std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnOmegaAlt(const LatLonAlt& so, const Velocity& vo, double t, double omega) { double currentTrk = vo.trk(); double perpTrk; if (omega > 0.0) { perpTrk = currentTrk+M_PI/2; } else { perpTrk = currentTrk-M_PI/2; } double radius = turnRadiusByRate(vo.gs(), omega); LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius); //f.pln("center="+center); LatLonAlt sn = GreatCircle::small_circle_rotation(so,center,omega*t).mkAlt(so.alt()+vo.z*t); double finalPerpTrk = GreatCircle::initial_course(sn,center); double nTrk = finalPerpTrk - M_PI/2 * Util::sign(omega); Velocity vn = vo.mkTrk(nTrk); return std::pair<LatLonAlt,Velocity>(sn,vn); }
std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnOmega(const LatLonAlt& so, const Velocity& vo, double t, double omega) { double currentTrk = vo.trk(); double perpTrk; if (omega > 0) perpTrk = currentTrk+M_PI/2; else perpTrk = currentTrk-M_PI/2; double radius = Kinematics::turnRadiusByRate(vo.gs(), omega); LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius); double alpha = omega*t; double vFinalTrk = GreatCircle::initial_course(center,so); double nTrk = vFinalTrk + alpha; LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius); sn = sn.mkAlt(so.alt() + vo.z*t); //double finalTrk = currentTrk+theta; double final_course = GreatCircle::final_course(center,sn); // TODO: THIS IS PROBABLY BETTER double finalTrk = final_course + Util::sign(omega)*M_PI/2; Velocity vn = vo.mkTrk(finalTrk); return std::pair<LatLonAlt,Velocity>(sn,vn); }
std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnByDist(const LatLonAlt& so, const Velocity& vo, double signedRadius, double d) { double currentTrk = vo.trk(); double perpTrk; if (signedRadius > 0) perpTrk = currentTrk+M_PI/2; else perpTrk = currentTrk-M_PI/2; double radius = std::abs(signedRadius); LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius); double alpha = d/signedRadius; double vFinalTrk = GreatCircle::initial_course(center,so); double nTrk = vFinalTrk + alpha; LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius); double t = d/vo.gs(); sn = sn.mkAlt(so.alt() + vo.z*t); double final_course = GreatCircle::final_course(center,sn); //double finalTrk = currentTrk+alpha; double finalTrk = final_course + Util::sign(d)*M_PI/2; Velocity vn = vo.mkTrk(finalTrk); return std::pair<LatLonAlt,Velocity>(sn,vn); }
std::pair<LatLonAlt,Velocity> KinematicsLatLon::turnRadius(const LatLonAlt& so, const Velocity& vo, double t, double signedRadius) { double currentTrk = vo.trk(); double dir = Util::sign(signedRadius); double perpTrk = currentTrk+dir*M_PI/2; double radius = std::abs(signedRadius); LatLonAlt center = GreatCircle::linear_initial(so, perpTrk, radius); double pathDist = vo.gs()*t; double theta = pathDist/radius; //TODO: theta = pathDist/radius, assumes radius is a chord radius, when it is actually a great circle radius. // for small distances the difference is not that big, but still... //Note: The other problem is that this assumes a constant speed and constant ground speed through the turn. // this may or may not be true. double vFinalTrk = GreatCircle::initial_course(center,so); double nTrk = vFinalTrk + dir*theta; LatLonAlt sn = GreatCircle::linear_initial(center, nTrk, radius); sn = sn.mkAlt(so.alt() + vo.z*t); double final_course = GreatCircle::final_course(center,sn); double finalTrk = final_course + dir*M_PI/2; Velocity vn = vo.mkTrk(finalTrk); return std::pair<LatLonAlt,Velocity>(sn,vn); }