Esempio n. 1
0
    /** \brief Constructor
     * param[in] volume_size size of the volume in mm
     * param[in] volume_res volume grid resolution (typically device::VOLUME_X x device::VOLUME_Y x device::VOLUME_Z)
     */
    DeviceVolume (const Eigen::Vector3f &volume_size, const Eigen::Vector3i &volume_res)
        : volume_size_ (volume_size)
    {
        // initialize GPU
        device_volume_.create (volume_res[1] * volume_res[2], volume_res[0]); // (device::VOLUME_Y * device::VOLUME_Z, device::VOLUME_X)
        pcl::device::initVolume (device_volume_);

        // truncation distance
        Eigen::Vector3f voxel_size = volume_size.array() / volume_res.array().cast<float>();
        trunc_dist_ = max ((float)min_trunc_dist, 2.1f * max (voxel_size[0], max (voxel_size[1], voxel_size[2])));
    };
Esempio n. 2
0
// Create root cells and connect their nodes accordingly
void OctreeGrid::createRootCells() {
	// Clear current octree
	m_Nodes.clear();
	m_Cells.clear();

	// Anisotropic grids: we need multiple root cells
	int minFineCellSize = m_CellGridSize.minCoeff();
	Eigen::Vector3i coarseCellGridSize = m_CellGridSize / minFineCellSize;
	Eigen::Vector3i coarseNodeGridSize = coarseCellGridSize.array() + 1;

	// Create coarse grid nodes and set up adjacency relations
	for (int i = 0; i < coarseNodeGridSize.prod(); ++i) {
		Node newNode;
		Eigen::Vector3i coarsePos = Layout3D::toGrid(i, coarseNodeGridSize);
		newNode.position = (1 << m_MaxDepth) * coarsePos;
		for (int axis = 0; axis < 3; ++axis) {
			for (int c = 0; c < 2; ++c) {
				Eigen::Vector3i q = coarsePos;
				q[axis] += (c ? 1 : -1);
				q = Layout3D::clamp(q, coarseNodeGridSize);
				int j = Layout3D::toIndex(q, coarseNodeGridSize);
				newNode.neighNodeId[2*axis+c] = (j != i ? j : -1);
			}
		}
		m_Nodes.emplace_back(newNode);
	}

	// Create coarse grid cells
	for (int e = 0; e < coarseCellGridSize.prod(); ++e) {
		Cell newCell;
		Eigen::Vector3i lowerCorner = Layout3D::toGrid(e, coarseCellGridSize);
		for (int k = 0; k < 8; ++k) {
			Eigen::Vector3i currentCorner = lowerCorner + Cube::delta(k);
			int i = Layout3D::toIndex(currentCorner, coarseNodeGridSize);
			newCell.setCorner(k, i);
		}
		m_Cells.emplace_back(newCell);
	}
	m_NumRootCells = (int) m_Cells.size();

	// Link adjacent cells together
	for (int i = 0; i < coarseCellGridSize.prod(); ++i) {
		Eigen::Vector3i coarsePos = Layout3D::toGrid(i, coarseCellGridSize);
		for (int axis = 0; axis < 3; ++axis) {
			for (int c = 0; c < 2; ++c) {
				Eigen::Vector3i q = coarsePos;
				q[axis] += (c ? 1 : -1);
				q = Layout3D::clamp(q, coarseCellGridSize);
				int j = Layout3D::toIndex(q, coarseCellGridSize);
				m_Cells[i].neighCellId[2*axis+c] = (j != i ? j : -1);
			}
		}
	}
}
Esempio n. 3
0
template <typename VoxelT, typename WeightT> bool
pcl::TSDFVolume<VoxelT, WeightT>::extractNeighborhood (const Eigen::Vector3i &voxel_coord, int neighborhood_size,
                                                                       VoxelTVec &neighborhood) const
{
  // point_index is at the center of a cube of scale_ x scale_ x scale_ voxels
  int shift = (neighborhood_size - 1) / 2;
  Eigen::Vector3i min_index = voxel_coord.array() - shift;
  Eigen::Vector3i max_index = voxel_coord.array() + shift;

  // check that index is within range
  if (getLinearVoxelIndex(min_index) < 0 || getLinearVoxelIndex(max_index) >= (int)size())
  {
    pcl::console::print_info ("[extractNeighborhood] Skipping voxel with coord (%d, %d, %d).\n", voxel_coord(0), voxel_coord(1), voxel_coord(2));
    return false;
  }

  static const int descriptor_size = neighborhood_size*neighborhood_size*neighborhood_size;
  neighborhood.resize (descriptor_size);

  const Eigen::RowVector3i offset_vector (1, neighborhood_size, neighborhood_size*neighborhood_size);

  // loop over all voxels in 3D neighborhood
  #pragma omp parallel for
  for (int z = min_index(2); z <= max_index(2); ++z)
  {
    for (int y = min_index(1); y <= max_index(1); ++y)
    {
      for (int x = min_index(0); x <= max_index(0); ++x)
      {
        // linear voxel index in volume and index in descriptor vector
        Eigen::Vector3i point (x,y,z);
        int volume_idx = getLinearVoxelIndex (point);
        int descr_idx  = offset_vector * (point - min_index);

/*        std::cout << "linear index " << volume_idx << std::endl;
        std::cout << "weight " << weights_->at (volume_idx) << std::endl;
        std::cout << "volume " << volume_->at (volume_idx) << std::endl;
        std::cout << "descr  " << neighborhood.rows() << "x" << neighborhood.cols() << ", val = " << neighborhood << std::endl;
        std::cout << "descr index = " << descr_idx << std::endl;
*/
        // get the TSDF value and store as descriptor entry
        if (weights_->at (volume_idx) != 0)
          neighborhood (descr_idx) = volume_->at (volume_idx);
        else
          neighborhood (descr_idx) = -1.0; // if never visited we assume inside of object (outside captured and thus filled with positive values)
      }
    }
  }

  return true;
}
Esempio n. 4
0
template <typename VoxelT, typename WeightT> bool
pcl::TSDFVolume<VoxelT, WeightT>::addNeighborhood (const Eigen::Vector3i &voxel_coord, int neighborhood_size,
                                                                   const VoxelTVec &neighborhood, WeightT voxel_weight)
{
  // point_index is at the center of a cube of scale_ x scale_ x scale_ voxels
  int shift = (neighborhood_size - 1) / 2;
  Eigen::Vector3i min_index = voxel_coord.array() - shift;
  Eigen::Vector3i max_index = voxel_coord.array() + shift;

  // check that index is within range
  if (getLinearVoxelIndex(min_index) < 0 || getLinearVoxelIndex(max_index) >= (int)size())
  {
    pcl::console::print_info ("[addNeighborhood] Skipping voxel with coord (%d, %d, %d).\n", voxel_coord(0), voxel_coord(1), voxel_coord(2));
    return false;
  }

  // static const int descriptor_size = neighborhood_size*neighborhood_size*neighborhood_size;
  const Eigen::RowVector3i offset_vector (1, neighborhood_size, neighborhood_size*neighborhood_size);

  Eigen::Vector3i index = min_index;
  // loop over all voxels in 3D neighborhood
  #pragma omp parallel for
  for (int z = min_index(2); z <= max_index(2); ++z)
  {
    for (int y = min_index(1); y <= max_index(1); ++y)
    {
      for (int x = min_index(0); x <= max_index(0); ++x)
      {
        // linear voxel index in volume and index in descriptor vector
        Eigen::Vector3i point (x,y,z);
        int volume_idx = getLinearVoxelIndex (point);
        int descr_idx  = offset_vector * (point - min_index);

        // add the descriptor entry to the volume
        VoxelT &voxel = volume_->at (volume_idx);
        WeightT &weight = weights_->at (volume_idx);

        // TODO check that this simple lock works correctly!!
        #pragma omp atomic
        voxel += neighborhood (descr_idx);

        #pragma omp atomic
        weight += voxel_weight;
      }
    }
  }

  return true;
}
Esempio n. 5
0
OctreeGrid::OctreeGrid(Eigen::Vector3i fineCellGridSize, int maxNodeGuess, int maxCellGuess)
	: m_NodeGridSize(fineCellGridSize.array() + 1)
	, m_CellGridSize(fineCellGridSize)
	, m_NumRootCells(0)
{
	m_Nodes.reserve(maxNodeGuess);
	m_Cells.reserve(maxCellGuess);

	// Some sanity checks
	oct_assert(Math::isPowerOfTwo(fineCellGridSize[0]));
	oct_assert(Math::isPowerOfTwo(fineCellGridSize[1]));
	oct_assert(Math::isPowerOfTwo(fineCellGridSize[2]));

	// Max depth depends on fineCellGridSize
	int minFineCellSize = m_CellGridSize.minCoeff();
	m_MaxDepth = 0;
	while ( m_MaxDepth < 64 && (1 << m_MaxDepth) < minFineCellSize) { ++m_MaxDepth; }
	// logger_debug("OctreeGrid", "MaxDepth: %s", m_MaxDepth);

	// Create root cells
	createRootCells();
}