaxWidth; minw -= layoutStruct[pos].effMinWidth; cMinWidth -= w; layoutStruct[pos].effMinWidth = w; } } } else { #ifdef DEBUG_LAYOUT qDebug("extending minWidth of cols %d-%d to %dpx currentMin=%d", col, lastCol-1, cMinWidth, minWidth ); #endif int maxw = maxWidth; int minw = minWidth; // Give min to variable first, to fixed second, and to others third. for ( unsigned int pos = col; maxw > 0 && pos < lastCol; pos++ ) { if ( layoutStruct[pos].width.isFixed() && haveVariable && fixedWidth <= cMinWidth ) { int w = kMax( int( layoutStruct[pos].effMinWidth ), layoutStruct[pos].width.value() ); fixedWidth -= layoutStruct[pos].width.value(); minw -= layoutStruct[pos].effMinWidth; #ifdef DEBUG_LAYOUT qDebug(" col %d: min=%d, effMin=%d, new=%d", pos, layoutStruct[pos].effMinWidth, layoutStruct[pos].effMinWidth, w ); #endif maxw -= layoutStruct[pos].effMaxWidth; cMinWidth -= w; layoutStruct[pos].effMinWidth = w; } } for ( unsigned int pos = col; maxw > 0 && pos < lastCol && minw < cMinWidth; pos++ ) { if ( !(layoutStruct[pos].width.isFixed() && haveVariable && fixedWidth <= cMinWidth) ) { int w = kMax( int( layoutStruct[pos].effMinWidth ), cMinWidth * layoutStruct[pos].effMaxWidth / maxw ); w = kMin(layoutStruct[pos].effMinWidth+(cMinWidth-minw), w); #ifdef DEBUG_LAYOUT qDebug(" col %d: min=%d, effMin=%d, new=%d", pos, layoutStruct[pos].effMinWidth, layoutStruct[pos].effMinWidth, w ); #endif maxw -= layoutStruct[pos].effMaxWidth; minw -= layoutStruct[pos].effMinWidth; cMinWidth -= w; layoutStruct[pos].effMinWidth = w; } } } } if ( !w.isPercent() ) { if ( cMaxWidth > maxWidth ) { #ifdef DEBUG_LAYOUT qDebug("extending maxWidth of cols %d-%d to %dpx", col, lastCol-1, cMaxWidth ); #endif for ( unsigned int pos = col; maxWidth > 0 && pos < lastCol; pos++ ) { int w = kMax( int( layoutStruct[pos].effMaxWidth ), cMaxWidth * layoutStruct[pos].effMaxWidth / maxWidth ); #ifdef DEBUG_LAYOUT qDebug(" col %d: max=%d, effMax=%d, new=%d", pos, layoutStruct[pos].effMaxWidth, layoutStruct[pos].effMaxWidth, w ); #endif maxWidth -= layoutStruct[pos].effMaxWidth; cMaxWidth -= w; layoutStruct[pos].effMaxWidth = w; } } } else { for ( unsigned int pos = col; pos < lastCol; pos++ ) layoutStruct[pos].maxWidth = kMax(layoutStruct[pos].maxWidth, int(layoutStruct[pos].minWidth) ); } } effWidthDirty = false; // qDebug("calcEffectiveWidth: tMaxWidth=%d", tMaxWidth ); return tMaxWidth; }
/* recalculates the full structure needed to do layouting and minmax calculations. This is usually calculated on the fly, but needs to be done fully when table cells change dynamically */ void AutoTableLayout::recalcColumn( int effCol ) { Layout &l = layoutStruct[effCol]; RenderObject *child = table->firstChild(); // first we iterate over all rows. RenderTableCell *fixedContributor = 0; RenderTableCell *maxContributor = 0; while ( child ) { if ( child->isTableSection() ) { RenderTableSection *section = static_cast<RenderTableSection *>(child); int numRows = section->numRows(); RenderTableCell *last = 0; for ( int i = 0; i < numRows; i++ ) { RenderTableCell *cell = section->cellAt( i, effCol ); if ( cell == (RenderTableCell *)-1 ) continue; if ( cell && cell->colSpan() == 1 ) { // A cell originates in this column. Ensure we have // a min/max width of at least 1px for this column now. l.minWidth = kMax(int( l.minWidth ), 1); l.maxWidth = kMax(int( l.maxWidth ), 1); if ( !cell->minMaxKnown() ) cell->calcMinMaxWidth(); if ( cell->minWidth() > l.minWidth ) l.minWidth = cell->minWidth(); if ( cell->maxWidth() > l.maxWidth ) { l.maxWidth = cell->maxWidth(); maxContributor = cell; } Length w = cell->styleOrColWidth(); w.l.value = kMin( 32767, kMax( 0, w.value() ) ); switch( w.type() ) { case Fixed: // ignore width=0 if ( w.value() > 0 && !l.width.isPercent() ) { int wval = cell->calcBoxWidth(w.value()); if ( l.width.isFixed() ) { // Nav/IE weirdness if ((wval > l.width.value()) || ((l.width.value() == wval) && (maxContributor == cell))) { l.width.l.value = wval; fixedContributor = cell; } } else { l.width = Length( wval, Fixed ); fixedContributor = cell; } } break; case Percent: hasPercent = true; if ( w.value() > 0 && (!l.width.isPercent() || w.value() > l.width.value() ) ) l.width = w; break; case Relative: if ( w.isVariable() || (w.isRelative() && w.value() > l.width.value() ) ) l.width = w; default: break; } } else { if ( cell && (!effCol || section->cellAt( i, effCol-1 ) != cell) ) { // This spanning cell originates in this column. Ensure we have // a min/max width of at least 1px for this column now. l.minWidth = kMax(int( l.minWidth ), 1); l.maxWidth = kMax(int( l.maxWidth ), 1); insertSpanCell( cell ); } last = cell; } } } child = child->nextSibling(); } // Nav/IE weirdness if ( l.width.isFixed() ) { if ( table->style()->htmlHacks() && (l.maxWidth > l.width.value()) && (fixedContributor != maxContributor)) { l.width = Length(); fixedContributor = 0; } } l.maxWidth = kMax(l.maxWidth, int(l.minWidth)); #ifdef DEBUG_LAYOUT qDebug("col %d, final min=%d, max=%d, width=%d(%d)", effCol, l.minWidth, l.maxWidth, l.width.value(), l.width.type() ); #endif // ### we need to add col elements aswell }
AccessibilityTableCell* AccessibilityTable::cellForColumnAndRow(unsigned column, unsigned row) { if (!m_renderer) return 0; if (!hasChildren()) addChildren(); RenderTable* table = static_cast<RenderTable*>(m_renderer); RenderTableSection* tableSection = table->header(); if (!tableSection) tableSection = table->firstBody(); RenderTableCell* cell = 0; unsigned rowCount = 0; unsigned rowOffset = 0; while (tableSection) { rowCount += tableSection->numRows(); unsigned numCols = tableSection->numColumns(); if (row < rowCount && column < numCols) { int sectionSpecificRow = row - rowOffset; cell = tableSection->cellAt(sectionSpecificRow, column).cell; // we didn't find the cell, which means there's spanning happening // search backwards to find the spanning cell if (!cell) { // first try rows for (int testRow = sectionSpecificRow-1; testRow >= 0; --testRow) { cell = tableSection->cellAt(testRow, column).cell; // cell overlapped. use this one if (cell && ((cell->row() + (cell->rowSpan()-1)) >= (int)sectionSpecificRow)) break; cell = 0; } if (!cell) { // try cols for (int testCol = column-1; testCol >= 0; --testCol) { cell = tableSection->cellAt(sectionSpecificRow, testCol).cell; // cell overlapped. use this one if (cell && ((cell->col() + (cell->colSpan()-1)) >= (int)column)) break; cell = 0; } } } } if (cell) break; rowOffset += rowCount; // we didn't find anything between the rows we should have if (row < rowOffset) break; tableSection = table->sectionBelow(tableSection, true); } if (!cell) return 0; AccessibilityObject* cellObject = axObjectCache()->get(cell); ASSERT(cellObject->isTableCell()); return static_cast<AccessibilityTableCell*>(cellObject); }
AccessibilityTableCell* AccessibilityTable::cellForColumnAndRow(unsigned column, unsigned row) { if (!m_renderer || !m_renderer->isTable()) return 0; updateChildrenIfNecessary(); RenderTable* table = toRenderTable(m_renderer); // FIXME: This will skip a table with just a tfoot. Should fix by using RenderTable::topSection. RenderTableSection* tableSection = table->header(); if (!tableSection) tableSection = table->firstBody(); RenderTableCell* cell = 0; unsigned rowCount = 0; unsigned rowOffset = 0; while (tableSection) { unsigned numRows = tableSection->numRows(); unsigned numCols = tableSection->numColumns(); rowCount += numRows; unsigned sectionSpecificRow = row - rowOffset; if (row < rowCount && column < numCols && sectionSpecificRow < numRows) { cell = tableSection->primaryCellAt(sectionSpecificRow, column); // we didn't find the cell, which means there's spanning happening // search backwards to find the spanning cell if (!cell) { // first try rows for (int testRow = sectionSpecificRow - 1; testRow >= 0; --testRow) { cell = tableSection->primaryCellAt(testRow, column); // cell overlapped. use this one ASSERT(cell->rowSpan() >= 1); if (cell && ((cell->rowIndex() + (cell->rowSpan() - 1)) >= sectionSpecificRow)) break; cell = 0; } if (!cell) { // try cols for (int testCol = column - 1; testCol >= 0; --testCol) { cell = tableSection->primaryCellAt(sectionSpecificRow, testCol); // cell overlapped. use this one ASSERT(cell->rowSpan() >= 1); if (cell && ((cell->col() + (cell->colSpan() - 1)) >= column)) break; cell = 0; } } } } if (cell) break; rowOffset += numRows; // we didn't find anything between the rows we should have if (row < rowCount) break; tableSection = table->sectionBelow(tableSection, SkipEmptySections); } if (!cell) return 0; AccessibilityObject* cellObject = axObjectCache()->getOrCreate(cell); ASSERT(cellObject->isTableCell()); return static_cast<AccessibilityTableCell*>(cellObject); }
int FixedTableLayout::calcWidthArray(int) { int usedWidth = 0; // iterate over all <col> elements RenderObject* child = m_table->firstChild(); int nEffCols = m_table->numEffCols(); m_width.resize(nEffCols); m_width.fill(Length(Auto)); int currentEffectiveColumn = 0; Length grpWidth; while (child && child->isTableCol()) { RenderTableCol* col = toRenderTableCol(child); if (col->firstChild()) grpWidth = col->style()->logicalWidth(); else { Length w = col->style()->logicalWidth(); if (w.isAuto()) w = grpWidth; int effWidth = 0; if (w.isFixed() && w.value() > 0) effWidth = w.value(); int span = col->span(); while (span) { int spanInCurrentEffectiveColumn; if (currentEffectiveColumn >= nEffCols) { m_table->appendColumn(span); nEffCols++; m_width.append(Length()); spanInCurrentEffectiveColumn = span; } else { if (span < m_table->spanOfEffCol(currentEffectiveColumn)) { m_table->splitColumn(currentEffectiveColumn, span); nEffCols++; m_width.append(Length()); } spanInCurrentEffectiveColumn = m_table->spanOfEffCol(currentEffectiveColumn); } if ((w.isFixed() || w.isPercent()) && w.isPositive()) { m_width[currentEffectiveColumn] = w; m_width[currentEffectiveColumn] *= spanInCurrentEffectiveColumn; usedWidth += effWidth * spanInCurrentEffectiveColumn; } span -= spanInCurrentEffectiveColumn; currentEffectiveColumn++; } } col->computePreferredLogicalWidths(); RenderObject* next = child->firstChild(); if (!next) next = child->nextSibling(); if (!next && child->parent()->isTableCol()) { next = child->parent()->nextSibling(); grpWidth = Length(); } child = next; } // Iterate over the first row in case some are unspecified. RenderTableSection* section = m_table->topNonEmptySection(); if (section) { int cCol = 0; RenderObject* firstRow = section->firstChild(); child = firstRow->firstChild(); while (child) { if (child->isTableCell()) { RenderTableCell* cell = toRenderTableCell(child); if (cell->preferredLogicalWidthsDirty()) cell->computePreferredLogicalWidths(); Length w = cell->styleOrColLogicalWidth(); int span = cell->colSpan(); int effWidth = 0; if (w.isFixed() && w.isPositive()) effWidth = w.value(); int usedSpan = 0; int i = 0; while (usedSpan < span && cCol + i < nEffCols) { float eSpan = m_table->spanOfEffCol(cCol + i); // Only set if no col element has already set it. if (m_width[cCol + i].isAuto() && w.type() != Auto) { m_width[cCol + i] = w; m_width[cCol + i] *= eSpan / span; usedWidth += effWidth * eSpan / span; } usedSpan += eSpan; i++; } cCol += i; } child = child->nextSibling(); } } return usedWidth; }
int FixedTableLayout::calcWidthArray(int tableWidth) { int usedWidth = 0; // iterate over all <col> elements RenderObject* child = m_table->firstChild(); int cCol = 0; int nEffCols = m_table->numEffCols(); m_width.resize(nEffCols); m_width.fill(Length(Auto)); Length grpWidth; while (child) { if (child->isTableCol()) { RenderTableCol *col = static_cast<RenderTableCol *>(child); int span = col->span(); if (col->firstChild()) grpWidth = col->style()->width(); else { Length w = col->style()->width(); if (w.isAuto()) w = grpWidth; int effWidth = 0; if (w.isFixed() && w.value() > 0) effWidth = w.value(); int usedSpan = 0; int i = 0; while (usedSpan < span) { if(cCol + i >= nEffCols) { m_table->appendColumn(span - usedSpan); nEffCols++; m_width.resize(nEffCols); m_width[nEffCols-1] = Length(); } int eSpan = m_table->spanOfEffCol(cCol+i); if ((w.isFixed() || w.isPercent()) && w.isPositive()) { m_width[cCol + i].setRawValue(w.type(), w.rawValue() * eSpan); usedWidth += effWidth * eSpan; } usedSpan += eSpan; i++; } cCol += i; } } else break; RenderObject *next = child->firstChild(); if (!next) next = child->nextSibling(); if (!next && child->parent()->isTableCol()) { next = child->parent()->nextSibling(); grpWidth = Length(); } child = next; } // Iterate over the first row in case some are unspecified. RenderTableSection* section = m_table->header(); if (!section) section = m_table->firstBody(); if (!section) section = m_table->footer(); if (section && !section->numRows()) section = m_table->sectionBelow(section, true); if (section) { cCol = 0; RenderObject* firstRow = section->firstChild(); child = firstRow->firstChild(); while (child) { if (child->isTableCell()) { RenderTableCell* cell = static_cast<RenderTableCell*>(child); if (cell->prefWidthsDirty()) cell->calcPrefWidths(); Length w = cell->styleOrColWidth(); int span = cell->colSpan(); int effWidth = 0; if (w.isFixed() && w.isPositive()) effWidth = w.value(); int usedSpan = 0; int i = 0; while (usedSpan < span) { ASSERT(cCol + i < nEffCols); int eSpan = m_table->spanOfEffCol(cCol + i); // Only set if no col element has already set it. if (m_width[cCol + i].isAuto() && w.type() != Auto) { m_width[cCol + i].setRawValue(w.type(), w.rawValue() * eSpan / span); usedWidth += effWidth * eSpan / span; } usedSpan += eSpan; i++; } cCol += i; } child = child->nextSibling(); } } return usedWidth; }