void read_ntuple_from_file(){ int i,j,k,n; TFile *in = new TFile("ntupleoutputsample.root"); TNtuple *data = (TNtuple*) in->GetObjectChecked("data","TNtuple"); double pot,cur,temp,pres; float *row_content; //Must necessarily be float and not a double... WHY? TH1D *histo = new TH1D("histo","HISTO",100,0,10); cout << "Potential\tCurrent\tTemperature\tPressure" << endl; for(i=0;i<data->GetEntries();++i){ data->GetEntry(i); row_content = data->GetArgs(); pot = row_content[0]; cur = row_content[1]; temp = row_content[2]; pres = row_content[3]; cout << pot << "\t" << cur << "\t" << temp << "\t" << pres << endl; histo->Fill(pot); } histo->Draw(); }
Int_t mt102_readNtuplesFillHistosAndFit() { // No nuisance for batch execution gROOT->SetBatch(); // Perform the operation sequentially --------------------------------------- TChain inputChain("multiCore"); inputChain.Add("mc101_multiCore_*.root"); TH1F outHisto("outHisto", "Random Numbers", 128, -4, 4); { TimerRAII t("Sequential read and fit"); inputChain.Draw("r >> outHisto"); outHisto.Fit("gaus"); } // We now go MT! ------------------------------------------------------------ // The first, fundamental operation to be performed in order to make ROOT // thread-aware. ROOT::EnableMT(); // We adapt our parallelisation to the number of input files const auto nFiles = inputChain.GetListOfFiles()->GetEntries(); std::forward_list<UInt_t> workerIDs(nFiles); std::iota(std::begin(workerIDs), std::end(workerIDs), 0); // We define the histograms we'll fill std::vector<TH1F> histograms; histograms.reserve(nFiles); for (auto workerID : workerIDs){ histograms.emplace_back(TH1F(Form("outHisto_%u", workerID), "Random Numbers", 128, -4, 4)); } // We define our work item auto workItem = [&histograms](UInt_t workerID) { TFile f(Form("mc101_multiCore_%u.root", workerID)); TNtuple *ntuple = nullptr; f.GetObject("multiCore", ntuple); auto &histo = histograms.at(workerID); for (UInt_t index = 0; index < ntuple->GetEntriesFast(); ++index) { ntuple->GetEntry(index); histo.Fill(ntuple->GetArgs()[0]); } }; TH1F sumHistogram("SumHisto", "Random Numbers", 128, -4, 4); // Create the collection which will hold the threads, our "pool" std::vector<std::thread> workers; // We measure time here as well { TimerRAII t("Parallel execution"); // Spawn workers // Fill the "pool" with workers for (auto workerID : workerIDs) { workers.emplace_back(workItem, workerID); } // Now join them for (auto&& worker : workers) worker.join(); // And reduce std::for_each(std::begin(histograms), std::end(histograms), [&sumHistogram](const TH1F & h) { sumHistogram.Add(&h); }); sumHistogram.Fit("gaus",0); } return 0; }