SimulatorReport nonlinearIteration(const int iteration, const SimulatorTimerInterface& timer, NonlinearSolverType& nonlinear_solver) { SimulatorReport report; failureReport_ = SimulatorReport(); Dune::Timer perfTimer; perfTimer.start(); if (iteration == 0) { // For each iteration we store in a vector the norms of the residual of // the mass balance for each active phase, the well flux and the well equations. residual_norms_history_.clear(); current_relaxation_ = 1.0; dx_old_ = 0.0; convergence_reports_.push_back({timer.reportStepNum(), timer.currentStepNum(), {}}); convergence_reports_.back().report.reserve(11); } report.total_linearizations = 1; try { report += assembleReservoir(timer, iteration); report.assemble_time += perfTimer.stop(); } catch (...) { report.assemble_time += perfTimer.stop(); failureReport_ += report; // todo (?): make the report an attribute of the class throw; // continue throwing the stick } std::vector<double> residual_norms; perfTimer.reset(); perfTimer.start(); // the step is not considered converged until at least minIter iterations is done { auto convrep = getConvergence(timer, iteration,residual_norms); report.converged = convrep.converged() && iteration > nonlinear_solver.minIter();; ConvergenceReport::Severity severity = convrep.severityOfWorstFailure(); convergence_reports_.back().report.push_back(std::move(convrep)); // Throw if any NaN or too large residual found. if (severity == ConvergenceReport::Severity::NotANumber) { OPM_THROW(Opm::NumericalIssue, "NaN residual found!"); } else if (severity == ConvergenceReport::Severity::TooLarge) { OPM_THROW(Opm::NumericalIssue, "Too large residual found!"); } } // checking whether the group targets are converged if (wellModel().wellCollection().groupControlActive()) { report.converged = report.converged && wellModel().wellCollection().groupTargetConverged(wellModel().wellState().wellRates()); } report.update_time += perfTimer.stop(); residual_norms_history_.push_back(residual_norms); if (!report.converged) { perfTimer.reset(); perfTimer.start(); report.total_newton_iterations = 1; // enable single precision for solvers when dt is smaller then 20 days //residual_.singlePrecision = (unit::convert::to(dt, unit::day) < 20.) ; // Compute the nonlinear update. const int nc = UgGridHelpers::numCells(grid_); BVector x(nc); // apply the Schur compliment of the well model to the reservoir linearized // equations wellModel().linearize(ebosSimulator().model().linearizer().jacobian(), ebosSimulator().model().linearizer().residual()); // Solve the linear system. linear_solve_setup_time_ = 0.0; try { solveJacobianSystem(x); report.linear_solve_setup_time += linear_solve_setup_time_; report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); } catch (...) { report.linear_solve_setup_time += linear_solve_setup_time_; report.linear_solve_time += perfTimer.stop(); report.total_linear_iterations += linearIterationsLastSolve(); failureReport_ += report; throw; // re-throw up } perfTimer.reset(); perfTimer.start(); // handling well state update before oscillation treatment is a decision based // on observation to avoid some big performance degeneration under some circumstances. // there is no theorectical explanation which way is better for sure. wellModel().postSolve(x); if (param_.use_update_stabilization_) { // Stabilize the nonlinear update. bool isOscillate = false; bool isStagnate = false; nonlinear_solver.detectOscillations(residual_norms_history_, iteration, isOscillate, isStagnate); if (isOscillate) { current_relaxation_ -= nonlinear_solver.relaxIncrement(); current_relaxation_ = std::max(current_relaxation_, nonlinear_solver.relaxMax()); if (terminalOutputEnabled()) { std::string msg = " Oscillating behavior detected: Relaxation set to " + std::to_string(current_relaxation_); OpmLog::info(msg); } } nonlinear_solver.stabilizeNonlinearUpdate(x, dx_old_, current_relaxation_); } // Apply the update, with considering model-dependent limitations and // chopping of the update. updateSolution(x); report.update_time += perfTimer.stop(); } return report; }
int main(int argc, char** argv) { try { // define the problem dimensions const int dim=2; // create a grid object typedef double NumberType; typedef Dune::SGrid<dim,dim> GridType; Dune::FieldVector<GridType::ctype,dim> L(0); Dune::FieldVector<GridType::ctype,dim> R(300); Dune::FieldVector<int,dim> N(2); GridType grid(N,L,R); typedef GridType::LevelGridView GridView; GridView gridView(grid.levelView(0)); //Uniform mat; Dune::Uniform mat; Dune::HomogeneousSoil<GridType, NumberType> soil; // Dune::HeterogeneousSoil<GridType, NumberType> soil(grid, "permeab.dat", true); // printvector(std::cout, *(soil.permeability), "permeability", "row", 200, 1); // soil.permeability.vtkout("permeability", grid); Dune::TwoPhaseRelations<GridType, NumberType> materialLaw(soil, mat, mat); typedef Dune::VariableClass<GridView, NumberType> VC; double initsat = 0.8; // VC variables(gridView,initsat); //for fe discretisation -> pressure on the nodes! VC variables(gridView, dim, initsat); Dune::UniformProblem<GridView, NumberType, VC> problem(variables, mat, mat, soil, materialLaw, R); Dune::Timer timer; timer.reset(); // Dune::LeafFEPressure2P<GridView, NumberType, VC> diffusion(gridView, problem); Dune::FVWettingPhaseVelocity2P<GridView, NumberType, VC> diffusion(gridView, problem, "pw","Sw"); // Dune::MimeticPressure2P<GridView, NumberType, VC> diffusion(gridView, problem); diffusion.pressure(); std::cout << "pressure calculation took " << timer.elapsed() << " seconds" << std::endl; printvector(std::cout, variables.pressure(), "pressure", "row", 200, 1, 3); variables.vtkout("fv", 0); diffusion.calculateVelocity(); printvector(std::cout, variables.velocity(), "velocity", "row", 4, 1, 3); return 0; } catch (Dune::Exception &e) { std::cerr << "Dune reported error: " << e << std::endl; } catch (...) { std::cerr << "Unknown exception thrown!" << std::endl; } }