Esempio n. 1
0
void LagMultTerm::get(MElement *ele, int npts, IntPt *GP,
                      fullMatrix<double> &m) const
{
  int nbFF1 = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(
    ele); // nbVertices*nbcomp of parent
  int nbFF2 = BilinearTerm<SVector3, SVector3>::space2.getNumKeys(
    ele); // nbVertices of boundary
  double jac[3][3];
  m.resize(nbFF1, nbFF2);
  m.setAll(0.);
  for(int i = 0; i < npts; i++) {
    double u = GP[i].pt[0];
    double v = GP[i].pt[1];
    double w = GP[i].pt[2];
    const double weight = GP[i].weight;
    const double detJ = ele->getJacobian(u, v, w, jac);
    std::vector<TensorialTraits<SVector3>::ValType> Vals;
    std::vector<TensorialTraits<SVector3>::ValType> ValsT;
    BilinearTerm<SVector3, SVector3>::space1.f(ele, u, v, w, Vals);
    BilinearTerm<SVector3, SVector3>::space2.f(ele, u, v, w, ValsT);
    for(int j = 0; j < nbFF1; j++) {
      for(int k = 0; k < nbFF2; k++) {
        m(j, k) += _eqfac * dot(Vals[j], ValsT[k]) * weight * detJ;
      }
    }
  }
}
Esempio n. 2
0
bool fullMatrix<double>::invert(fullMatrix<double> &result) const
{
  int M = size1(), N = size2(), lda = size1(), info;
  int *ipiv = new int[std::min(M, N)];
  if (result.size2() != M || result.size1() != N) {
    if (result._own_data || !result._data)
      result.resize(M,N,false);
    else
      Msg::Fatal("FullMatrix: Bad dimension, I cannot write in proxy");
  }
  result.setAll(*this);
  F77NAME(dgetrf)(&M, &N, result._data, &lda, ipiv, &info);
  if(info == 0){
    int lwork = M * 4;
    double *work = new double[lwork];
    F77NAME(dgetri)(&M, result._data, &lda, ipiv, work, &lwork, &info);
    delete [] work;
  }
  delete [] ipiv;
  if(info == 0) return true;
  else if(info > 0)
    Msg::Error("U(%d,%d)=0 in matrix inversion", info, info);
  else
    Msg::Error("Wrong %d-th argument in matrix inversion", -info);
  return false;
}
Esempio n. 3
0
void Quadrature::point(fullMatrix<double>& gC,
                       fullVector<double>& gW){
  gW.resize(1);
  gC.resize(1, 1);

  gW(0)    = 1;
  gC(0, 0) = 0;
  gC(0, 1) = 0;
  gC(0, 2) = 0;
}
Esempio n. 4
0
template<class T2> void BilinearTermContract<T2>::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const
{
  fullVector<T2> va;
  fullVector<T2> vb;
  a->get(ele,npts,GP,va);
  b->get(ele,npts,GP,vb);
  m.resize(va.size(), vb.size());
  m.setAll(0.);
  for (int i=0;i<va.size();++i)
    for (int j=0;j<vb.size();++j)
      m(i,j)=dot(va(i),vb(j));
}
Esempio n. 5
0
void polynomialBasis::df(const fullMatrix<double> &coord,
                         fullMatrix<double> &dfm) const
{
  double dfv[1256][3];
  dfm.resize(coord.size1() * 3, coefficients.size1(), false);
  int dimCoord = coord.size2();
  for(int iPoint = 0; iPoint < coord.size1(); iPoint++) {
    df(coord(iPoint, 0), dimCoord > 1 ? coord(iPoint, 1) : 0.,
       dimCoord > 2 ? coord(iPoint, 2) : 0., dfv);
    for(int i = 0; i < coefficients.size1(); i++) {
      dfm(iPoint * 3 + 0, i) = dfv[i][0];
      dfm(iPoint * 3 + 1, i) = dfv[i][1];
      dfm(iPoint * 3 + 2, i) = dfv[i][2];
    }
  }
}
Esempio n. 6
0
void polynomialBasis::f(const fullMatrix<double> &coord,
                        fullMatrix<double> &sf) const
{
  double p[1256];
  sf.resize(coord.size1(), coefficients.size1());
  for(int iPoint = 0; iPoint < coord.size1(); iPoint++) {
    evaluateMonomials(coord(iPoint, 0),
                      coord.size2() > 1 ? coord(iPoint, 1) : 0,
                      coord.size2() > 2 ? coord(iPoint, 2) : 0, p);
    for(int i = 0; i < coefficients.size1(); i++) {
      sf(iPoint, i) = 0.;
      for(int j = 0; j < coefficients.size2(); j++)
        sf(iPoint, i) += coefficients(i, j) * p[j];
    }
  }
}
Esempio n. 7
0
void ana(double (*f)(fullVector<double>& xyz),
         const fullMatrix<double>& point,
         fullMatrix<double>& eval){
  // Alloc eval for Scalar Values //
  const size_t nPoint = point.size1();
  eval.resize(nPoint, 1);

  // Loop on point and evaluate f //
  fullVector<double> xyz(3);
  for(size_t i = 0; i < nPoint; i++){
    xyz(0) = point(i, 0);
    xyz(1) = point(i, 1);
    xyz(2) = point(i, 2);

    eval(i, 0) = f(xyz);
  }
}
Esempio n. 8
0
void BilinearTermBase::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const
{
  std::vector<fullMatrix<double> > mv(npts);
  get(ele,npts,GP,mv);
  m.resize(mv[0].size1(), mv[0].size2());
  m.setAll(0.);
  double jac[3][3];
  for (int k=0;k<npts;k++)
  {
    const double u = GP[k].pt[0]; const double v = GP[k].pt[1]; const double w = GP[k].pt[2];
    const double weight = GP[k].weight; const double detJ = ele->getJacobian(u, v, w, jac);
    const double coeff=weight*detJ;
    for (int i=0;i<mv[k].size1();++i)
      for (int j=0;j<mv[k].size2();++j)
        m(i,j)+=mv[k](i,j)*coeff;
  }
}
Esempio n. 9
0
void pyramidalBasis::f(const fullMatrix<double> &coord, fullMatrix<double> &sf) const
{

  const int N = bergot->size(), NPts = coord.size1();

  sf.resize(NPts, N);
  double *fval = new double[N];

  for (int iPt=0; iPt<NPts; iPt++) {
    bergot->f(coord(iPt,0), coord(iPt,1), coord(iPt,2), fval);
    for (int i = 0; i < N; i++) {
      sf(iPt,i) = 0.;
      for (int j = 0; j < N; j++) sf(iPt,i) += coefficients(i,j)*fval[j];
    }
  }

  delete[] fval;

}
Esempio n. 10
0
void pyramidalBasis::df(const fullMatrix<double> &coord, fullMatrix<double> &dfm) const
{

  const int N = bergot->size(), NPts = coord.size1();

  double (*dfv)[3] = new double[N][3];
  dfm.resize (N, 3*NPts, false);

  for (int iPt=0; iPt<NPts; iPt++) {
    df(coord(iPt,0), coord(iPt,1), coord(iPt,2), dfv);
    for (int i = 0; i < N; i++) {
      dfm(i, 3*iPt) = dfv[i][0];
      dfm(i, 3*iPt+1) = dfv[i][1];
      dfm(i, 3*iPt+2) = dfv[i][2];
    }
  }

  delete[] dfv;

}
Esempio n. 11
0
template<class T1> void LaplaceTerm<T1, T1>::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const
{
  int nbFF = BilinearTerm<T1, T1>::space1.getNumKeys(ele);
  double jac[3][3];
  m.resize(nbFF, nbFF);
  m.setAll(0.);
  for(int i = 0; i < npts; i++){
    const double u = GP[i].pt[0]; const double v = GP[i].pt[1]; const double w = GP[i].pt[2];
    const double weight = GP[i].weight; const double detJ = ele->getJacobian(u, v, w, jac);
    std::vector<typename TensorialTraits<T1>::GradType> Grads;
    BilinearTerm<T1, T1>::space1.gradf(ele, u, v, w, Grads);
    for(int j = 0; j < nbFF; j++)
    {
      for(int k = j; k < nbFF; k++)
      {
        double contrib = weight * detJ * dot(Grads[j], Grads[k]) * diffusivity;
        m(j, k) += contrib;
        if(j != k) m(k, j) += contrib;
      }
    }
  }
}
Esempio n. 12
0
void IsotropicElasticTerm::get(MElement *ele, int npts, IntPt *GP,
                               fullMatrix<double> &m) const
{
  if(ele->getParent()) ele = ele->getParent();
  if(sym) {
    int nbFF = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(ele);
    double jac[3][3];
    fullMatrix<double> B(6, nbFF);
    fullMatrix<double> BTH(nbFF, 6);
    fullMatrix<double> BT(nbFF, 6);
    m.resize(nbFF, nbFF);
    m.setAll(0.);
    // std::cout << m.size1() << "  " << m.size2() << std::endl;
    for(int i = 0; i < npts; i++) {
      const double u = GP[i].pt[0];
      const double v = GP[i].pt[1];
      const double w = GP[i].pt[2];
      const double weight = GP[i].weight;
      const double detJ = ele->getJacobian(u, v, w, jac);
      std::vector<TensorialTraits<SVector3>::GradType> Grads;
      BilinearTerm<SVector3, SVector3>::space1.gradf(ele, u, v, w,
                                                     Grads); // a optimiser ??
      for(int j = 0; j < nbFF; j++) {
        BT(j, 0) = B(0, j) = Grads[j](0, 0);
        BT(j, 1) = B(1, j) = Grads[j](1, 1);
        BT(j, 2) = B(2, j) = Grads[j](2, 2);
        BT(j, 3) = B(3, j) = Grads[j](0, 1) + Grads[j](1, 0);
        BT(j, 4) = B(4, j) = Grads[j](1, 2) + Grads[j](2, 1);
        BT(j, 5) = B(5, j) = Grads[j](0, 2) + Grads[j](2, 0);
      }
      BTH.setAll(0.);
      BTH.gemm(BT, H);
      m.gemm(BTH, B, weight * detJ, 1.); // m = m + w*detJ*BT*H*B
    }
  }
  else {
    int nbFF1 = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(ele);
    int nbFF2 = BilinearTerm<SVector3, SVector3>::space2.getNumKeys(ele);
    double jac[3][3];
    fullMatrix<double> B(6, nbFF2);
    fullMatrix<double> BTH(nbFF2, 6);
    fullMatrix<double> BT(nbFF1, 6);
    m.resize(nbFF1, nbFF2);
    m.setAll(0.);
    // Sum on Gauss Points i
    for(int i = 0; i < npts; i++) {
      const double u = GP[i].pt[0];
      const double v = GP[i].pt[1];
      const double w = GP[i].pt[2];
      const double weight = GP[i].weight;
      const double detJ = ele->getJacobian(u, v, w, jac);
      std::vector<TensorialTraits<SVector3>::GradType>
        Grads; // tableau de matrices...
      std::vector<TensorialTraits<SVector3>::GradType>
        GradsT; // tableau de matrices...
      BilinearTerm<SVector3, SVector3>::space1.gradf(ele, u, v, w, Grads);
      BilinearTerm<SVector3, SVector3>::space2.gradf(ele, u, v, w, GradsT);
      for(int j = 0; j < nbFF1; j++) {
        BT(j, 0) = Grads[j](0, 0);
        BT(j, 1) = Grads[j](1, 1);
        BT(j, 2) = Grads[j](2, 2);
        BT(j, 3) = Grads[j](0, 1) + Grads[j](1, 0);
        BT(j, 4) = Grads[j](1, 2) + Grads[j](2, 1);
        BT(j, 5) = Grads[j](0, 2) + Grads[j](2, 0);
      }
      for(int j = 0; j < nbFF2; j++) {
        B(0, j) = GradsT[j](0, 0);
        B(1, j) = GradsT[j](1, 1);
        B(2, j) = GradsT[j](2, 2);
        B(3, j) = GradsT[j](0, 1) + GradsT[j](1, 0);
        B(4, j) = GradsT[j](1, 2) + GradsT[j](2, 1);
        B(5, j) = GradsT[j](0, 2) + GradsT[j](2, 0);
      }
      BTH.setAll(0.);
      BTH.gemm(BT, H);
      // gemm add the product to m so there is a sum on gauss' points here
      m.gemm(BTH, B, weight * detJ, 1.);
    }
  }
}
Esempio n. 13
0
bool fullMatrix<double>::invert(fullMatrix<double> &result) const
{
  if(_r != _c) return false;

  // Copy the matrix
  result.resize(_r,_c);

  // to find out Determinant
  double det = this->determinant();

  if(det == 0)
    return false;

  // Matrix of cofactor put this in a function?
  fullMatrix<double> cofactor(_r,_c);
  if(_r == 2)
  {
    cofactor(0,0) = (*this)(1,1);
    cofactor(0,1) = -(*this)(1,0);
    cofactor(1,0) = -(*this)(0,1);
    cofactor(1,1) = (*this)(0,0);
  }
  else if(_r >= 3)
  {
    std::vector<std::vector<fullMatrix<double> > > temp(_r,std::vector<fullMatrix<double> >(_r,fullMatrix<double>(_r-1,_r-1)));
    for(int k1 = 0; k1 < _r; k1++)
    {
      for(int k2 = 0; k2 < _r; k2++)
      {
        int i1 = 0;
        for(int i = 0; i < _r; i++)
        {
          int j1 = 0;
          for(int j = 0; j < _r; j++)
          {
            if(k1 != i && k2 != j)
              temp[k1][k2](i1,j1++) = (*this)(i,j);
          }
          if(k1 != i)
            i1++;
        }
      }
    }
    bool flagPositive;
    for(int k1 = 0; k1 < _r; k1++)
    {
      flagPositive = (k1 % 2) == 0 ? true : false;
      for(int k2 = 0; k2 < _r; k2++)
      {
        if(flagPositive)
        {
          cofactor(k1,k2) = temp[k1][k2].determinant();
          flagPositive = false;
        }
        else
        {
          cofactor(k1,k2) = -temp[k1][k2].determinant();
          flagPositive = true;
        }
      }
    }
  }
  // end cofactor

  // inv = transpose of cofactor / Determinant
  for(int i = 0; i < _r; i++)
  {
    for(int j = 0; j < _c; j++)
    {
      result(j,i) = cofactor(i,j) / det;
    }
  }
  return true;
}