void createTargetMesh(dccrg::Dccrg<SpatialCell,dccrg::Cartesian_Geometry>& mpiGrid,CellID cellID,int dim, bool isRemoteCell) { const size_t popID = 0; // Get the immediate spatial face neighbors of this cell // in the direction of propagation CellID cells[3]; switch (dim) { case 0: cells[0] = get_spatial_neighbor(mpiGrid,cellID,true,-1,0,0); cells[1] = cellID; cells[2] = get_spatial_neighbor(mpiGrid,cellID,true,+1,0,0); break; case 1: cells[0] = get_spatial_neighbor(mpiGrid,cellID,true,0,-1,0); cells[1] = cellID; cells[2] = get_spatial_neighbor(mpiGrid,cellID,true,0,+1,0); break; case 2: cells[0] = get_spatial_neighbor(mpiGrid,cellID,true,0,0,-1); cells[1] = cellID; cells[2] = get_spatial_neighbor(mpiGrid,cellID,true,0,0,+1); break; default: std::cerr << "create error" << std::endl; exit(1); break; } // Remote (buffered) cells do not consider other remote cells as source cells, // i.e., only cells local to this process are translated if (isRemoteCell == true) { if (mpiGrid.is_local(cells[0]) == false) cells[0] = INVALID_CELLID; if (mpiGrid.is_local(cells[2]) == false) cells[2] = INVALID_CELLID; } SpatialCell* spatial_cell = mpiGrid[cellID]; vmesh::VelocityMesh<vmesh::GlobalID,vmesh::LocalID>& vmesh = spatial_cell->get_velocity_mesh_temporary(); vmesh::VelocityBlockContainer<vmesh::LocalID>& blockContainer = spatial_cell->get_velocity_blocks_temporary(); // At minimum the target mesh will be an identical copy of the existing mesh if (isRemoteCell == false) vmesh = spatial_cell->get_velocity_mesh(popID); else vmesh.clear(); // Add or refine blocks arriving from the upstream addUpstreamBlocks<-1>(mpiGrid,cells[0],dim,vmesh); addUpstreamBlocks<+1>(mpiGrid,cells[2],dim,vmesh); // Target mesh generated, set block parameters blockContainer.setSize(vmesh.size()); for (size_t b=0; b<vmesh.size(); ++b) { vmesh::GlobalID blockGID = vmesh.getGlobalID(b); Real* blockParams = blockContainer.getParameters(b); blockParams[BlockParams::VXCRD] = spatial_cell->get_velocity_block_vx_min(blockGID); blockParams[BlockParams::VYCRD] = spatial_cell->get_velocity_block_vy_min(blockGID); blockParams[BlockParams::VZCRD] = spatial_cell->get_velocity_block_vz_min(blockGID); vmesh.getCellSize(blockGID,&(blockParams[BlockParams::DVX])); } }
/*! \brief Read in state from a vlsv file in order to restart simulations \param mpiGrid Vlasiator's grid \param name Name of the restart file e.g. "restart.00052.vlsv" \return Returns true if the operation was successful \sa readGrid */ bool exec_readGrid(dccrg::Dccrg<SpatialCell,dccrg::Cartesian_Geometry>& mpiGrid, FsGrid< std::array<Real, fsgrids::bfield::N_BFIELD>, 2>& perBGrid, FsGrid< std::array<Real, fsgrids::efield::N_EFIELD>, 2>& EGrid, FsGrid< fsgrids::technical, 2>& technicalGrid, const std::string& name) { vector<CellID> fileCells; /*< CellIds for all cells in file*/ vector<size_t> nBlocks;/*< Number of blocks for all cells in file*/ bool success=true; int myRank,processes; #warning Spatial grid name hard-coded here const string meshName = "SpatialGrid"; // Attempt to open VLSV file for reading: MPI_Comm_rank(MPI_COMM_WORLD,&myRank); MPI_Comm_size(MPI_COMM_WORLD,&processes); phiprof::start("readGrid"); vlsv::ParallelReader file; MPI_Info mpiInfo = MPI_INFO_NULL; if (file.open(name,MPI_COMM_WORLD,MASTER_RANK,mpiInfo) == false) { success=false; } exitOnError(success,"(RESTART) Could not open file",MPI_COMM_WORLD); // Around May 2015 time was renamed from "t" to "time", we try to read both, // new way is read first if (readScalarParameter(file,"time",P::t,MASTER_RANK,MPI_COMM_WORLD) == false) if (readScalarParameter(file,"t", P::t,MASTER_RANK,MPI_COMM_WORLD) == false) success=false; P::t_min=P::t; // Around May 2015 timestep was renamed from "tstep" to "timestep", we to read // both, new way is read first if (readScalarParameter(file,"timestep",P::tstep,MASTER_RANK,MPI_COMM_WORLD) == false) if (readScalarParameter(file,"tstep", P::tstep,MASTER_RANK,MPI_COMM_WORLD) ==false) success = false; P::tstep_min=P::tstep; if(readScalarParameter(file,"dt",P::dt,MASTER_RANK,MPI_COMM_WORLD) ==false) success=false; if(readScalarParameter(file,"fieldSolverSubcycles",P::fieldSolverSubcycles,MASTER_RANK,MPI_COMM_WORLD) ==false) { // Legacy restarts do not have this field, it "should" be safe for one or two steps... P::fieldSolverSubcycles = 1.0; cout << " No P::fieldSolverSubcycles found in restart, setting 1." << endl; } MPI_Bcast(&(P::fieldSolverSubcycles),1,MPI_Type<Real>(),MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"xmin",P::xmin,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"ymin",P::ymin,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"zmin",P::zmin,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"xmax",P::xmax,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"ymax",P::ymax,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"zmax",P::zmax,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"xcells_ini",P::xcells_ini,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"ycells_ini",P::ycells_ini,MASTER_RANK,MPI_COMM_WORLD); checkScalarParameter(file,"zcells_ini",P::zcells_ini,MASTER_RANK,MPI_COMM_WORLD); phiprof::start("readDatalayout"); if (success == true) success = readCellIds(file,fileCells,MASTER_RANK,MPI_COMM_WORLD); // Check that the cellID lists are identical in file and grid if (myRank==0){ vector<CellID> allGridCells=mpiGrid.get_all_cells(); if (fileCells.size() != allGridCells.size()){ success=false; } } exitOnError(success,"(RESTART) Wrong number of cells in restart file",MPI_COMM_WORLD); // Read the total number of velocity blocks in each spatial cell. // Note that this is a sum over all existing particle species. if (success == true) { success = readNBlocks(file,meshName,nBlocks,MASTER_RANK,MPI_COMM_WORLD); } //make sure all cells are empty, we will anyway overwrite everything and // in that case moving cells is easier... { const vector<CellID>& gridCells = getLocalCells(); for (size_t i=0; i<gridCells.size(); i++) { for (uint popID=0; popID<getObjectWrapper().particleSpecies.size(); ++popID) mpiGrid[gridCells[i]]->clear(popID); } } uint64_t totalNumberOfBlocks=0; unsigned int numberOfBlocksPerProcess; for(uint i=0; i<nBlocks.size(); ++i){ totalNumberOfBlocks += nBlocks[i]; } numberOfBlocksPerProcess= 1 + totalNumberOfBlocks/processes; uint64_t localCellStartOffset=0; // This is where local cells start in file-list after migration. uint64_t localCells=0; uint64_t numberOfBlocksCount=0; // Pin local cells to remote processes, we try to balance number of blocks so that // each process has the same amount of blocks, more or less. for (size_t i=0; i<fileCells.size(); ++i) { numberOfBlocksCount += nBlocks[i]; int newCellProcess = numberOfBlocksCount/numberOfBlocksPerProcess; if (newCellProcess == myRank) { if (localCells == 0) localCellStartOffset=i; //here local cells start ++localCells; } if (mpiGrid.is_local(fileCells[i])) { mpiGrid.pin(fileCells[i],newCellProcess); } } SpatialCell::set_mpi_transfer_type(Transfer::ALL_SPATIAL_DATA); //Do initial load balance based on pins. Need to transfer at least sysboundaryflags mpiGrid.balance_load(false); //update list of local gridcells recalculateLocalCellsCache(); //get new list of local gridcells const vector<CellID>& gridCells = getLocalCells(); // Unpin cells, otherwise we will never change this initial bad balance for (size_t i=0; i<gridCells.size(); ++i) { mpiGrid.unpin(gridCells[i]); } // Check for errors, has migration succeeded if (localCells != gridCells.size() ) { success=false; } if (success == true) { for (uint64_t i=localCellStartOffset; i<localCellStartOffset+localCells; ++i) { if(mpiGrid.is_local(fileCells[i]) == false) { success = false; } } } exitOnError(success,"(RESTART) Cell migration failed",MPI_COMM_WORLD); // Set cell coordinates based on cfg (mpigrid) information for (size_t i=0; i<gridCells.size(); ++i) { array<double, 3> cell_min = mpiGrid.geometry.get_min(gridCells[i]); array<double, 3> cell_length = mpiGrid.geometry.get_length(gridCells[i]); mpiGrid[gridCells[i]]->parameters[CellParams::XCRD] = cell_min[0]; mpiGrid[gridCells[i]]->parameters[CellParams::YCRD] = cell_min[1]; mpiGrid[gridCells[i]]->parameters[CellParams::ZCRD] = cell_min[2]; mpiGrid[gridCells[i]]->parameters[CellParams::DX ] = cell_length[0]; mpiGrid[gridCells[i]]->parameters[CellParams::DY ] = cell_length[1]; mpiGrid[gridCells[i]]->parameters[CellParams::DZ ] = cell_length[2]; } // Where local data start in the blocklists //uint64_t localBlocks=0; //for(uint64_t i=localCellStartOffset; i<localCellStartOffset+localCells; ++i) { // localBlocks += nBlocks[i]; //} phiprof::stop("readDatalayout"); //todo, check file datatype, and do not just use double phiprof::start("readCellParameters"); if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"moments",CellParams::RHOM,5,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"moments_dt2",CellParams::RHOM_DT2,5,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"moments_r",CellParams::RHOM_R,5,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"moments_v",CellParams::RHOM_V,5,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"pressure",CellParams::P_11,3,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"pressure_dt2",CellParams::P_11_DT2,3,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"pressure_r",CellParams::P_11_R,3,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"pressure_v",CellParams::P_11_V,3,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"LB_weight",CellParams::LBWEIGHTCOUNTER,1,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"max_v_dt",CellParams::MAXVDT,1,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"max_r_dt",CellParams::MAXRDT,1,mpiGrid); } if(success) { success=readCellParamsVariable(file,fileCells,localCellStartOffset,localCells,"max_fields_dt",CellParams::MAXFDT,1,mpiGrid); } // Backround B has to be set, there are also the derivatives that should be written/read if we wanted to only read in background field phiprof::stop("readCellParameters"); phiprof::start("readBlockData"); if (success == true) { success = readBlockData(file,meshName,fileCells,localCellStartOffset,localCells,mpiGrid); } phiprof::stop("readBlockData"); mpiGrid.update_copies_of_remote_neighbors(FULL_NEIGHBORHOOD_ID); // Read fsgrid data back in int fsgridInputRanks=0; if(readScalarParameter(file,"numWritingRanks",fsgridInputRanks, MASTER_RANK, MPI_COMM_WORLD) == false) { exitOnError(false, "(RESTART) FSGrid writing rank number not found in restart file", MPI_COMM_WORLD); } success = readFsGridVariable(file, "fg_PERB", fsgridInputRanks, perBGrid); success = readFsGridVariable(file, "fg_E", fsgridInputRanks, EGrid); success = file.close(); phiprof::stop("readGrid"); exitOnError(success,"(RESTART) Other failure",MPI_COMM_WORLD); return success; }