/**Function************************************************************* Synopsis [Implementation of retiming.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkRetime( Abc_Ntk_t * pNtk, int Mode, int fForwardOnly, int fBackwardOnly, int fOneStep, int fVerbose ) { int nLatches = Abc_NtkLatchNum(pNtk); int nLevels = Abc_NtkLevel(pNtk); int RetValue = 0, clkTotal = clock(); int nNodesOld, nLatchesOld; assert( Mode > 0 && Mode < 7 ); assert( !fForwardOnly || !fBackwardOnly ); // cleanup the network nNodesOld = Abc_NtkNodeNum(pNtk); nLatchesOld = Abc_NtkLatchNum(pNtk); Abc_NtkCleanupSeq(pNtk, 0, 0, 0); if ( nNodesOld > Abc_NtkNodeNum(pNtk) || nLatchesOld > Abc_NtkLatchNum(pNtk) ) printf( "Cleanup before retiming removed %d dangling nodes and %d dangling latches.\n", nNodesOld - Abc_NtkNodeNum(pNtk), nLatchesOld - Abc_NtkLatchNum(pNtk) ); // perform retiming switch ( Mode ) { case 1: // forward RetValue = Abc_NtkRetimeIncremental( pNtk, 1, 0, 0, fVerbose ); break; case 2: // backward RetValue = Abc_NtkRetimeIncremental( pNtk, 0, 0, 0, fVerbose ); break; case 3: // min-area RetValue = Abc_NtkRetimeMinArea( pNtk, fForwardOnly, fBackwardOnly, fVerbose ); break; case 4: // min-delay if ( !fBackwardOnly ) RetValue += Abc_NtkRetimeIncremental( pNtk, 1, 1, fOneStep, fVerbose ); if ( !fForwardOnly ) RetValue += Abc_NtkRetimeIncremental( pNtk, 0, 1, fOneStep, fVerbose ); break; case 5: // min-area + min-delay RetValue = Abc_NtkRetimeMinArea( pNtk, fForwardOnly, fBackwardOnly, fVerbose ); if ( !fBackwardOnly ) RetValue += Abc_NtkRetimeIncremental( pNtk, 1, 1, 0, fVerbose ); if ( !fForwardOnly ) RetValue += Abc_NtkRetimeIncremental( pNtk, 0, 1, 0, fVerbose ); break; case 6: // Pan's algorithm RetValue = Abc_NtkRetimeLValue( pNtk, 500, fVerbose ); break; default: printf( "Unknown retiming option.\n" ); break; } if ( fVerbose ) { printf( "Reduction in area = %3d. Reduction in delay = %3d. ", nLatches - Abc_NtkLatchNum(pNtk), nLevels - Abc_NtkLevel(pNtk) ); PRT( "Total runtime", clock() - clkTotal ); } timeRetime = clock() - clkTotal; return RetValue; }
/**Function************************************************************* Synopsis [Performs retiming in one direction.] Description [Currently does not retime over black boxes.] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkRetimeIncremental( Abc_Ntk_t * pNtk, int nDelayLim, int fForward, int fMinDelay, int fOneStep, int fVerbose ) { Abc_Ntk_t * pNtkCopy = NULL; Vec_Ptr_t * vBoxes; st__table * tLatches; int nLatches = Abc_NtkLatchNum(pNtk); int nIdMaxStart = Abc_NtkObjNumMax(pNtk); int RetValue; int nIterLimit = -1; // Suppress "might be used uninitialized" if ( Abc_NtkNodeNum(pNtk) == 0 ) return 0; // reorder CI/CO/latch inputs Abc_NtkOrderCisCos( pNtk ); if ( fMinDelay ) { nIterLimit = fOneStep? 1 : 2 * Abc_NtkLevel(pNtk); pNtkCopy = Abc_NtkDup( pNtk ); tLatches = Abc_NtkRetimePrepareLatches( pNtkCopy ); st__free_table( tLatches ); } // collect latches and remove CIs/COs tLatches = Abc_NtkRetimePrepareLatches( pNtk ); // share the latches Abc_NtkRetimeShareLatches( pNtk, 0 ); // save boxes vBoxes = pNtk->vBoxes; pNtk->vBoxes = NULL; // perform the retiming if ( fMinDelay ) Abc_NtkRetimeMinDelay( pNtk, pNtkCopy, nDelayLim, nIterLimit, fForward, fVerbose ); else Abc_NtkRetimeOneWay( pNtk, fForward, fVerbose ); if ( fMinDelay ) Abc_NtkDelete( pNtkCopy ); // share the latches Abc_NtkRetimeShareLatches( pNtk, 0 ); // restore boxes pNtk->vBoxes = vBoxes; // finalize the latches RetValue = Abc_NtkRetimeFinalizeLatches( pNtk, tLatches, nIdMaxStart ); st__free_table( tLatches ); if ( RetValue == 0 ) return 0; // fix the COs // Abc_NtkLogicMakeSimpleCos( pNtk, 0 ); // check for correctness if ( !Abc_NtkCheck( pNtk ) ) fprintf( stdout, "Abc_NtkRetimeForward(): Network check has failed.\n" ); // return the number of latches saved return nLatches - Abc_NtkLatchNum(pNtk); }
/**Function************************************************************* Synopsis [] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ int Abc_NtkMfs( Abc_Ntk_t * pNtk, Mfs_Par_t * pPars ) { extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters ); Bdc_Par_t Pars = {0}, * pDecPars = &Pars; ProgressBar * pProgress; Mfs_Man_t * p; Abc_Obj_t * pObj; Vec_Vec_t * vLevels; Vec_Ptr_t * vNodes; int i, k, nNodes, nFaninMax; abctime clk = Abc_Clock(), clk2; int nTotalNodesBeg = Abc_NtkNodeNum(pNtk); int nTotalEdgesBeg = Abc_NtkGetTotalFanins(pNtk); assert( Abc_NtkIsLogic(pNtk) ); nFaninMax = Abc_NtkGetFaninMax(pNtk); if ( pPars->fResub ) { if ( nFaninMax > 8 ) { printf( "Nodes with more than %d fanins will not be processed.\n", 8 ); nFaninMax = 8; } } else { if ( nFaninMax > MFS_FANIN_MAX ) { printf( "Nodes with more than %d fanins will not be processed.\n", MFS_FANIN_MAX ); nFaninMax = MFS_FANIN_MAX; } } // perform the network sweep // Abc_NtkSweep( pNtk, 0 ); // convert into the AIG if ( !Abc_NtkToAig(pNtk) ) { fprintf( stdout, "Converting to AIGs has failed.\n" ); return 0; } assert( Abc_NtkHasAig(pNtk) ); // start the manager p = Mfs_ManAlloc( pPars ); p->pNtk = pNtk; p->nFaninMax = nFaninMax; // precomputer power-aware metrics if ( pPars->fPower ) { extern Vec_Int_t * Abc_NtkPowerEstimate( Abc_Ntk_t * pNtk, int fProbOne ); if ( pPars->fResub ) p->vProbs = Abc_NtkPowerEstimate( pNtk, 0 ); else p->vProbs = Abc_NtkPowerEstimate( pNtk, 1 ); #if 0 printf( "Total switching before = %7.2f.\n", Abc_NtkMfsTotalSwitching(pNtk) ); #else p->TotalSwitchingBeg = Abc_NtkMfsTotalSwitching(pNtk); #endif } if ( pNtk->pExcare ) { Abc_Ntk_t * pTemp; if ( Abc_NtkPiNum((Abc_Ntk_t *)pNtk->pExcare) != Abc_NtkCiNum(pNtk) ) printf( "The PI count of careset (%d) and logic network (%d) differ. Careset is not used.\n", Abc_NtkPiNum((Abc_Ntk_t *)pNtk->pExcare), Abc_NtkCiNum(pNtk) ); else { pTemp = Abc_NtkStrash( (Abc_Ntk_t *)pNtk->pExcare, 0, 0, 0 ); p->pCare = Abc_NtkToDar( pTemp, 0, 0 ); Abc_NtkDelete( pTemp ); p->vSuppsInv = Aig_ManSupportsInverse( p->pCare ); } } if ( p->pCare != NULL ) printf( "Performing optimization with %d external care clauses.\n", Aig_ManCoNum(p->pCare) ); // prepare the BDC manager if ( !pPars->fResub ) { pDecPars->nVarsMax = (nFaninMax < 3) ? 3 : nFaninMax; pDecPars->fVerbose = pPars->fVerbose; p->vTruth = Vec_IntAlloc( 0 ); p->pManDec = Bdc_ManAlloc( pDecPars ); } // label the register outputs if ( p->pCare ) { Abc_NtkForEachCi( pNtk, pObj, i ) pObj->pData = (void *)(ABC_PTRUINT_T)i; } // compute levels Abc_NtkLevel( pNtk ); Abc_NtkStartReverseLevels( pNtk, pPars->nGrowthLevel ); // compute don't-cares for each node nNodes = 0; p->nTotalNodesBeg = nTotalNodesBeg; p->nTotalEdgesBeg = nTotalEdgesBeg; if ( pPars->fResub ) { #if 0 printf( "TotalSwitching (%7.2f --> ", Abc_NtkMfsTotalSwitching(pNtk) ); #endif if (pPars->fPower) { Abc_NtkMfsPowerResub( p, pPars); } else { pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) ); Abc_NtkForEachNode( pNtk, pObj, i ) { if ( p->pPars->nDepthMax && (int)pObj->Level > p->pPars->nDepthMax ) continue; if ( Abc_ObjFaninNum(pObj) < 2 || Abc_ObjFaninNum(pObj) > nFaninMax ) continue; if ( !p->pPars->fVeryVerbose ) Extra_ProgressBarUpdate( pProgress, i, NULL ); if ( pPars->fResub ) Abc_NtkMfsResub( p, pObj ); else Abc_NtkMfsNode( p, pObj ); } Extra_ProgressBarStop( pProgress ); #if 0 printf( " %7.2f )\n", Abc_NtkMfsTotalSwitching(pNtk) ); #endif } } else
/**Function************************************************************* Synopsis [Performs minimum-register retiming.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ Abc_Ntk_t * Abc_FlowRetime_MinReg( Abc_Ntk_t * pNtk, int fVerbose, int fComputeInitState, int fGuaranteeInitState, int fBlockConst, int fForwardOnly, int fBackwardOnly, int nMaxIters, int maxDelay, int fFastButConservative ) { int i; Abc_Obj_t *pObj, *pNext; InitConstraint_t *pData; // create manager pManMR = ALLOC( MinRegMan_t, 1 ); pManMR->pNtk = pNtk; pManMR->fVerbose = fVerbose; pManMR->fComputeInitState = fComputeInitState; pManMR->fGuaranteeInitState = fGuaranteeInitState; pManMR->fBlockConst = fBlockConst; pManMR->fForwardOnly = fForwardOnly; pManMR->fBackwardOnly = fBackwardOnly; pManMR->nMaxIters = nMaxIters; pManMR->maxDelay = maxDelay; pManMR->fComputeInitState = fComputeInitState; pManMR->fConservTimingOnly = fFastButConservative; pManMR->vNodes = Vec_PtrAlloc(100); pManMR->vInitConstraints = Vec_PtrAlloc(2); pManMR->pInitNtk = NULL; pManMR->pInitToOrig = NULL; pManMR->sizeInitToOrig = 0; vprintf("Flow-based minimum-register retiming...\n"); if (!Abc_NtkHasOnlyLatchBoxes(pNtk)) { printf("\tERROR: Can not retime with black/white boxes\n"); return pNtk; } if (maxDelay) { vprintf("\tmax delay constraint = %d\n", maxDelay); if (maxDelay < (i = Abc_NtkLevel(pNtk))) { printf("ERROR: max delay constraint (%d) must be > current max delay (%d)\n", maxDelay, i); return pNtk; } } // print info about type of network vprintf("\tnetlist type = "); if (Abc_NtkIsNetlist( pNtk )) { vprintf("netlist/"); } else if (Abc_NtkIsLogic( pNtk )) { vprintf("logic/"); } else if (Abc_NtkIsStrash( pNtk )) { vprintf("strash/"); } else { vprintf("***unknown***/"); } if (Abc_NtkHasSop( pNtk )) { vprintf("sop\n"); } else if (Abc_NtkHasBdd( pNtk )) { vprintf("bdd\n"); } else if (Abc_NtkHasAig( pNtk )) { vprintf("aig\n"); } else if (Abc_NtkHasMapping( pNtk )) { vprintf("mapped\n"); } else { vprintf("***unknown***\n"); } vprintf("\tinitial reg count = %d\n", Abc_NtkLatchNum(pNtk)); vprintf("\tinitial levels = %d\n", Abc_NtkLevel(pNtk)); // remove bubbles from latch boxes if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk); vprintf("\tpushing bubbles out of latch boxes\n"); Abc_NtkForEachLatch( pNtk, pObj, i ) Abc_FlowRetime_RemoveLatchBubbles(pObj); if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk); // check for box inputs/outputs Abc_NtkForEachLatch( pNtk, pObj, i ) { assert(Abc_ObjFaninNum(pObj) == 1); assert(Abc_ObjFanoutNum(pObj) == 1); assert(!Abc_ObjFaninC0(pObj)); pNext = Abc_ObjFanin0(pObj); assert(Abc_ObjIsBi(pNext)); assert(Abc_ObjFaninNum(pNext) <= 1); if(Abc_ObjFaninNum(pNext) == 0) // every Bi should have a fanin Abc_FlowRetime_AddDummyFanin( pNext ); pNext = Abc_ObjFanout0(pObj); assert(Abc_ObjIsBo(pNext)); assert(Abc_ObjFaninNum(pNext) == 1); assert(!Abc_ObjFaninC0(pNext)); }
/**Function************************************************************* Synopsis [Write the network into file.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_Write( Abc_Ntk_t * pNtk, char * pFileName, Io_FileType_t FileType ) { Abc_Ntk_t * pNtkTemp, * pNtkCopy; // check if the current network is available if ( pNtk == NULL ) { fprintf( stdout, "Empty network.\n" ); return; } // check if the file extension if given if ( FileType == IO_FILE_NONE || FileType == IO_FILE_UNKNOWN ) { fprintf( stdout, "The generic file writer requires a known file extension.\n" ); return; } // write the AIG formats if ( FileType == IO_FILE_AIGER || FileType == IO_FILE_BAF ) { if ( !Abc_NtkIsStrash(pNtk) ) { fprintf( stdout, "Writing this format is only possible for structurally hashed AIGs.\n" ); return; } if ( FileType == IO_FILE_AIGER ) Io_WriteAiger( pNtk, pFileName, 1 ); else // if ( FileType == IO_FILE_BAF ) Io_WriteBaf( pNtk, pFileName ); return; } // write non-netlist types if ( FileType == IO_FILE_CNF ) { Io_WriteCnf( pNtk, pFileName, 0 ); return; } if ( FileType == IO_FILE_DOT ) { Io_WriteDot( pNtk, pFileName ); return; } if ( FileType == IO_FILE_GML ) { Io_WriteGml( pNtk, pFileName ); return; } /* if ( FileType == IO_FILE_BLIFMV ) { Io_WriteBlifMv( pNtk, pFileName ); return; } */ // convert logic network into netlist if ( FileType == IO_FILE_PLA ) { if ( Abc_NtkLevel(pNtk) > 1 ) { fprintf( stdout, "PLA writing is available for collapsed networks.\n" ); return; } if ( Abc_NtkIsComb(pNtk) ) pNtkTemp = Abc_NtkToNetlist( pNtk ); else { fprintf( stdout, "Latches are writen into the PLA file at PI/PO pairs.\n" ); pNtkCopy = Abc_NtkDup( pNtk ); Abc_NtkMakeComb( pNtkCopy ); pNtkTemp = Abc_NtkToNetlist( pNtk ); Abc_NtkDelete( pNtkCopy ); } if ( !Abc_NtkToSop( pNtk, 1 ) ) return; } else if ( FileType == IO_FILE_BENCH ) { if ( !Abc_NtkIsStrash(pNtk) ) { fprintf( stdout, "Writing traditional BENCH is available for AIGs only (use \"write_bench\").\n" ); return; } pNtkTemp = Abc_NtkToNetlistBench( pNtk ); } else pNtkTemp = Abc_NtkToNetlist( pNtk ); if ( pNtkTemp == NULL ) { fprintf( stdout, "Converting to netlist has failed.\n" ); return; } if ( FileType == IO_FILE_BLIF ) { if ( !Abc_NtkHasSop(pNtkTemp) && !Abc_NtkHasMapping(pNtkTemp) ) Abc_NtkToSop( pNtkTemp, 0 ); Io_WriteBlif( pNtkTemp, pFileName, 1 ); } else if ( FileType == IO_FILE_BLIFMV ) { if ( !Abc_NtkConvertToBlifMv( pNtkTemp ) ) return; Io_WriteBlifMv( pNtkTemp, pFileName ); } else if ( FileType == IO_FILE_BENCH ) Io_WriteBench( pNtkTemp, pFileName ); else if ( FileType == IO_FILE_PLA ) Io_WritePla( pNtkTemp, pFileName ); else if ( FileType == IO_FILE_EQN ) { if ( !Abc_NtkHasAig(pNtkTemp) ) Abc_NtkToAig( pNtkTemp ); Io_WriteEqn( pNtkTemp, pFileName ); } else if ( FileType == IO_FILE_VERILOG ) { if ( !Abc_NtkHasAig(pNtkTemp) && !Abc_NtkHasMapping(pNtkTemp) ) Abc_NtkToAig( pNtkTemp ); Io_WriteVerilog( pNtkTemp, pFileName ); } else fprintf( stderr, "Unknown file format.\n" ); Abc_NtkDelete( pNtkTemp ); }
/**Function************************************************************* Synopsis [Writes the graph structure of network for DOT.] Description [Useful for graph visualization using tools such as GraphViz: http://www.graphviz.org/] SideEffects [] SeeAlso [] ***********************************************************************/ void Io_WriteDotNtk( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesShow, char * pFileName, int fGateNames, int fUseReverse ) { FILE * pFile; Abc_Obj_t * pNode, * pFanin; char * pSopString; int LevelMin, LevelMax, fHasCos, Level, i, k, fHasBdds, fCompl; int Limit = 300; assert( Abc_NtkIsStrash(pNtk) || Abc_NtkIsLogic(pNtk) ); if ( vNodes->nSize < 1 ) { printf( "The set has no nodes. DOT file is not written.\n" ); return; } if ( vNodes->nSize > Limit ) { printf( "The set has more than %d nodes. DOT file is not written.\n", Limit ); return; } // start the stream if ( (pFile = fopen( pFileName, "w" )) == NULL ) { fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", pFileName ); return; } // transform logic functions from BDD to SOP if ( fHasBdds = Abc_NtkIsBddLogic(pNtk) ) { if ( !Abc_NtkBddToSop(pNtk, 0) ) { printf( "Io_WriteDotNtk(): Converting to SOPs has failed.\n" ); return; } } // mark the nodes from the set Vec_PtrForEachEntry( vNodes, pNode, i ) pNode->fMarkC = 1; if ( vNodesShow ) Vec_PtrForEachEntry( vNodesShow, pNode, i ) pNode->fMarkB = 1; // get the levels of nodes LevelMax = Abc_NtkLevel( pNtk ); if ( fUseReverse ) { LevelMin = Abc_NtkLevelReverse( pNtk ); assert( LevelMax == LevelMin ); Vec_PtrForEachEntry( vNodes, pNode, i ) if ( Abc_ObjIsNode(pNode) ) pNode->Level = LevelMax - pNode->Level + 1; } // find the largest and the smallest levels LevelMin = 10000; LevelMax = -1; fHasCos = 0; Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( Abc_ObjIsCo(pNode) ) { fHasCos = 1; continue; } if ( LevelMin > (int)pNode->Level ) LevelMin = pNode->Level; if ( LevelMax < (int)pNode->Level ) LevelMax = pNode->Level; } // set the level of the CO nodes if ( fHasCos ) { LevelMax++; Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( Abc_ObjIsCo(pNode) ) pNode->Level = LevelMax; } } // write the DOT header fprintf( pFile, "# %s\n", "Network structure generated by ABC" ); fprintf( pFile, "\n" ); fprintf( pFile, "digraph network {\n" ); fprintf( pFile, "size = \"7.5,10\";\n" ); // fprintf( pFile, "size = \"10,8.5\";\n" ); // fprintf( pFile, "size = \"14,11\";\n" ); // fprintf( pFile, "page = \"8,11\";\n" ); // fprintf( pFile, "ranksep = 0.5;\n" ); // fprintf( pFile, "nodesep = 0.5;\n" ); fprintf( pFile, "center = true;\n" ); // fprintf( pFile, "orientation = landscape;\n" ); // fprintf( pFile, "edge [fontsize = 10];\n" ); // fprintf( pFile, "edge [dir = none];\n" ); fprintf( pFile, "edge [dir = back];\n" ); fprintf( pFile, "\n" ); // labels on the left of the picture fprintf( pFile, "{\n" ); fprintf( pFile, " node [shape = plaintext];\n" ); fprintf( pFile, " edge [style = invis];\n" ); fprintf( pFile, " LevelTitle1 [label=\"\"];\n" ); fprintf( pFile, " LevelTitle2 [label=\"\"];\n" ); // generate node names with labels for ( Level = LevelMax; Level >= LevelMin; Level-- ) { // the visible node name fprintf( pFile, " Level%d", Level ); fprintf( pFile, " [label = " ); // label name fprintf( pFile, "\"" ); fprintf( pFile, "\"" ); fprintf( pFile, "];\n" ); } // genetate the sequence of visible/invisible nodes to mark levels fprintf( pFile, " LevelTitle1 -> LevelTitle2 ->" ); for ( Level = LevelMax; Level >= LevelMin; Level-- ) { // the visible node name fprintf( pFile, " Level%d", Level ); // the connector if ( Level != LevelMin ) fprintf( pFile, " ->" ); else fprintf( pFile, ";" ); } fprintf( pFile, "\n" ); fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); // generate title box on top fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); fprintf( pFile, " LevelTitle1;\n" ); fprintf( pFile, " title1 [shape=plaintext,\n" ); fprintf( pFile, " fontsize=20,\n" ); fprintf( pFile, " fontname = \"Times-Roman\",\n" ); fprintf( pFile, " label=\"" ); fprintf( pFile, "%s", "Network structure visualized by ABC" ); fprintf( pFile, "\\n" ); fprintf( pFile, "Benchmark \\\"%s\\\". ", pNtk->pName ); fprintf( pFile, "Time was %s. ", Extra_TimeStamp() ); fprintf( pFile, "\"\n" ); fprintf( pFile, " ];\n" ); fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); // generate statistics box fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); fprintf( pFile, " LevelTitle2;\n" ); fprintf( pFile, " title2 [shape=plaintext,\n" ); fprintf( pFile, " fontsize=18,\n" ); fprintf( pFile, " fontname = \"Times-Roman\",\n" ); fprintf( pFile, " label=\"" ); if ( Abc_NtkObjNum(pNtk) == Vec_PtrSize(vNodes) ) fprintf( pFile, "The network contains %d logic nodes and %d latches.", Abc_NtkNodeNum(pNtk), Abc_NtkLatchNum(pNtk) ); else fprintf( pFile, "The set contains %d logic nodes and spans %d levels.", Abc_NtkCountLogicNodes(vNodes), LevelMax - LevelMin + 1 ); fprintf( pFile, "\\n" ); fprintf( pFile, "\"\n" ); fprintf( pFile, " ];\n" ); fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); // generate the POs if ( fHasCos ) { fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); // the labeling node of this level fprintf( pFile, " Level%d;\n", LevelMax ); // generate the PO nodes Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( !Abc_ObjIsCo(pNode) ) continue; fprintf( pFile, " Node%d [label = \"%s%s\"", pNode->Id, (Abc_ObjIsBi(pNode)? Abc_ObjName(Abc_ObjFanout0(pNode)):Abc_ObjName(pNode)), (Abc_ObjIsBi(pNode)? "_in":"") ); fprintf( pFile, ", shape = %s", (Abc_ObjIsBi(pNode)? "box":"invtriangle") ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, ", color = coral, fillcolor = coral" ); fprintf( pFile, "];\n" ); } fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); } // generate nodes of each rank for ( Level = LevelMax - fHasCos; Level >= LevelMin && Level > 0; Level-- ) { fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); // the labeling node of this level fprintf( pFile, " Level%d;\n", Level ); Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( (int)pNode->Level != Level ) continue; if ( Abc_ObjFaninNum(pNode) == 0 ) continue; // fprintf( pFile, " Node%d [label = \"%d\"", pNode->Id, pNode->Id ); if ( Abc_NtkIsStrash(pNtk) ) pSopString = ""; else if ( Abc_NtkHasMapping(pNtk) && fGateNames ) pSopString = Mio_GateReadName(pNode->pData); else if ( Abc_NtkHasMapping(pNtk) ) pSopString = Abc_NtkPrintSop(Mio_GateReadSop(pNode->pData)); else pSopString = Abc_NtkPrintSop(pNode->pData); fprintf( pFile, " Node%d [label = \"%d\\n%s\"", pNode->Id, pNode->Id, pSopString ); fprintf( pFile, ", shape = ellipse" ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, "];\n" ); } fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); } // generate the PI nodes if any if ( LevelMin == 0 ) { fprintf( pFile, "{\n" ); fprintf( pFile, " rank = same;\n" ); // the labeling node of this level fprintf( pFile, " Level%d;\n", LevelMin ); // generate the PO nodes Vec_PtrForEachEntry( vNodes, pNode, i ) { if ( !Abc_ObjIsCi(pNode) ) { // check if the costant node is present if ( Abc_ObjFaninNum(pNode) == 0 && Abc_ObjFanoutNum(pNode) > 0 ) { fprintf( pFile, " Node%d [label = \"Const%d\"", pNode->Id, Abc_NtkIsStrash(pNode->pNtk) || Abc_NodeIsConst1(pNode) ); fprintf( pFile, ", shape = ellipse" ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, ", color = coral, fillcolor = coral" ); fprintf( pFile, "];\n" ); } continue; } fprintf( pFile, " Node%d [label = \"%s\"", pNode->Id, (Abc_ObjIsBo(pNode)? Abc_ObjName(Abc_ObjFanin0(pNode)):Abc_ObjName(pNode)) ); fprintf( pFile, ", shape = %s", (Abc_ObjIsBo(pNode)? "box":"triangle") ); if ( pNode->fMarkB ) fprintf( pFile, ", style = filled" ); fprintf( pFile, ", color = coral, fillcolor = coral" ); fprintf( pFile, "];\n" ); } fprintf( pFile, "}" ); fprintf( pFile, "\n" ); fprintf( pFile, "\n" ); }
/**Function************************************************************* Synopsis [Print the vital stats of the network.] Description [] SideEffects [] SeeAlso [] ***********************************************************************/ void Abc_NtkPrintStats( FILE * pFile, Abc_Ntk_t * pNtk, int fFactored ) { int Num; // if ( Abc_NtkIsStrash(pNtk) ) // Abc_AigCountNext( pNtk->pManFunc ); fprintf( pFile, "%-13s:", pNtk->pName ); if ( Abc_NtkAssertNum(pNtk) ) fprintf( pFile, " i/o/a = %4d/%4d/%4d", Abc_NtkPiNum(pNtk), Abc_NtkPoNum(pNtk), Abc_NtkAssertNum(pNtk) ); else fprintf( pFile, " i/o = %4d/%4d", Abc_NtkPiNum(pNtk), Abc_NtkPoNum(pNtk) ); fprintf( pFile, " lat = %4d", Abc_NtkLatchNum(pNtk) ); if ( Abc_NtkIsNetlist(pNtk) ) { fprintf( pFile, " net = %5d", Abc_NtkNetNum(pNtk) ); fprintf( pFile, " nd = %5d", Abc_NtkNodeNum(pNtk) ); fprintf( pFile, " wbox = %3d", Abc_NtkWhiteboxNum(pNtk) ); fprintf( pFile, " bbox = %3d", Abc_NtkBlackboxNum(pNtk) ); } else if ( Abc_NtkIsStrash(pNtk) ) { fprintf( pFile, " and = %5d", Abc_NtkNodeNum(pNtk) ); if ( Num = Abc_NtkGetChoiceNum(pNtk) ) fprintf( pFile, " (choice = %d)", Num ); if ( Num = Abc_NtkGetExorNum(pNtk) ) fprintf( pFile, " (exor = %d)", Num ); // if ( Num2 = Abc_NtkGetMuxNum(pNtk) ) // fprintf( pFile, " (mux = %d)", Num2-Num ); // if ( Num2 ) // fprintf( pFile, " (other = %d)", Abc_NtkNodeNum(pNtk)-3*Num2 ); } else { fprintf( pFile, " nd = %5d", Abc_NtkNodeNum(pNtk) ); fprintf( pFile, " net = %5d", Abc_NtkGetTotalFanins(pNtk) ); } if ( Abc_NtkIsStrash(pNtk) || Abc_NtkIsNetlist(pNtk) ) { } else if ( Abc_NtkHasSop(pNtk) ) { fprintf( pFile, " cube = %5d", Abc_NtkGetCubeNum(pNtk) ); // fprintf( pFile, " lit(sop) = %5d", Abc_NtkGetLitNum(pNtk) ); if ( fFactored ) fprintf( pFile, " lit(fac) = %5d", Abc_NtkGetLitFactNum(pNtk) ); } else if ( Abc_NtkHasAig(pNtk) ) fprintf( pFile, " aig = %5d", Abc_NtkGetAigNodeNum(pNtk) ); else if ( Abc_NtkHasBdd(pNtk) ) fprintf( pFile, " bdd = %5d", Abc_NtkGetBddNodeNum(pNtk) ); else if ( Abc_NtkHasMapping(pNtk) ) { fprintf( pFile, " area = %5.2f", Abc_NtkGetMappedArea(pNtk) ); fprintf( pFile, " delay = %5.2f", Abc_NtkDelayTrace(pNtk) ); } else if ( !Abc_NtkHasBlackbox(pNtk) ) { assert( 0 ); } if ( Abc_NtkIsStrash(pNtk) ) fprintf( pFile, " lev = %3d", Abc_AigLevel(pNtk) ); else fprintf( pFile, " lev = %3d", Abc_NtkLevel(pNtk) ); fprintf( pFile, "\n" ); // Abc_NtkCrossCut( pNtk ); // print the statistic into a file /* { FILE * pTable; pTable = fopen( "iscas/seqmap__stats.txt", "a+" ); fprintf( pTable, "%s ", pNtk->pName ); fprintf( pTable, "%d ", Abc_NtkPiNum(pNtk) ); fprintf( pTable, "%d ", Abc_NtkPoNum(pNtk) ); fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) ); fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) ); fprintf( pTable, "%d ", Abc_NtkLevel(pNtk) ); fprintf( pTable, "\n" ); fclose( pTable ); } */ /* // print the statistic into a file { FILE * pTable; pTable = fopen( "stats.txt", "a+" ); fprintf( pTable, "%s ", pNtk->pSpec ); fprintf( pTable, "%.0f ", Abc_NtkGetMappedArea(pNtk) ); fprintf( pTable, "%.2f ", Abc_NtkDelayTrace(pNtk) ); fprintf( pTable, "\n" ); fclose( pTable ); } */ /* // print the statistic into a file { FILE * pTable; pTable = fopen( "x/stats_new.txt", "a+" ); fprintf( pTable, "%s ", pNtk->pName ); // fprintf( pTable, "%d ", Abc_NtkPiNum(pNtk) ); // fprintf( pTable, "%d ", Abc_NtkPoNum(pNtk) ); // fprintf( pTable, "%d ", Abc_NtkLevel(pNtk) ); // fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) ); // fprintf( pTable, "%d ", Abc_NtkGetTotalFanins(pNtk) ); // fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) ); // fprintf( pTable, "%.2f ", (float)(s_MappingMem)/(float)(1<<20) ); fprintf( pTable, "%.2f", (float)(s_MappingTime)/(float)(CLOCKS_PER_SEC) ); // fprintf( pTable, "%.2f", (float)(s_ResynTime)/(float)(CLOCKS_PER_SEC) ); fprintf( pTable, "\n" ); fclose( pTable ); s_ResynTime = 0; } */ /* // print the statistic into a file { static int Counter = 0; extern int timeRetime; FILE * pTable; Counter++; pTable = fopen( "a/ret__stats.txt", "a+" ); fprintf( pTable, "%s ", pNtk->pName ); fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) ); fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) ); fprintf( pTable, "%d ", Abc_NtkLevel(pNtk) ); fprintf( pTable, "%.2f ", (float)(timeRetime)/(float)(CLOCKS_PER_SEC) ); if ( Counter % 4 == 0 ) fprintf( pTable, "\n" ); fclose( pTable ); } */ /* // print the statistic into a file { static int Counter = 0; extern int timeRetime; FILE * pTable; Counter++; pTable = fopen( "d/stats.txt", "a+" ); fprintf( pTable, "%s ", pNtk->pName ); // fprintf( pTable, "%d ", Abc_NtkPiNum(pNtk) ); // fprintf( pTable, "%d ", Abc_NtkPoNum(pNtk) ); // fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) ); fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) ); fprintf( pTable, "%.2f ", (float)(timeRetime)/(float)(CLOCKS_PER_SEC) ); fprintf( pTable, "\n" ); fclose( pTable ); } */ /* s_TotalNodes += Abc_NtkNodeNum(pNtk); printf( "Total nodes = %6d %6.2f Mb Changes = %6d.\n", s_TotalNodes, s_TotalNodes * 20.0 / (1<<20), s_TotalChanges ); */ }