void LagMultTerm::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const { int nbFF1 = BilinearTerm<SVector3, SVector3>::space1.getNumKeys( ele); // nbVertices*nbcomp of parent int nbFF2 = BilinearTerm<SVector3, SVector3>::space2.getNumKeys( ele); // nbVertices of boundary double jac[3][3]; m.resize(nbFF1, nbFF2); m.setAll(0.); for(int i = 0; i < npts; i++) { double u = GP[i].pt[0]; double v = GP[i].pt[1]; double w = GP[i].pt[2]; const double weight = GP[i].weight; const double detJ = ele->getJacobian(u, v, w, jac); std::vector<TensorialTraits<SVector3>::ValType> Vals; std::vector<TensorialTraits<SVector3>::ValType> ValsT; BilinearTerm<SVector3, SVector3>::space1.f(ele, u, v, w, Vals); BilinearTerm<SVector3, SVector3>::space2.f(ele, u, v, w, ValsT); for(int j = 0; j < nbFF1; j++) { for(int k = 0; k < nbFF2; k++) { m(j, k) += _eqfac * dot(Vals[j], ValsT[k]) * weight * detJ; } } } }
bool fullMatrix<double>::invert(fullMatrix<double> &result) const { int M = size1(), N = size2(), lda = size1(), info; int *ipiv = new int[std::min(M, N)]; if (result.size2() != M || result.size1() != N) { if (result._own_data || !result._data) result.resize(M,N,false); else Msg::Fatal("FullMatrix: Bad dimension, I cannot write in proxy"); } result.setAll(*this); F77NAME(dgetrf)(&M, &N, result._data, &lda, ipiv, &info); if(info == 0){ int lwork = M * 4; double *work = new double[lwork]; F77NAME(dgetri)(&M, result._data, &lda, ipiv, work, &lwork, &info); delete [] work; } delete [] ipiv; if(info == 0) return true; else if(info > 0) Msg::Error("U(%d,%d)=0 in matrix inversion", info, info); else Msg::Error("Wrong %d-th argument in matrix inversion", -info); return false; }
void Quadrature::point(fullMatrix<double>& gC, fullVector<double>& gW){ gW.resize(1); gC.resize(1, 1); gW(0) = 1; gC(0, 0) = 0; gC(0, 1) = 0; gC(0, 2) = 0; }
template<class T2> void BilinearTermContract<T2>::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const { fullVector<T2> va; fullVector<T2> vb; a->get(ele,npts,GP,va); b->get(ele,npts,GP,vb); m.resize(va.size(), vb.size()); m.setAll(0.); for (int i=0;i<va.size();++i) for (int j=0;j<vb.size();++j) m(i,j)=dot(va(i),vb(j)); }
void polynomialBasis::df(const fullMatrix<double> &coord, fullMatrix<double> &dfm) const { double dfv[1256][3]; dfm.resize(coord.size1() * 3, coefficients.size1(), false); int dimCoord = coord.size2(); for(int iPoint = 0; iPoint < coord.size1(); iPoint++) { df(coord(iPoint, 0), dimCoord > 1 ? coord(iPoint, 1) : 0., dimCoord > 2 ? coord(iPoint, 2) : 0., dfv); for(int i = 0; i < coefficients.size1(); i++) { dfm(iPoint * 3 + 0, i) = dfv[i][0]; dfm(iPoint * 3 + 1, i) = dfv[i][1]; dfm(iPoint * 3 + 2, i) = dfv[i][2]; } } }
void polynomialBasis::f(const fullMatrix<double> &coord, fullMatrix<double> &sf) const { double p[1256]; sf.resize(coord.size1(), coefficients.size1()); for(int iPoint = 0; iPoint < coord.size1(); iPoint++) { evaluateMonomials(coord(iPoint, 0), coord.size2() > 1 ? coord(iPoint, 1) : 0, coord.size2() > 2 ? coord(iPoint, 2) : 0, p); for(int i = 0; i < coefficients.size1(); i++) { sf(iPoint, i) = 0.; for(int j = 0; j < coefficients.size2(); j++) sf(iPoint, i) += coefficients(i, j) * p[j]; } } }
void ana(double (*f)(fullVector<double>& xyz), const fullMatrix<double>& point, fullMatrix<double>& eval){ // Alloc eval for Scalar Values // const size_t nPoint = point.size1(); eval.resize(nPoint, 1); // Loop on point and evaluate f // fullVector<double> xyz(3); for(size_t i = 0; i < nPoint; i++){ xyz(0) = point(i, 0); xyz(1) = point(i, 1); xyz(2) = point(i, 2); eval(i, 0) = f(xyz); } }
void BilinearTermBase::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const { std::vector<fullMatrix<double> > mv(npts); get(ele,npts,GP,mv); m.resize(mv[0].size1(), mv[0].size2()); m.setAll(0.); double jac[3][3]; for (int k=0;k<npts;k++) { const double u = GP[k].pt[0]; const double v = GP[k].pt[1]; const double w = GP[k].pt[2]; const double weight = GP[k].weight; const double detJ = ele->getJacobian(u, v, w, jac); const double coeff=weight*detJ; for (int i=0;i<mv[k].size1();++i) for (int j=0;j<mv[k].size2();++j) m(i,j)+=mv[k](i,j)*coeff; } }
void pyramidalBasis::f(const fullMatrix<double> &coord, fullMatrix<double> &sf) const { const int N = bergot->size(), NPts = coord.size1(); sf.resize(NPts, N); double *fval = new double[N]; for (int iPt=0; iPt<NPts; iPt++) { bergot->f(coord(iPt,0), coord(iPt,1), coord(iPt,2), fval); for (int i = 0; i < N; i++) { sf(iPt,i) = 0.; for (int j = 0; j < N; j++) sf(iPt,i) += coefficients(i,j)*fval[j]; } } delete[] fval; }
void pyramidalBasis::df(const fullMatrix<double> &coord, fullMatrix<double> &dfm) const { const int N = bergot->size(), NPts = coord.size1(); double (*dfv)[3] = new double[N][3]; dfm.resize (N, 3*NPts, false); for (int iPt=0; iPt<NPts; iPt++) { df(coord(iPt,0), coord(iPt,1), coord(iPt,2), dfv); for (int i = 0; i < N; i++) { dfm(i, 3*iPt) = dfv[i][0]; dfm(i, 3*iPt+1) = dfv[i][1]; dfm(i, 3*iPt+2) = dfv[i][2]; } } delete[] dfv; }
template<class T1> void LaplaceTerm<T1, T1>::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const { int nbFF = BilinearTerm<T1, T1>::space1.getNumKeys(ele); double jac[3][3]; m.resize(nbFF, nbFF); m.setAll(0.); for(int i = 0; i < npts; i++){ const double u = GP[i].pt[0]; const double v = GP[i].pt[1]; const double w = GP[i].pt[2]; const double weight = GP[i].weight; const double detJ = ele->getJacobian(u, v, w, jac); std::vector<typename TensorialTraits<T1>::GradType> Grads; BilinearTerm<T1, T1>::space1.gradf(ele, u, v, w, Grads); for(int j = 0; j < nbFF; j++) { for(int k = j; k < nbFF; k++) { double contrib = weight * detJ * dot(Grads[j], Grads[k]) * diffusivity; m(j, k) += contrib; if(j != k) m(k, j) += contrib; } } } }
void IsotropicElasticTerm::get(MElement *ele, int npts, IntPt *GP, fullMatrix<double> &m) const { if(ele->getParent()) ele = ele->getParent(); if(sym) { int nbFF = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(ele); double jac[3][3]; fullMatrix<double> B(6, nbFF); fullMatrix<double> BTH(nbFF, 6); fullMatrix<double> BT(nbFF, 6); m.resize(nbFF, nbFF); m.setAll(0.); // std::cout << m.size1() << " " << m.size2() << std::endl; for(int i = 0; i < npts; i++) { const double u = GP[i].pt[0]; const double v = GP[i].pt[1]; const double w = GP[i].pt[2]; const double weight = GP[i].weight; const double detJ = ele->getJacobian(u, v, w, jac); std::vector<TensorialTraits<SVector3>::GradType> Grads; BilinearTerm<SVector3, SVector3>::space1.gradf(ele, u, v, w, Grads); // a optimiser ?? for(int j = 0; j < nbFF; j++) { BT(j, 0) = B(0, j) = Grads[j](0, 0); BT(j, 1) = B(1, j) = Grads[j](1, 1); BT(j, 2) = B(2, j) = Grads[j](2, 2); BT(j, 3) = B(3, j) = Grads[j](0, 1) + Grads[j](1, 0); BT(j, 4) = B(4, j) = Grads[j](1, 2) + Grads[j](2, 1); BT(j, 5) = B(5, j) = Grads[j](0, 2) + Grads[j](2, 0); } BTH.setAll(0.); BTH.gemm(BT, H); m.gemm(BTH, B, weight * detJ, 1.); // m = m + w*detJ*BT*H*B } } else { int nbFF1 = BilinearTerm<SVector3, SVector3>::space1.getNumKeys(ele); int nbFF2 = BilinearTerm<SVector3, SVector3>::space2.getNumKeys(ele); double jac[3][3]; fullMatrix<double> B(6, nbFF2); fullMatrix<double> BTH(nbFF2, 6); fullMatrix<double> BT(nbFF1, 6); m.resize(nbFF1, nbFF2); m.setAll(0.); // Sum on Gauss Points i for(int i = 0; i < npts; i++) { const double u = GP[i].pt[0]; const double v = GP[i].pt[1]; const double w = GP[i].pt[2]; const double weight = GP[i].weight; const double detJ = ele->getJacobian(u, v, w, jac); std::vector<TensorialTraits<SVector3>::GradType> Grads; // tableau de matrices... std::vector<TensorialTraits<SVector3>::GradType> GradsT; // tableau de matrices... BilinearTerm<SVector3, SVector3>::space1.gradf(ele, u, v, w, Grads); BilinearTerm<SVector3, SVector3>::space2.gradf(ele, u, v, w, GradsT); for(int j = 0; j < nbFF1; j++) { BT(j, 0) = Grads[j](0, 0); BT(j, 1) = Grads[j](1, 1); BT(j, 2) = Grads[j](2, 2); BT(j, 3) = Grads[j](0, 1) + Grads[j](1, 0); BT(j, 4) = Grads[j](1, 2) + Grads[j](2, 1); BT(j, 5) = Grads[j](0, 2) + Grads[j](2, 0); } for(int j = 0; j < nbFF2; j++) { B(0, j) = GradsT[j](0, 0); B(1, j) = GradsT[j](1, 1); B(2, j) = GradsT[j](2, 2); B(3, j) = GradsT[j](0, 1) + GradsT[j](1, 0); B(4, j) = GradsT[j](1, 2) + GradsT[j](2, 1); B(5, j) = GradsT[j](0, 2) + GradsT[j](2, 0); } BTH.setAll(0.); BTH.gemm(BT, H); // gemm add the product to m so there is a sum on gauss' points here m.gemm(BTH, B, weight * detJ, 1.); } } }
bool fullMatrix<double>::invert(fullMatrix<double> &result) const { if(_r != _c) return false; // Copy the matrix result.resize(_r,_c); // to find out Determinant double det = this->determinant(); if(det == 0) return false; // Matrix of cofactor put this in a function? fullMatrix<double> cofactor(_r,_c); if(_r == 2) { cofactor(0,0) = (*this)(1,1); cofactor(0,1) = -(*this)(1,0); cofactor(1,0) = -(*this)(0,1); cofactor(1,1) = (*this)(0,0); } else if(_r >= 3) { std::vector<std::vector<fullMatrix<double> > > temp(_r,std::vector<fullMatrix<double> >(_r,fullMatrix<double>(_r-1,_r-1))); for(int k1 = 0; k1 < _r; k1++) { for(int k2 = 0; k2 < _r; k2++) { int i1 = 0; for(int i = 0; i < _r; i++) { int j1 = 0; for(int j = 0; j < _r; j++) { if(k1 != i && k2 != j) temp[k1][k2](i1,j1++) = (*this)(i,j); } if(k1 != i) i1++; } } } bool flagPositive; for(int k1 = 0; k1 < _r; k1++) { flagPositive = (k1 % 2) == 0 ? true : false; for(int k2 = 0; k2 < _r; k2++) { if(flagPositive) { cofactor(k1,k2) = temp[k1][k2].determinant(); flagPositive = false; } else { cofactor(k1,k2) = -temp[k1][k2].determinant(); flagPositive = true; } } } } // end cofactor // inv = transpose of cofactor / Determinant for(int i = 0; i < _r; i++) { for(int j = 0; j < _c; j++) { result(j,i) = cofactor(i,j) / det; } } return true; }