void MoveTransformMatric(TString inFileName, TString matrixName) { TFile inFile(inFileName); TH2D *transform = (TH2D*) inFile.Get(matrixName); TFile outFile("PreparedTransformMatrices.root","update"); if(transform) { outFile.cd(); transform->RebinX(4); transform->RebinY(4); transform->Write(transform->GetName(), TObject::kOverwrite); } else cout<<"Could not find matrix with that name"<<endl; outFile.Close(); inFile.Close(); }
//loads phi-pT efficiency from root file TH2D *GetEfficiencyPhi(TString effLoc){ TFile *fIn = 0; TH2D *hPhiPt = 0; if(!fIn)fIn = TFile::Open(effLoc.Data()); if(!fIn)Printf("%s%d no input data",(char*)__FILE__,__LINE__); if(!hPhiPt)hPhiPt = (TH2D*)fIn->Get("h2TrackPtPhiNorm"); if(!hPhiPt) cout<<"Could not load h2TrackPtPhiNorm"<<endl; if(!hPhiPt)Printf("%s%d no phi-pt efficiency spectrum available",(char*)__FILE__,__LINE__); gROOT->cd(); TH2D *hPhiPtClone = (TH2D*)hPhiPt->Clone(hPhiPt->GetName()); fIn->Close(); return hPhiPtClone; }
void pidFitter::processSpecies( string species, int charge, reporter * rp ){ cout << "[pidFitter." << __FUNCTION__ << "]" << endl; string hName = "nSig_" + sName( species, charge ); // get the pt Binning vector<double>pBins = config->getDoubleVector( "binning.p" ); string useNode = ""; TH3* h3 = book->get3D( hName ); int nFits = config->getInt( species + "_Fit:nFits", 1 ); cout << "Number of Fit Categories: " << nFits << endl; for ( int iFit = 1; iFit <= nFits; iFit++ ){ string optPath = species + "_Fit.opt" + config->getString( species + "_Fit.fit"+ts(iFit)+":options"); int fBin = config->getInt( species + "_Fit.fit"+ts(iFit)+":min", 1 ); int lBin = config->getInt( species + "_Fit.fit"+ts(iFit)+":max", pBins.size() ); cout << "Fitting P bins ( " << fBin << " --> " << lBin << " ) " << endl; for ( int i = fBin; i <= lBin; i ++ ){ // get the Pt range for title etc. double pLow = h3->GetZaxis()->GetBinLowEdge( i ); double pHi = h3->GetZaxis()->GetBinLowEdge( i + 1 ); // look at one Pt bin at a time h3->GetZaxis()->SetRange( i, i ); // Get the 2D projection we want TH2D* proj; proj = (TH2D*)h3->Project3D( "xy" ); string name = proj->GetName(); TH2D* cut = (TH2D*) proj->Clone( (name + "cut").c_str() ); rp->newPage( 1, 2 ); proj->SetTitle( ( ts( pLow, 4 ) + " #leq " + " P #leq" + ts( pHi, 4 ) ).c_str() ); gPad->SetLogz( 1 ); proj->Draw( "colz" ); //nProj->Draw("colz"); // process the square cuts makeSquareCuts( cut, optPath + ".squareCut" ); // draw the distribution after square cuts rp->cd( 1, 2 ); gPad->SetLogz( 1 ); cut->SetTitle( ( "After 1D Cuts : " + ts( pLow, 4 ) + " #leq " + " P #leq" + ts( pHi, 4 ) ).c_str() ); cut->Draw( "colz" ); rp->savePage( ); // fit using the dkl algorithm if ( config->nodeExists( optPath + ".dkl" ) ) runDkl( cut, rp, optPath ); // runs the 2d gaussian fit else if ( config->nodeExists( optPath + ".mgf" ) ) runMultiGauss( cut, rp, species, optPath, i ); } } }
void readroot(char* input="/gpfs/mnt/gpfs02/phenix/mpcex/liankun/Run16/Ana/offline/analysis/mpcexcode/Liankun/macro/offline_monitor/453692/Run16Ana_MinBias_NoCMN_Sub-453692-0.root"){ char input_file[5000]; strcpy(input_file,input); strtok(input_file, "-"); int runnumber = atoi(strtok(0, "-")); int segment = atoi(strtok(strtok(0, "-"), ".")); cout<<"Run Number: "<<runnumber<<" segment: "<<segment<<endl; gSystem->Load("libMyMpcEx.so"); TFile* ifile = new TFile(input,"READONLY"); if(!ifile){ cout<<"Open "<<input<<" failed !"<<endl; return; } TH2D* hkey_adc_high; TH2D* hkey_adc_low; TH2D* hkey_rawadc_high; TH2D* hkey_rawadc_low; TH2D* hHL_sensor[2][8][24]; TH2D* hHL_sensor_raw[2][8][24]; Exogram* hgrammy_high[2]; Exogram* hgrammy_low[2]; Exogram* hgrammy_combine[2]; TH2D* hadc_mpc_e[2]; TH2D* hlayer_adc_high[2]; TH2D* hlayer_adc_low[2]; TH2D* htower_e; TH2D* hbbc_adc[2]; TH2D* hbbc_adc_low[2]; TH2D* hbbc_nhits[2]; char hname[500]; vector<TH2D*> h2d_list; hkey_adc_high = (TH2D*)ifile->Get("hkey_adc_high"); h2d_list.push_back(hkey_adc_high); hkey_adc_low = (TH2D*)ifile->Get("hkey_adc_low"); h2d_list.push_back(hkey_adc_low); hkey_rawadc_high = (TH2D*)ifile->Get("hkey_rawadc_high"); h2d_list.push_back(hkey_rawadc_high); hkey_rawadc_low = (TH2D*)ifile->Get("hkey_rawadc_low"); h2d_list.push_back(hkey_rawadc_low); hbbc_nhits[0] = (TH2D*)ifile->Get("hbbc_nhits_arm0"); hbbc_nhits[1] = (TH2D*)ifile->Get("hbbc_nhits_arm1"); h2d_list.push_back(hbbc_nhits[0]); h2d_list.push_back(hbbc_nhits[1]); hbbc_adc[0] = (TH2D*)ifile->Get("hbbc_adc_arm0"); hbbc_adc[1] = (TH2D*)ifile->Get("hbbc_adc_arm1"); h2d_list.push_back(hbbc_adc[0]); h2d_list.push_back(hbbc_adc[1]); hbbc_adc_low[0] = (TH2D*)ifile->Get("hbbc_adc_low_arm0"); hbbc_adc_low[1] = (TH2D*)ifile->Get("hbbc_adc_low_arm1"); h2d_list.push_back(hbbc_adc_low[0]); h2d_list.push_back(hbbc_adc_low[1]); hlayer_adc_high[0] = (TH2D*)ifile->Get("hlayer_adc_high_arm0"); hlayer_adc_high[1] = (TH2D*)ifile->Get("hlayer_adc_high_arm1"); h2d_list.push_back(hlayer_adc_high[0]); h2d_list.push_back(hlayer_adc_high[1]); hlayer_adc_low[0] = (TH2D*)ifile->Get("hlayer_adc_low_arm0"); hlayer_adc_low[1] = (TH2D*)ifile->Get("hlayer_adc_low_arm1"); h2d_list.push_back(hlayer_adc_low[0]); h2d_list.push_back(hlayer_adc_low[1]); htower_e = (TH2D*)ifile->Get("htower_e"); h2d_list.push_back(htower_e); hadc_mpc_e[0] = (TH2D*)ifile->Get("hadc_mpc_e_arm0"); hadc_mpc_e[1] = (TH2D*)ifile->Get("hadc_mpc_e_arm1"); h2d_list.push_back(hadc_mpc_e[0]); h2d_list.push_back(hadc_mpc_e[1]); for(unsigned int i = 0;i < h2d_list.size();i++){ string s = h2d_list[i]->GetName(); stringstream ss(""); ss<<s<<"_"<<runnumber<<"_"<<segment; s=ss.str(); // cout << s <<endl; TCanvas* c = new TCanvas(s.c_str(),s.c_str(),1200,800); c->SetLogz(); h2d_list[i]->Draw("colz"); ss.str(""); ss << runnumber <<"/"<<s<<".gif"; s=ss.str(); c->Print(s.c_str(),"gif"); delete c; } vector<Exogram*> hexo_list; hgrammy_high[0] = (Exogram*)ifile->Get("hgrammy_high0"); hgrammy_high[1] = (Exogram*)ifile->Get("hgrammy_high1"); hexo_list.push_back(hgrammy_high[0]); hexo_list.push_back(hgrammy_high[1]); hgrammy_low[0] = (Exogram*)ifile->Get("hgrammy_low0"); hgrammy_low[1] = (Exogram*)ifile->Get("hgrammy_low1"); hexo_list.push_back(hgrammy_low[0]); hexo_list.push_back(hgrammy_low[1]); hgrammy_combine[0] = (Exogram*)ifile->Get("hgrammy_combine0"); hgrammy_combine[1] = (Exogram*)ifile->Get("hgrammy_combine1"); hexo_list.push_back(hgrammy_combine[0]); hexo_list.push_back(hgrammy_combine[1]); for(unsigned int i = 0;i < hexo_list.size();i++){ string s = hexo_list[i]->GetName(); stringstream ss(""); ss<<s<<"_"<<runnumber<<"_"<<segment; s=ss.str(); TCanvas* c = new TCanvas(s.c_str(),s.c_str(),1400,800); c->Divide(4,2); double max = hexo_list[i]->GetBinContent(hexo_list[i]->GetMaximumBin()); for(unsigned int j = 0;j < 8;j++){ c->cd(j+1); TPad *pd =(TPad*)c->cd(j+1); pd->SetLogz(); hexo_list[i]->SetAxisRange(j,j,"z"); TH2D* htemp = hexo_list[i]->Project3D("yx"); string tmp_s = htemp->GetName(); stringstream tmp_ss(""); tmp_ss<<tmp_s<<"_"<<"layer"<<j; tmp_s = tmp_ss.str(); htemp->SetName(tmp_s.c_str()); htemp->SetMaximum(max); htemp->Draw("colz"); } ss.str(""); ss << runnumber <<"/"<<s<<".gif"; s=ss.str(); c->Print(s.c_str(),"gif"); delete c; } for(int iarm = 0;iarm < 2;iarm++){ for(int ilayer = 0;ilayer < 8;ilayer++){ for(int isen = 0;isen< 24;isen++){ char hname[500]; sprintf(hname,"hHL_sensor_arm%d_layer%d_sensor%d",iarm,ilayer,isen); hHL_sensor[iarm][ilayer][isen] = (TH2D*)ifile->Get(hname); sprintf(hname,"hHL_sensor_raw_arm%d_layer%d_sensor%d",iarm,ilayer,isen); hHL_sensor_raw[iarm][ilayer][isen] = (TH2D*)ifile->Get(hname); } } } //sensor adc for each layer double max_sensor_x[2][8][24] = {{{0.}}}; double max_sensor_y[2][8][24] = {{{0.}}}; double min_sensor_x[2][8][24] = {{{0.}}}; double min_sensor_y[2][8][24] = {{{0.}}}; TH1D* hsensor_high[2][8][24]; TH1D* hsensor_low[2][8][24]; for(int iarm = 0;iarm < 2;iarm++){ for(int ilayer = 0;ilayer < 8;ilayer++){ for(int isen = 0;isen < 24;isen++){ char name[100]; sprintf(name,"hsensor_arm%d_layer%d_index%d_high",iarm,ilayer,isen); hsensor_high[iarm][ilayer][isen] = new TH1D(name,name,300,-40.5,259.5); sprintf(name,"hsensor_arm%d_layer%d_index%d_low",iarm,ilayer,isen); hsensor_low[iarm][ilayer][isen] = new TH1D(name,name,300,-40.5,259.5); max_sensor_x[iarm][ilayer][isen] = -9999; max_sensor_y[iarm][ilayer][isen] = -9999; min_sensor_x[iarm][ilayer][isen] = 9999; min_sensor_y[iarm][ilayer][isen] = 9999; } } } ifstream sensor_pos("sensor_position.txt"); string s; while(getline(sensor_pos,s)){ stringstream ss(s); int arm = 0; int layer = 0; int sensor = 0; double x0=0; double x1=0; double y0=0; double y1=0; ss>>arm>>layer>>sensor>>x0>>x1>>y0>>y1; // cout <<arm <<" "<<layer<<" "<<sensor<<" "<<x0<<" "<<x1<<" "<<y0<<" "<<y1<<endl; max_sensor_x[arm][layer][sensor] = x1; min_sensor_x[arm][layer][sensor] = x0; max_sensor_y[arm][layer][sensor] = y1; min_sensor_y[arm][layer][sensor] = y0; } MpcExMapper* mapper = MpcExMapper::instance(); for(unsigned int i = 0;i < 50000;i++){ hkey_adc_high->SetAxisRange(i,i,"X"); hkey_adc_low->SetAxisRange(i,i,"X"); TH1D* htemp0 = hkey_adc_high->ProjectionY(); TH1D* htemp1 = hkey_adc_low->ProjectionY(); if(htemp0->GetEntries() < 10) continue; int arm = mapper->get_arm(i); int quadrant = mapper->get_quadrant(i); int sensor = mapper->get_sensor_in_quadrant(i); int index = 6*quadrant+sensor; int layer = mapper->get_layer(i); hsensor_high[arm][layer][index]->Add(htemp0); hsensor_low[arm][layer][index]->Add(htemp1); } for(int iarm = 0;iarm < 2;iarm++){ for(int ilayer = 0;ilayer < 8;ilayer++){ char cname[100]; sprintf(cname,"csensor_arm%d_layer%d_%d_%d",iarm,ilayer,runnumber,segment); TCanvas* c = new TCanvas(cname,cname,1400,800); for(int index = 0;index < 24;index++){ char pname[100]; sprintf(pname,"sensor_arm%d_layer%d_index%d",iarm,ilayer,index); double x0 = min_sensor_x[iarm][ilayer][index]; double x1 = max_sensor_x[iarm][ilayer][index]; double y0 = min_sensor_y[iarm][ilayer][index]; double y1 = max_sensor_y[iarm][ilayer][index]; if(ilayer%2 == 0){ y0 = y0 - 0.85; y1 = y1 + 0.85; } if(ilayer%2 == 1){ x0 = x0 - 0.85; x1 = x1 + 0.85; } TPad* pad = new TPad(pname,pname,0.5+x0/40.,0.5+y0/40.,0.5+x1/40.,0.5+y1/40.); pad->cd(); pad->SetLogy(); hsensor_high[iarm][ilayer][index]->Draw(""); hsensor_low[iarm][ilayer][index]->SetLineColor(kRed); hsensor_low[iarm][ilayer][index]->Draw(""); c->cd(); pad->DrawClone("same"); delete pad; } sprintf(cname,"%d/csensor_arm%d_layer%d_%d_%d.gif",runnumber,iarm,ilayer,runnumber,segment); c->Print(cname,"gif"); delete c; } } }
//_________________________________________________________________________________________ Int_t checkPullTree(TString pathTree, TString pathNameThetaMap, TString pathNameSigmaMap, TString mapSuffix, const Int_t collType /*0: pp, 1: pPb, 2: PbPb*/, const Bool_t plotPull = kTRUE, const Double_t downScaleFactor = 1, TString pathNameSplinesFile = "", TString prSplinesName = "", TString fileNameTree = "bhess_PIDetaTree.root", TString treeName = "fTree") { const Bool_t isNonPP = collType != 0; const Double_t massProton = AliPID::ParticleMass(AliPID::kProton); Bool_t recalculateExpecteddEdx = pathNameSplinesFile != ""; TFile* f = 0x0; f = TFile::Open(Form("%s/%s", pathTree.Data(), fileNameTree.Data())); if (!f) { std::cout << "Failed to open tree file \"" << Form("%s/%s", pathTree.Data(), fileNameTree.Data()) << "\"!" << std::endl; return -1; } // Extract the data Tree TTree* tree = dynamic_cast<TTree*>(f->Get(treeName.Data())); if (!tree) { std::cout << "Failed to load data tree!" << std::endl; return -1; } // Extract the splines, if desired TSpline3* splPr = 0x0; if (recalculateExpecteddEdx) { std::cout << "Loading splines to recalculate expected dEdx!" << std::endl << std::endl; TFile* fSpl = TFile::Open(pathNameSplinesFile.Data()); if (!fSpl) { std::cout << "Failed to open spline file \"" << pathNameSplinesFile.Data() << "\"!" << std::endl; return 0x0; } TObjArray* TPCPIDResponse = (TObjArray*)fSpl->Get("TPCPIDResponse"); if (!TPCPIDResponse) { splPr = (TSpline3*)fSpl->Get(prSplinesName.Data()); // If splines are in file directly, without TPCPIDResponse object, try to load them if (!splPr) { std::cout << "Failed to load object array from spline file \"" << pathNameSplinesFile.Data() << "\"!" << std::endl; return 0x0; } } else { splPr = (TSpline3*)TPCPIDResponse->FindObject(prSplinesName.Data()); if (!splPr) { std::cout << "Failed to load splines from file \"" << pathNameSplinesFile.Data() << "\"!" << std::endl; return 0x0; } } } else std::cout << "Taking dEdxExpected from Tree..." << std::endl << std::endl; // Extract the correction maps TFile* fMap = TFile::Open(pathNameThetaMap.Data()); if (!fMap) { std::cout << "Failed to open thetaMap file \"" << pathNameThetaMap.Data() << "\"! Will not additionally correct data...." << std::endl; } TH2D* hMap = 0x0; if (fMap) { hMap = dynamic_cast<TH2D*>(fMap->Get(Form("hRefined%s", mapSuffix.Data()))); if (!hMap) { std::cout << "Failed to load theta map!" << std::endl; return -1; } } TFile* fSigmaMap = TFile::Open(pathNameSigmaMap.Data()); if (!fSigmaMap) { std::cout << "Failed to open simgaMap file \"" << pathNameSigmaMap.Data() << "\"!" << std::endl; return -1; } TH2D* hThetaMapSigmaPar1 = dynamic_cast<TH2D*>(fSigmaMap->Get("hThetaMapSigmaPar1")); if (!hThetaMapSigmaPar1) { std::cout << "Failed to load sigma map for par 1!" << std::endl; return -1; } Double_t c0 = -1; TNamed* c0Info = dynamic_cast<TNamed*>(fSigmaMap->Get("c0")); if (!c0Info) { std::cout << "Failed to extract c0 from file with sigma map!" << std::endl; return -1; } TString c0String = c0Info->GetTitle(); c0 = c0String.Atof(); printf("Loaded parameter 0 for sigma: %f\n\n", c0); if (plotPull) std::cout << "Plotting pull..." << std::endl << std::endl; else std::cout << "Plotting delta'..." << std::endl << std::endl; Long64_t nTreeEntries = tree->GetEntriesFast(); Double_t dEdx = 0.; // Measured dE/dx Double_t dEdxExpected = 0.; // Expected dE/dx according to parametrisation Double_t tanTheta = 0.; // Tangens of (local) theta at TPC inner wall Double_t pTPC = 0.; // Momentum at TPC inner wall UShort_t tpcSignalN = 0; // Number of clusters used for dEdx UChar_t pidType = 0; Int_t fMultiplicity = 0; //Double_t phiPrime = 0; // Only activate the branches of interest to save processing time tree->SetBranchStatus("*", 0); // Disable all branches tree->SetBranchStatus("pTPC", 1); tree->SetBranchStatus("dEdx", 1); tree->SetBranchStatus("dEdxExpected", 1); tree->SetBranchStatus("tanTheta", 1); tree->SetBranchStatus("tpcSignalN", 1); tree->SetBranchStatus("pidType", 1); //tree->SetBranchStatus("phiPrime", 1); if (isNonPP) tree->SetBranchStatus("fMultiplicity", 1); tree->SetBranchAddress("dEdx", &dEdx); tree->SetBranchAddress("dEdxExpected", &dEdxExpected); tree->SetBranchAddress("tanTheta", &tanTheta); tree->SetBranchAddress("tpcSignalN", &tpcSignalN); tree->SetBranchAddress("pTPC", &pTPC); tree->SetBranchAddress("pidType", &pidType); //tree->SetBranchAddress("phiPrime", &phiPrime); if (isNonPP) tree->SetBranchAddress("fMultiplicity", &fMultiplicity); // Output file TDatime daTime; TString savefileName = Form("%s%s_checkPullSigma_%04d_%02d_%02d__%02d_%02d.root", fileNameTree.ReplaceAll(".root", "").Data(), recalculateExpecteddEdx ? "_recalcdEdx" : "", daTime.GetYear(), daTime.GetMonth(), daTime.GetDay(), daTime.GetHour(), daTime.GetMinute()); TFile* fSave = TFile::Open(Form("%s/%s", pathTree.Data(), savefileName.Data()), "recreate"); if (!fSave) { std::cout << "Failed to open save file \"" << Form("%s/%s", pathTree.Data(), savefileName.Data()) << "\"!" << std::endl; return -1; } const Double_t pBoundLow = 0.1; const Double_t pBoundUp = 5; const Int_t nBins1 = TMath::Ceil(180 / downScaleFactor); const Int_t nBins2 = TMath::Ceil(100 / downScaleFactor); const Int_t nBins3 = TMath::Ceil(60 / downScaleFactor); const Int_t nPbinsForMap = nBins1 + nBins2 + nBins3; Double_t binsPforMap[nPbinsForMap + 1]; Double_t binWidth1 = (1.0 - pBoundLow) / nBins1; Double_t binWidth2 = (2.0 - 1.0 ) / nBins2; Double_t binWidth3 = (pBoundUp - 2.0) / nBins3; for (Int_t i = 0; i < nBins1; i++) { binsPforMap[i] = pBoundLow + i * binWidth1; } for (Int_t i = nBins1, j = 0; i < nBins1 + nBins2; i++, j++) { binsPforMap[i] = 1.0 + j * binWidth2; } for (Int_t i = nBins1 + nBins2, j = 0; i < nBins1 + nBins2 + nBins3; i++, j++) { binsPforMap[i] = 2.0 + j * binWidth3; } binsPforMap[nPbinsForMap] = pBoundUp; TH2D* hPull = new TH2D("hPull", "Pull vs. p_{TPC} integrated over tan(#Theta);p_{TPC} (GeV/c);Pull", nPbinsForMap, binsPforMap, plotPull ? 120 : 240, plotPull ? -6 : -0.6, plotPull ? 6 : 0.6); TH2D* hPullAdditionalCorr = (TH2D*)hPull->Clone("hPullAdditionalCorr"); hPullAdditionalCorr->SetTitle("Pull vs. p_{TPC} integrated over tan(#Theta) with additional dEdx correction w.r.t. tan(#Theta)"); /* const Int_t nThetaHistos = 3; TH2D* hPullTheta[nThetaHistos]; TH2D* hPullAdditionalCorrTheta[nThetaHistos]; Double_t tThetaLow[nThetaHistos] = { 0.0, 0.4, 0.9 }; Double_t tThetaHigh[nThetaHistos] = { 0.1, 0.5, 1.0 }; */ const Int_t nThetaHistos = 10; TH2D* hPullTheta[nThetaHistos]; TH2D* hPullAdditionalCorrTheta[nThetaHistos]; Double_t tThetaLow[nThetaHistos] = { 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 }; Double_t tThetaHigh[nThetaHistos] = { 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 }; for (Int_t i = 0; i < nThetaHistos; i++) { hPullTheta[i] = new TH2D(Form("hPullTheta_%d", i), Form("Pull vs. p_{TPC} for %.2f <= |tan(#Theta)| < %.2f;p_{TPC} (GeV/c);Pull", tThetaLow[i], tThetaHigh[i]), nPbinsForMap, binsPforMap, plotPull ? 120 : 240, plotPull ? -6 : -0.6, plotPull ? 6 : 0.6); hPullAdditionalCorrTheta[i] = new TH2D(Form("hPullAdditionalCorrTheta_%d", i), Form("Pull vs. p_{TPC} for %.2f <= |tan(#Theta)| < %.2f with additional dEdx correction w.r.t. tan(#Theta);p_{TPC} (GeV/c);Pull", tThetaLow[i], tThetaHigh[i]), nPbinsForMap, binsPforMap, plotPull ? 120 : 240, plotPull ? -6 : -0.6, plotPull ? 6 : 0.6); } TF1 corrFuncMult("corrFuncMult", "[0] + [1]*TMath::Max([4], TMath::Min(x, [3])) + [2] * TMath::Power(TMath::Max([4], TMath::Min(x, [3])), 2)", 0., 0.2); TF1 corrFuncMultTanTheta("corrFuncMultTanTheta", "[0] * (x -[2]) + [1] * (x * x - [2] * [2])", -1.5, 1.5); TF1 corrFuncSigmaMult("corrFuncSigmaMul", "TMath::Max(0, [0] + [1]*TMath::Min(x, [3]) + [2] * TMath::Power(TMath::Min(x, [3]), 2))", 0., 0.2); // LHC13b.pass2 if (isNonPP) printf("Using corr Parameters for 13b.pass2\n!"); corrFuncMult.SetParameter(0, -5.906e-06); corrFuncMult.SetParameter(1, -5.064e-04); corrFuncMult.SetParameter(2, -3.521e-02); corrFuncMult.SetParameter(3, 2.469e-02); corrFuncMult.SetParameter(4, 0); corrFuncMultTanTheta.SetParameter(0, -5.32e-06); corrFuncMultTanTheta.SetParameter(1, 1.177e-05); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, 0.); corrFuncSigmaMult.SetParameter(1, 0.); corrFuncSigmaMult.SetParameter(2, 0.); corrFuncSigmaMult.SetParameter(3, 0.); /* OK, but PID task was not very satisfying corrFuncMult.SetParameter(0, -6.27187e-06); corrFuncMult.SetParameter(1, -4.60649e-04); corrFuncMult.SetParameter(2, -4.26450e-02); corrFuncMult.SetParameter(3, 2.40590e-02); corrFuncMult.SetParameter(4, 0); corrFuncMultTanTheta.SetParameter(0, -5.338e-06); corrFuncMultTanTheta.SetParameter(1, 1.220e-05); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, 7.89237e-05); corrFuncSigmaMult.SetParameter(1, -1.30662e-02); corrFuncSigmaMult.SetParameter(2, 8.91548e-01); corrFuncSigmaMult.SetParameter(3, 1.47931e-02); */ /* // LHC11a10a if (isNonPP) printf("Using corr Parameters for 11a10a\n!"); corrFuncMult.SetParameter(0, 6.90133e-06); corrFuncMult.SetParameter(1, -1.22123e-03); corrFuncMult.SetParameter(2, 1.80220e-02); corrFuncMult.SetParameter(3, 0.1); corrFuncMult.SetParameter(4, 6.45306e-03); corrFuncMultTanTheta.SetParameter(0, -2.85505e-07); corrFuncMultTanTheta.SetParameter(1, -1.31911e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -4.29665e-05); corrFuncSigmaMult.SetParameter(1, 1.37023e-02); corrFuncSigmaMult.SetParameter(2, -6.36337e-01); corrFuncSigmaMult.SetParameter(3, 1.13479e-02); */ /* OLD without saturation and large error for negative slopes corrFuncSigmaMult.SetParameter(0, -4.79684e-05); corrFuncSigmaMult.SetParameter(1, 1.49938e-02); corrFuncSigmaMult.SetParameter(2, -7.15269e-01); corrFuncSigmaMult.SetParameter(3, 1.06855e-02); */ /* OLD very good try, but with fewer pBins for the fitting corrFuncMult.SetParameter(0, 6.88365e-06); corrFuncMult.SetParameter(1, -1.22324e-03); corrFuncMult.SetParameter(2, 1.81625e-02); corrFuncMult.SetParameter(3, 0.1); corrFuncMult.SetParameter(4, 6.36890e-03); corrFuncMultTanTheta.SetParameter(0, -2.85505e-07); corrFuncMultTanTheta.SetParameter(1, -1.31911e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -4.28401e-05); corrFuncSigmaMult.SetParameter(1, 1.24812e-02); corrFuncSigmaMult.SetParameter(2, -5.28531e-01); corrFuncSigmaMult.SetParameter(3, 1.25147e-02); */ /*OLD good try corrFuncMult.SetParameter(0, 7.50321e-06); corrFuncMult.SetParameter(1, -1.25250e-03); corrFuncMult.SetParameter(2, 1.85437e-02); corrFuncMult.SetParameter(3, 0.1); corrFuncMult.SetParameter(4, 6.21192e-03); corrFuncMultTanTheta.SetParameter(0, -1.43112e-07); corrFuncMultTanTheta.SetParameter(1, -1.53e-06); corrFuncMultTanTheta.SetParameter(2, 0.3); corrFuncSigmaMult.SetParameter(0, -2.54019e-05); corrFuncSigmaMult.SetParameter(1, 8.68883e-03); corrFuncSigmaMult.SetParameter(2, -3.36176e-01); corrFuncSigmaMult.SetParameter(3, 1.29230e-02); */ /* // LHC10h.pass2 if (isNonPP) printf("Using corr Parameters for 10h.pass2\n!"); corrFuncMult.SetParameter(0, 3.21636e-07); corrFuncMult.SetParameter(1, -6.65876e-04); corrFuncMult.SetParameter(2, 1.28786e-03); corrFuncMult.SetParameter(3, 1.47677e-02); corrFuncMult.SetParameter(4, 0.); corrFuncMultTanTheta.SetParameter(0, 7.23591e-08); corrFuncMultTanTheta.SetParameter(1, 2.7469e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -1.22590e-05); corrFuncSigmaMult.SetParameter(1, 6.88888e-03); corrFuncSigmaMult.SetParameter(2, -3.20788e-01); corrFuncSigmaMult.SetParameter(3, 1.07345e-02); */ /*OLD bad try corrFuncMult.SetParameter(0, 2.71514e-07); corrFuncMult.SetParameter(1, -6.92031e-04); corrFuncMult.SetParameter(2, 3.56042e-03); corrFuncMult.SetParameter(3, 1.47497e-02); corrFuncMult.SetParameter(4, 0.); corrFuncMultTanTheta.SetParameter(0, 8.53204e-08); corrFuncMultTanTheta.SetParameter(1, 2.85591e-06); corrFuncMultTanTheta.SetParameter(2, -0.5); corrFuncSigmaMult.SetParameter(0, -6.82477e-06); corrFuncSigmaMult.SetParameter(1, 4.97051e-03); corrFuncSigmaMult.SetParameter(2, -1.64954e-01); corrFuncSigmaMult.SetParameter(3, 9.21061e-03); */ //TODO NOW TF1* fShapeSmallP = new TF1("fShapeSmallP", "pol5", -0.4, 0.4); fShapeSmallP->SetParameters(1.01712, -0.0202725, -0.260692, 0.261623, 0.671854, -1.14014); for (Long64_t i = 0; i < nTreeEntries; i++) { tree->GetEntry(i); if (dEdx <= 0 || dEdxExpected <= 0 || tpcSignalN <= 10) continue; /* Double_t pT = pTPC*TMath::Sin(-TMath::ATan(tanTheta)+TMath::Pi()/2.0); if ((phiPrime > 0.072/pT+TMath::Pi()/18.0-0.035 && phiPrime < 0.07/pT/pT+0.1/pT+TMath::Pi()/18.0+0.035)) continue; */ if (pidType != kMCid) { if (pidType == kTPCid && pTPC > 0.6) continue; if (pidType == kTPCandTOFid && (pTPC < 0.6 || pTPC > 2.0)) continue; if ((collType == 2) && pidType == kTPCandTOFid && pTPC > 1.0) continue;// Only V0's in case of PbPb above 1.0 GeV/c if (pidType == kV0idPlusTOFrejected) //TODO NOW NEW continue; } if (recalculateExpecteddEdx) { dEdxExpected = 50. * splPr->Eval(pTPC / massProton); //WARNING: What, if MIP is different from 50.? Seems not to be used (tested for pp, MC_pp, PbPb and MC_PbPb), but can in principle happen } //TODO NOW /* if (TMath::Abs(tanTheta) <= 0.4) { Double_t p0 = fShapeSmallP->Eval(tanTheta) - 1.0; // Strength of the correction Double_t p1 = -9.0; // How fast the correction is turned off Double_t p2 = -0.209; // Turn off correction around 0.2 GeV/c Double_t p3 = 1.0; // Delta' for large p should be 1 Double_t corrFactor = TMath::Erf((pTPC + p2) * p1) * p0 + p3 + p0; // Add p0 to have 1 for p3 = 1 and large pTPC dEdxExpected *= corrFactor; }*/ /*TODO old unsuccessful try Double_t thetaGlobalTPC = -TMath::ATan(tanTheta) + TMath::Pi() / 2.; Double_t pTtpc = pTPC * TMath::Sin(thetaGlobalTPC); Double_t pTtpcInv = (pTtpc > 0) ? 1. / pTtpc : 0; Double_t p0 = 1.0; Double_t p1 = 1./ 0.5;//TODO 2.0; Double_t p2 = -0.2;//TODO 0.1 Double_t pTcorrFactor = p0 + (pTtpcInv > p1) * p2 * (pTtpcInv - p1); dEdxExpected *= pTcorrFactor; */ // From the momentum (via dEdxExpected) and the tanTheta of the track, the expected dEdx can be calculated (correctedDeDxExpected). // If the splines are correct, this should give in average the same value as dEdx. // Now valid: Maps created from corrected data with splines adopted to corrected data, so lookup should be for dEdxExpected=dEdxSplines (no further // eta correction) or the corrected dEdx from the track (which should ideally be = dEdxSplines) // Tested with corrected data for LHC10d.pass2: using dEdx for the lookup (which is the corrected value and should ideally be = dEdxSplines): // Results almost the same. Maybe slightly better for dEdxExpected. // No longer valid: Note that the maps take always the uncorrected dEdx w.r.t. // tanTheta, so that correctedDeDxExpected is needed here normally. However, the information for the correction will be lost at some point. // Therefore, dEdxExpected can be used instead and should provide a good approximation. Double_t c1FromSigmaMap = hThetaMapSigmaPar1->GetBinContent(getBinX(hThetaMapSigmaPar1, tanTheta), getBinY(hThetaMapSigmaPar1, 1./dEdxExpected)); Double_t expectedSigma = dEdxExpected * TMath::Sqrt( c0 * c0 + (c1FromSigmaMap * c1FromSigmaMap) / tpcSignalN); Double_t pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); // Fill pull histo hPull->Fill(pTPC, pull); Double_t tanThetaAbs = TMath::Abs(tanTheta); for (Int_t j = 0; j < nThetaHistos; j++) { if (tanThetaAbs >= tThetaLow[j] && tanThetaAbs < tThetaHigh[j]) { hPullTheta[j]->Fill(pTPC, pull); } } if (!hMap) continue; Double_t correctionFactor = 1.; if (isNonPP) { // 1. Correct eta dependence correctionFactor = hMap->GetBinContent(getBinX(hMap, tanTheta), getBinY(hMap, 1./dEdxExpected)); // 2. Correct for multiplicity dependence: Double_t multCorrectionFactor = 1.; if (fMultiplicity > 0) { Double_t relSlope = corrFuncMult.Eval(1. / (dEdxExpected * correctionFactor)); relSlope += corrFuncMultTanTheta.Eval(tanTheta); multCorrectionFactor = 1. + relSlope * fMultiplicity; } c1FromSigmaMap = hThetaMapSigmaPar1->GetBinContent(getBinX(hThetaMapSigmaPar1, tanTheta), getBinY(hThetaMapSigmaPar1, 1./dEdxExpected)); // Multiplicity dependence of sigma depends on the real dEdx at zero multiplicity, i.e. the eta (only) corrected dEdxExpected value has to be used // since all maps etc. have been created for ~zero multiplicity Double_t relSigmaSlope = corrFuncSigmaMult.Eval(1. / (dEdxExpected * correctionFactor)); Double_t multSigmaCorrectionFactor = 1. + relSigmaSlope * fMultiplicity; dEdxExpected *= correctionFactor * multCorrectionFactor; expectedSigma = dEdxExpected * TMath::Sqrt( c0 * c0 + (c1FromSigmaMap * c1FromSigmaMap) / tpcSignalN); expectedSigma *= multSigmaCorrectionFactor; pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); } else { correctionFactor = hMap->GetBinContent(getBinX(hMap, tanTheta), getBinY(hMap, 1./dEdxExpected)); c1FromSigmaMap = hThetaMapSigmaPar1->GetBinContent(getBinX(hThetaMapSigmaPar1, tanTheta), getBinY(hThetaMapSigmaPar1, 1./dEdxExpected)); dEdxExpected *= correctionFactor; // If data is not corrected, but the sigma map is for corrected data, re-do analysis with corrected dEdx expectedSigma = dEdxExpected * TMath::Sqrt( c0 * c0 + (c1FromSigmaMap * c1FromSigmaMap) / tpcSignalN); pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); } pull = (dEdx - dEdxExpected) / (plotPull ? expectedSigma: dEdxExpected); hPullAdditionalCorr->Fill(pTPC, pull); for (Int_t j = 0; j < nThetaHistos; j++) { if (tanThetaAbs >= tThetaLow[j] && tanThetaAbs < tThetaHigh[j]) { hPullAdditionalCorrTheta[j]->Fill(pTPC, pull); } } } /* // Mean, Sigma, chi^2/NDF of pull of different theta bins and all in one plot TCanvas* canvPullMean = new TCanvas("canvPullMean", "canvPullMean", 100,10,1380,800); canvPullMean->SetLogx(kTRUE); canvPullMean->SetGridx(kTRUE); canvPullMean->SetGridy(kTRUE); TCanvas* canvPullSigma = new TCanvas("canvPullSigma", "canvPullSigma", 100,10,1380,800); canvPullSigma->SetLogx(kTRUE); canvPullSigma->SetGridx(kTRUE); canvPullSigma->SetGridy(kTRUE); TCanvas* canvPullChi2 = new TCanvas("canvPullChi2", "canvPullChi2", 100,10,1380,800); canvPullChi2->SetLogx(kTRUE); canvPullChi2->SetGridx(kTRUE); canvPullChi2->SetGridy(kTRUE); TCanvas* canvPull[nThetaHistos + 1]; for (Int_t i = 0, j = nThetaHistos; i < nThetaHistos + 1; i++, j--) { canvPull[i] = new TCanvas(Form("canvPull_%d", i), "canvPull", 100,10,1380,800); canvPull[i]->cd(); canvPull[i]->SetLogx(kTRUE); canvPull[i]->SetLogz(kTRUE); canvPull[i]->SetGrid(kTRUE, kTRUE); TH2D* hTemp = 0x0; TString thetaString = ""; if (i == nThetaHistos) { hTemp = hPull; thetaString = "tan(#Theta) integrated"; } else { hTemp = hPullTheta[i]; thetaString = Form("%.2f #leq |tan(#Theta)| < %.2f", tThetaLow[i], tThetaHigh[i]); } normaliseHisto(hTemp); hTemp->FitSlicesY(); hTemp->GetYaxis()->SetNdivisions(12); hTemp->GetXaxis()->SetMoreLogLabels(kTRUE); TH1D* hTempMean = (TH1D*)gDirectory->Get(Form("%s_1", hTemp->GetName())); hTempMean->SetTitle(Form("mean(pull), %s", thetaString.Data())); hTempMean->GetXaxis()->SetMoreLogLabels(kTRUE); hTempMean->SetLineWidth(2); hTempMean->SetMarkerStyle(20); TH1D* hTempSigma = (TH1D*)gDirectory->Get(Form("%s_2", hTemp->GetName())); hTempSigma->SetTitle(Form("#sigma(pull), %s", thetaString.Data())); hTempSigma->GetXaxis()->SetMoreLogLabels(kTRUE); hTempSigma->SetLineColor(kMagenta); hTempSigma->SetMarkerStyle(20); hTempSigma->SetMarkerColor(kMagenta); hTempSigma->SetLineWidth(2); TH1D* hTempChi2 = (TH1D*)gDirectory->Get(Form("%s_chi2", hTemp->GetName())); hTempChi2->SetTitle(Form("#chi^{2} / NDF (pull), %s", thetaString.Data())); hTempChi2->GetXaxis()->SetMoreLogLabels(kTRUE); hTempChi2->SetLineColor(kMagenta + 2); hTempChi2->SetMarkerStyle(20); hTempChi2->SetMarkerColor(kMagenta + 2); hTempChi2->SetLineWidth(2); hTemp->DrawCopy("colz"); hTempMean->DrawCopy("same"); hTempSigma->DrawCopy("same"); hTempChi2->Scale(-1./10.); hTempChi2->DrawCopy("same"); hTempChi2->Scale(-10.); canvPullMean->cd(); hTempMean->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->DrawCopy((i == 0 ? "" : "same")); canvPullSigma->cd(); hTempSigma->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->DrawCopy((i == 0 ? "" : "same")); canvPullChi2->cd(); hTempChi2->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->DrawCopy((i == 0 ? "" : "same")); } canvPullMean->BuildLegend(); canvPullSigma->BuildLegend(); canvPullChi2->BuildLegend(); */ // Histograms with additional correction TCanvas* canvPullMeanCorr = 0x0; TCanvas* canvPullSigmaCorr = 0x0; TCanvas* canvPullChi2Corr = 0x0; TCanvas* canvPullCorr[nThetaHistos + 1]; for (Int_t i = 0; i < nThetaHistos + 1; i++) canvPullCorr[i] = 0x0; if (hMap) { // Mean, Sigma, chi^2/NDF of pull of different theta bins and all in one plot canvPullMeanCorr = new TCanvas("canvPullMeanCorr", "canvPullMeanCorr", 100,10,1380,800); canvPullMeanCorr->SetLogx(kTRUE); canvPullMeanCorr->SetGridx(kTRUE); canvPullMeanCorr->SetGridy(kTRUE); canvPullSigmaCorr = new TCanvas("canvPullSigmaCorr", "canvPullSigmaCorr", 100,10,1380,800); canvPullSigmaCorr->SetLogx(kTRUE); canvPullSigmaCorr->SetGridx(kTRUE); canvPullSigmaCorr->SetGridy(kTRUE); canvPullChi2Corr = new TCanvas("canvPullChi2Corr", "canvPullChi2Corr", 100,10,1380,800); canvPullChi2Corr->SetLogx(kTRUE); canvPullChi2Corr->SetGridx(kTRUE); canvPullChi2Corr->SetGridy(kTRUE); for (Int_t i = 0, j = nThetaHistos; i < nThetaHistos + 1; i++, j--) { canvPullCorr[i] = new TCanvas(Form("canvPullCorr_%d", i), "canvPullCorr", 100,10,1380,800); canvPullCorr[i]->cd(); canvPullCorr[i]->SetLogx(kTRUE); canvPullCorr[i]->SetLogz(kTRUE); canvPullCorr[i]->SetGrid(kTRUE, kTRUE); TH2D* hTemp = 0x0; TString thetaString = ""; if (i == nThetaHistos) { hTemp = hPullAdditionalCorr; thetaString = "tan(#Theta) integrated"; } else { hTemp = hPullAdditionalCorrTheta[i]; thetaString = Form("%.2f #leq |tan(#Theta)| < %.2f", tThetaLow[i], tThetaHigh[i]); } normaliseHisto(hTemp); hTemp->FitSlicesY(); hTemp->GetYaxis()->SetNdivisions(12); hTemp->GetXaxis()->SetMoreLogLabels(kTRUE); TH1D* hTempMean = (TH1D*)gDirectory->Get(Form("%s_1", hTemp->GetName())); hTempMean->SetTitle(Form("mean(pull), %s", thetaString.Data())); hTempMean->GetXaxis()->SetMoreLogLabels(kTRUE); hTempMean->SetLineWidth(2); hTempMean->SetMarkerStyle(20); TH1D* hTempSigma = (TH1D*)gDirectory->Get(Form("%s_2", hTemp->GetName())); hTempSigma->SetTitle(Form("#sigma(pull), %s", thetaString.Data())); hTempSigma->GetXaxis()->SetMoreLogLabels(kTRUE); hTempSigma->SetLineColor(kMagenta); hTempSigma->SetMarkerStyle(20); hTempSigma->SetMarkerColor(kMagenta); hTempSigma->SetLineWidth(2); TH1D* hTempChi2 = (TH1D*)gDirectory->Get(Form("%s_chi2", hTemp->GetName())); hTempChi2->SetTitle(Form("#chi^{2} / NDF (pull), %s", thetaString.Data())); hTempChi2->GetXaxis()->SetMoreLogLabels(kTRUE); hTempChi2->SetLineColor(kMagenta + 2); hTempChi2->SetMarkerStyle(20); hTempChi2->SetMarkerColor(kMagenta + 2); hTempChi2->SetLineWidth(2); hTemp->DrawCopy("colz"); hTempMean->DrawCopy("same"); hTempSigma->DrawCopy("same"); hTempChi2->Scale(-1./10.); hTempChi2->DrawCopy("same"); hTempChi2->Scale(-10.); canvPullMeanCorr->cd(); hTempMean->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempMean->DrawCopy((i == 0 ? "" : "same")); canvPullSigmaCorr->cd(); hTempSigma->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempSigma->DrawCopy((i == 0 ? "" : "same")); canvPullChi2Corr->cd(); hTempChi2->SetLineColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->SetMarkerColor(1 + ((j >= 9) ? (39 + 2 * (j - 9)) : j)); hTempChi2->DrawCopy((i == 0 ? "" : "same")); } canvPullMeanCorr->BuildLegend(); canvPullSigmaCorr->BuildLegend(); canvPullChi2Corr->BuildLegend(); } fSave->cd(); /*canvPullMean->Write(); canvPullSigma->Write(); canvPullChi2->Write(); for (Int_t i = 0; i < nThetaHistos + 1; i++) { canvPull[i]->Write(); }*/ canvPullMeanCorr->Write(); canvPullSigmaCorr->Write(); canvPullChi2Corr->Write(); for (Int_t i = 0; i < nThetaHistos + 1; i++) { canvPullCorr[i]->Write(); } TNamed* info = new TNamed(Form("Theta map: %s\n\nSigma map: %s\n\nSplines file: %s\n\nSplines name: %s", pathNameThetaMap.Data(), pathNameSigmaMap.Data(), pathNameSplinesFile.Data(), prSplinesName.Data()), "info"); info->Write(); fSave->Close(); return 0; }