Esempio n. 1
0
 std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnOmegaAlt(const LatLonAlt& so, const Velocity& vo, double t, double omega) {
   double currentTrk = vo.trk();
   double perpTrk;
   if (omega > 0.0) {
     perpTrk = currentTrk+M_PI/2;
   } else {
     perpTrk = currentTrk-M_PI/2;
   }
   double radius = turnRadiusByRate(vo.gs(), omega);
   LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius);
   //f.pln("center="+center);
   LatLonAlt sn = GreatCircle::small_circle_rotation(so,center,omega*t).mkAlt(so.alt()+vo.z*t);
   double finalPerpTrk = GreatCircle::initial_course(sn,center);
   double nTrk = finalPerpTrk - M_PI/2 * Util::sign(omega);
   Velocity vn = vo.mkTrk(nTrk);  
   return std::pair<LatLonAlt,Velocity>(sn,vn);		
 }
Esempio n. 2
0
std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnOmega(const LatLonAlt& so, const Velocity& vo, double t, double omega) {
	double currentTrk = vo.trk();
	double perpTrk;
	if (omega > 0) perpTrk = currentTrk+M_PI/2;
	else perpTrk = currentTrk-M_PI/2;
	double radius = Kinematics::turnRadiusByRate(vo.gs(), omega);
	LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius);
	double alpha = omega*t;
	double vFinalTrk = GreatCircle::initial_course(center,so);
	double nTrk = vFinalTrk + alpha;
	LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius);
	sn = sn.mkAlt(so.alt() + vo.z*t);
	//double finalTrk = currentTrk+theta;
	double final_course = GreatCircle::final_course(center,sn);   // TODO: THIS IS PROBABLY BETTER
	double finalTrk = final_course + Util::sign(omega)*M_PI/2;
	Velocity vn = vo.mkTrk(finalTrk);
	return std::pair<LatLonAlt,Velocity>(sn,vn);
}
Esempio n. 3
0
  std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnByDist(const LatLonAlt& so, const Velocity& vo, double signedRadius, double d) {
		double currentTrk = vo.trk();
		double perpTrk;
		if (signedRadius > 0) perpTrk = currentTrk+M_PI/2;
		else perpTrk = currentTrk-M_PI/2;
		double radius = std::abs(signedRadius);
		LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius);
		double alpha = d/signedRadius;
		double vFinalTrk = GreatCircle::initial_course(center,so);
		double nTrk = vFinalTrk + alpha;
		LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius);
		double t = d/vo.gs();
		sn = sn.mkAlt(so.alt() + vo.z*t);	
		double final_course = GreatCircle::final_course(center,sn);
		//double finalTrk = currentTrk+alpha;
		double finalTrk = final_course + Util::sign(d)*M_PI/2;
		Velocity vn = vo.mkTrk(finalTrk);  
		return std::pair<LatLonAlt,Velocity>(sn,vn);
	}
Esempio n. 4
0
 std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnRadius(const LatLonAlt& so, const Velocity& vo, double t, double signedRadius) {
   double currentTrk = vo.trk();
   double dir = Util::sign(signedRadius);
   double perpTrk = currentTrk+dir*M_PI/2;
   double radius = std::abs(signedRadius);
   LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius);		
   double pathDist = vo.gs()*t;	
   double theta = pathDist/radius;
   //TODO: theta = pathDist/radius, assumes radius is a chord radius, when it is actually a great circle radius.
   //      for small distances the difference is not that big, but still...
   //Note: The other problem is that this assumes a constant speed and constant ground speed through the turn.
   //      this may or may not be true.
   double vFinalTrk = GreatCircle::initial_course(center,so);
   double nTrk = vFinalTrk + dir*theta;
   LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius);
   sn = sn.mkAlt(so.alt() + vo.z*t);
   double final_course = GreatCircle::final_course(center,sn);   
   double finalTrk = final_course + dir*M_PI/2;				
   Velocity vn = vo.mkTrk(finalTrk);  
   return std::pair<LatLonAlt,Velocity>(sn,vn);
 }