/** \brief Constructor * param[in] volume_size size of the volume in mm * param[in] volume_res volume grid resolution (typically device::VOLUME_X x device::VOLUME_Y x device::VOLUME_Z) */ DeviceVolume (const Eigen::Vector3f &volume_size, const Eigen::Vector3i &volume_res) : volume_size_ (volume_size) { // initialize GPU device_volume_.create (volume_res[1] * volume_res[2], volume_res[0]); // (device::VOLUME_Y * device::VOLUME_Z, device::VOLUME_X) pcl::device::initVolume (device_volume_); // truncation distance Eigen::Vector3f voxel_size = volume_size.array() / volume_res.array().cast<float>(); trunc_dist_ = max ((float)min_trunc_dist, 2.1f * max (voxel_size[0], max (voxel_size[1], voxel_size[2]))); };
// Create root cells and connect their nodes accordingly void OctreeGrid::createRootCells() { // Clear current octree m_Nodes.clear(); m_Cells.clear(); // Anisotropic grids: we need multiple root cells int minFineCellSize = m_CellGridSize.minCoeff(); Eigen::Vector3i coarseCellGridSize = m_CellGridSize / minFineCellSize; Eigen::Vector3i coarseNodeGridSize = coarseCellGridSize.array() + 1; // Create coarse grid nodes and set up adjacency relations for (int i = 0; i < coarseNodeGridSize.prod(); ++i) { Node newNode; Eigen::Vector3i coarsePos = Layout3D::toGrid(i, coarseNodeGridSize); newNode.position = (1 << m_MaxDepth) * coarsePos; for (int axis = 0; axis < 3; ++axis) { for (int c = 0; c < 2; ++c) { Eigen::Vector3i q = coarsePos; q[axis] += (c ? 1 : -1); q = Layout3D::clamp(q, coarseNodeGridSize); int j = Layout3D::toIndex(q, coarseNodeGridSize); newNode.neighNodeId[2*axis+c] = (j != i ? j : -1); } } m_Nodes.emplace_back(newNode); } // Create coarse grid cells for (int e = 0; e < coarseCellGridSize.prod(); ++e) { Cell newCell; Eigen::Vector3i lowerCorner = Layout3D::toGrid(e, coarseCellGridSize); for (int k = 0; k < 8; ++k) { Eigen::Vector3i currentCorner = lowerCorner + Cube::delta(k); int i = Layout3D::toIndex(currentCorner, coarseNodeGridSize); newCell.setCorner(k, i); } m_Cells.emplace_back(newCell); } m_NumRootCells = (int) m_Cells.size(); // Link adjacent cells together for (int i = 0; i < coarseCellGridSize.prod(); ++i) { Eigen::Vector3i coarsePos = Layout3D::toGrid(i, coarseCellGridSize); for (int axis = 0; axis < 3; ++axis) { for (int c = 0; c < 2; ++c) { Eigen::Vector3i q = coarsePos; q[axis] += (c ? 1 : -1); q = Layout3D::clamp(q, coarseCellGridSize); int j = Layout3D::toIndex(q, coarseCellGridSize); m_Cells[i].neighCellId[2*axis+c] = (j != i ? j : -1); } } } }
template <typename VoxelT, typename WeightT> bool pcl::TSDFVolume<VoxelT, WeightT>::extractNeighborhood (const Eigen::Vector3i &voxel_coord, int neighborhood_size, VoxelTVec &neighborhood) const { // point_index is at the center of a cube of scale_ x scale_ x scale_ voxels int shift = (neighborhood_size - 1) / 2; Eigen::Vector3i min_index = voxel_coord.array() - shift; Eigen::Vector3i max_index = voxel_coord.array() + shift; // check that index is within range if (getLinearVoxelIndex(min_index) < 0 || getLinearVoxelIndex(max_index) >= (int)size()) { pcl::console::print_info ("[extractNeighborhood] Skipping voxel with coord (%d, %d, %d).\n", voxel_coord(0), voxel_coord(1), voxel_coord(2)); return false; } static const int descriptor_size = neighborhood_size*neighborhood_size*neighborhood_size; neighborhood.resize (descriptor_size); const Eigen::RowVector3i offset_vector (1, neighborhood_size, neighborhood_size*neighborhood_size); // loop over all voxels in 3D neighborhood #pragma omp parallel for for (int z = min_index(2); z <= max_index(2); ++z) { for (int y = min_index(1); y <= max_index(1); ++y) { for (int x = min_index(0); x <= max_index(0); ++x) { // linear voxel index in volume and index in descriptor vector Eigen::Vector3i point (x,y,z); int volume_idx = getLinearVoxelIndex (point); int descr_idx = offset_vector * (point - min_index); /* std::cout << "linear index " << volume_idx << std::endl; std::cout << "weight " << weights_->at (volume_idx) << std::endl; std::cout << "volume " << volume_->at (volume_idx) << std::endl; std::cout << "descr " << neighborhood.rows() << "x" << neighborhood.cols() << ", val = " << neighborhood << std::endl; std::cout << "descr index = " << descr_idx << std::endl; */ // get the TSDF value and store as descriptor entry if (weights_->at (volume_idx) != 0) neighborhood (descr_idx) = volume_->at (volume_idx); else neighborhood (descr_idx) = -1.0; // if never visited we assume inside of object (outside captured and thus filled with positive values) } } } return true; }
template <typename VoxelT, typename WeightT> bool pcl::TSDFVolume<VoxelT, WeightT>::addNeighborhood (const Eigen::Vector3i &voxel_coord, int neighborhood_size, const VoxelTVec &neighborhood, WeightT voxel_weight) { // point_index is at the center of a cube of scale_ x scale_ x scale_ voxels int shift = (neighborhood_size - 1) / 2; Eigen::Vector3i min_index = voxel_coord.array() - shift; Eigen::Vector3i max_index = voxel_coord.array() + shift; // check that index is within range if (getLinearVoxelIndex(min_index) < 0 || getLinearVoxelIndex(max_index) >= (int)size()) { pcl::console::print_info ("[addNeighborhood] Skipping voxel with coord (%d, %d, %d).\n", voxel_coord(0), voxel_coord(1), voxel_coord(2)); return false; } // static const int descriptor_size = neighborhood_size*neighborhood_size*neighborhood_size; const Eigen::RowVector3i offset_vector (1, neighborhood_size, neighborhood_size*neighborhood_size); Eigen::Vector3i index = min_index; // loop over all voxels in 3D neighborhood #pragma omp parallel for for (int z = min_index(2); z <= max_index(2); ++z) { for (int y = min_index(1); y <= max_index(1); ++y) { for (int x = min_index(0); x <= max_index(0); ++x) { // linear voxel index in volume and index in descriptor vector Eigen::Vector3i point (x,y,z); int volume_idx = getLinearVoxelIndex (point); int descr_idx = offset_vector * (point - min_index); // add the descriptor entry to the volume VoxelT &voxel = volume_->at (volume_idx); WeightT &weight = weights_->at (volume_idx); // TODO check that this simple lock works correctly!! #pragma omp atomic voxel += neighborhood (descr_idx); #pragma omp atomic weight += voxel_weight; } } } return true; }
OctreeGrid::OctreeGrid(Eigen::Vector3i fineCellGridSize, int maxNodeGuess, int maxCellGuess) : m_NodeGridSize(fineCellGridSize.array() + 1) , m_CellGridSize(fineCellGridSize) , m_NumRootCells(0) { m_Nodes.reserve(maxNodeGuess); m_Cells.reserve(maxCellGuess); // Some sanity checks oct_assert(Math::isPowerOfTwo(fineCellGridSize[0])); oct_assert(Math::isPowerOfTwo(fineCellGridSize[1])); oct_assert(Math::isPowerOfTwo(fineCellGridSize[2])); // Max depth depends on fineCellGridSize int minFineCellSize = m_CellGridSize.minCoeff(); m_MaxDepth = 0; while ( m_MaxDepth < 64 && (1 << m_MaxDepth) < minFineCellSize) { ++m_MaxDepth; } // logger_debug("OctreeGrid", "MaxDepth: %s", m_MaxDepth); // Create root cells createRootCells(); }