bool GrStencilAndCoverPathRenderer::onDrawPath(const SkPath& path, GrPathFill fill, GrDrawTarget* target, bool antiAlias) { GrAssert(!antiAlias); GrAssert(kHairLine_GrPathFill != fill); GrDrawState* drawState = target->drawState(); GrAssert(drawState->getStencil().isDisabled()); SkAutoTUnref<GrPath> p(fGpu->createPath(path)); GrPathFill nonInvertedFill = GrNonInvertedFill(fill); target->stencilPath(p, nonInvertedFill); // TODO: Use built in cover operation rather than a rect draw. This will require making our // fragment shaders be able to eat varyings generated by a matrix. // fill the path, zero out the stencil GrRect bounds = p->getBounds(); GrScalar bloat = drawState->getViewMatrix().getMaxStretch() * GR_ScalarHalf; GrDrawState::AutoDeviceCoordDraw adcd; if (nonInvertedFill == fill) { GR_STATIC_CONST_SAME_STENCIL(kStencilPass, kZero_StencilOp, kZero_StencilOp, kNotEqual_StencilFunc, 0xffff, 0x0000, 0xffff); *drawState->stencil() = kStencilPass; } else { GR_STATIC_CONST_SAME_STENCIL(kInvertedStencilPass, kZero_StencilOp, kZero_StencilOp, // We know our rect will hit pixels outside the clip and the user bits will be 0 // outside the clip. So we can't just fill where the user bits are 0. We also need to // check that the clip bit is set. kEqualIfInClip_StencilFunc, 0xffff, 0x0000, 0xffff); GrMatrix vmi; bounds.setLTRB(0, 0, GrIntToScalar(drawState->getRenderTarget()->width()), GrIntToScalar(drawState->getRenderTarget()->height())); // mapRect through persp matrix may not be correct if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) { vmi.mapRect(&bounds); // theoretically could set bloat = 0, instead leave it because of matrix inversion // precision. } else { adcd.set(drawState); bloat = 0; } *drawState->stencil() = kInvertedStencilPass; } bounds.outset(bloat, bloat); target->drawSimpleRect(bounds, NULL); target->drawState()->stencil()->setDisabled(); return true; }
bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path, const SkStrokeRec&, GrDrawTarget* target, bool antiAlias) { int lineCnt; int quadCnt; GrDrawTarget::AutoReleaseGeometry arg; if (!this->createGeom(path, target, &lineCnt, &quadCnt, &arg)) { return false; } GrDrawState::AutoDeviceCoordDraw adcd; GrDrawState* drawState = target->drawState(); // createGeom transforms the geometry to device space when the matrix does not have // perspective. if (!drawState->getViewMatrix().hasPerspective()) { adcd.set(drawState); if (!adcd.succeeded()) { return false; } } // TODO: See whether rendering lines as degenerate quads improves perf // when we have a mix GrDrawState::VertexEdgeType oldEdgeType = drawState->getVertexEdgeType(); target->setIndexSourceToBuffer(fLinesIndexBuffer); int lines = 0; int nBufLines = fLinesIndexBuffer->maxQuads(); drawState->setVertexEdgeType(GrDrawState::kHairLine_EdgeType); while (lines < lineCnt) { int n = GrMin(lineCnt - lines, nBufLines); target->drawIndexed(kTriangles_GrPrimitiveType, kVertsPerLineSeg*lines, // startV 0, // startI kVertsPerLineSeg*n, // vCount kIdxsPerLineSeg*n); // iCount lines += n; } target->setIndexSourceToBuffer(fQuadsIndexBuffer); int quads = 0; drawState->setVertexEdgeType(GrDrawState::kHairQuad_EdgeType); while (quads < quadCnt) { int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer); target->drawIndexed(kTriangles_GrPrimitiveType, 4 * lineCnt + kVertsPerQuad*quads, // startV 0, // startI kVertsPerQuad*n, // vCount kIdxsPerQuad*n); // iCount quads += n; } drawState->setVertexEdgeType(oldEdgeType); return true; }
bool GrDefaultPathRenderer::internalDrawPath(const SkPath& path, GrPathFill fill, GrDrawTarget* target, bool stencilOnly) { GrMatrix viewM = target->getDrawState().getViewMatrix(); GrScalar tol = GR_Scalar1; tol = GrPathUtils::scaleToleranceToSrc(tol, viewM, path.getBounds()); int vertexCnt; int indexCnt; GrPrimitiveType primType; GrDrawTarget::AutoReleaseGeometry arg; if (!this->createGeom(path, fill, tol, target, &primType, &vertexCnt, &indexCnt, &arg)) { return false; } GrAssert(NULL != target); GrDrawTarget::AutoStateRestore asr(target, GrDrawTarget::kPreserve_ASRInit); GrDrawState* drawState = target->drawState(); bool colorWritesWereDisabled = drawState->isColorWriteDisabled(); // face culling doesn't make sense here GrAssert(GrDrawState::kBoth_DrawFace == drawState->getDrawFace()); int passCount = 0; const GrStencilSettings* passes[3]; GrDrawState::DrawFace drawFace[3]; bool reverse = false; bool lastPassIsBounds; if (kHairLine_GrPathFill == fill) { passCount = 1; if (stencilOnly) { passes[0] = &gDirectToStencil; } else { passes[0] = NULL; } lastPassIsBounds = false; drawFace[0] = GrDrawState::kBoth_DrawFace; } else { if (single_pass_path(path, fill)) { passCount = 1; if (stencilOnly) { passes[0] = &gDirectToStencil; } else { passes[0] = NULL; } drawFace[0] = GrDrawState::kBoth_DrawFace; lastPassIsBounds = false; } else { switch (fill) { case kInverseEvenOdd_GrPathFill: reverse = true; // fallthrough case kEvenOdd_GrPathFill: passes[0] = &gEOStencilPass; if (stencilOnly) { passCount = 1; lastPassIsBounds = false; } else { passCount = 2; lastPassIsBounds = true; if (reverse) { passes[1] = &gInvEOColorPass; } else { passes[1] = &gEOColorPass; } } drawFace[0] = drawFace[1] = GrDrawState::kBoth_DrawFace; break; case kInverseWinding_GrPathFill: reverse = true; // fallthrough case kWinding_GrPathFill: if (fSeparateStencil) { if (fStencilWrapOps) { passes[0] = &gWindStencilSeparateWithWrap; } else { passes[0] = &gWindStencilSeparateNoWrap; } passCount = 2; drawFace[0] = GrDrawState::kBoth_DrawFace; } else { if (fStencilWrapOps) { passes[0] = &gWindSingleStencilWithWrapInc; passes[1] = &gWindSingleStencilWithWrapDec; } else { passes[0] = &gWindSingleStencilNoWrapInc; passes[1] = &gWindSingleStencilNoWrapDec; } // which is cw and which is ccw is arbitrary. drawFace[0] = GrDrawState::kCW_DrawFace; drawFace[1] = GrDrawState::kCCW_DrawFace; passCount = 3; } if (stencilOnly) { lastPassIsBounds = false; --passCount; } else { lastPassIsBounds = true; drawFace[passCount-1] = GrDrawState::kBoth_DrawFace; if (reverse) { passes[passCount-1] = &gInvWindColorPass; } else { passes[passCount-1] = &gWindColorPass; } } break; default: GrAssert(!"Unknown path fFill!"); return false; } } } { for (int p = 0; p < passCount; ++p) { drawState->setDrawFace(drawFace[p]); if (NULL != passes[p]) { *drawState->stencil() = *passes[p]; } if (lastPassIsBounds && (p == passCount-1)) { if (!colorWritesWereDisabled) { drawState->disableState(GrDrawState::kNoColorWrites_StateBit); } GrRect bounds; GrDrawState::AutoDeviceCoordDraw adcd; if (reverse) { GrAssert(NULL != drawState->getRenderTarget()); // draw over the whole world. bounds.setLTRB(0, 0, GrIntToScalar(drawState->getRenderTarget()->width()), GrIntToScalar(drawState->getRenderTarget()->height())); GrMatrix vmi; // mapRect through persp matrix may not be correct if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) { vmi.mapRect(&bounds); } else { adcd.set(drawState); } } else { bounds = path.getBounds(); } GrDrawTarget::AutoGeometryPush agp(target); target->drawSimpleRect(bounds, NULL); } else { if (passCount > 1) { drawState->enableState(GrDrawState::kNoColorWrites_StateBit); } if (indexCnt) { target->drawIndexed(primType, 0, 0, vertexCnt, indexCnt); } else { target->drawNonIndexed(primType, 0, vertexCnt); } } } } return true; }