Exemplo n.º 1
0
/**Function*************************************************************

  Synopsis    [Implementation of retiming.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRetime( Abc_Ntk_t * pNtk, int Mode, int fForwardOnly, int fBackwardOnly, int fOneStep, int fVerbose )
{
    int nLatches = Abc_NtkLatchNum(pNtk);
    int nLevels  = Abc_NtkLevel(pNtk);
    int RetValue = 0, clkTotal = clock();
    int nNodesOld, nLatchesOld;
    assert( Mode > 0 && Mode < 7 );
    assert( !fForwardOnly || !fBackwardOnly );

    // cleanup the network
    nNodesOld   = Abc_NtkNodeNum(pNtk);
    nLatchesOld = Abc_NtkLatchNum(pNtk);
    Abc_NtkCleanupSeq(pNtk, 0, 0, 0);
    if ( nNodesOld > Abc_NtkNodeNum(pNtk) || nLatchesOld > Abc_NtkLatchNum(pNtk) )
        printf( "Cleanup before retiming removed %d dangling nodes and %d dangling latches.\n",
            nNodesOld - Abc_NtkNodeNum(pNtk), nLatchesOld - Abc_NtkLatchNum(pNtk) );

    // perform retiming
    switch ( Mode )
    {
    case 1: // forward 
        RetValue = Abc_NtkRetimeIncremental( pNtk, 1, 0, 0, fVerbose );
        break;
    case 2: // backward 
        RetValue = Abc_NtkRetimeIncremental( pNtk, 0, 0, 0, fVerbose );
        break;
    case 3: // min-area 
        RetValue = Abc_NtkRetimeMinArea( pNtk, fForwardOnly, fBackwardOnly, fVerbose );
        break;
    case 4: // min-delay
        if ( !fBackwardOnly )
            RetValue += Abc_NtkRetimeIncremental( pNtk, 1, 1, fOneStep, fVerbose );
        if ( !fForwardOnly )
            RetValue += Abc_NtkRetimeIncremental( pNtk, 0, 1, fOneStep, fVerbose );
        break;
    case 5: // min-area + min-delay
        RetValue  = Abc_NtkRetimeMinArea( pNtk, fForwardOnly, fBackwardOnly, fVerbose );
        if ( !fBackwardOnly )
            RetValue += Abc_NtkRetimeIncremental( pNtk, 1, 1, 0, fVerbose );
        if ( !fForwardOnly )
            RetValue += Abc_NtkRetimeIncremental( pNtk, 0, 1, 0, fVerbose );
        break;
    case 6: // Pan's algorithm
        RetValue = Abc_NtkRetimeLValue( pNtk, 500, fVerbose );
        break;
    default:
        printf( "Unknown retiming option.\n" );
        break;
    }
    if ( fVerbose )
    {
        printf( "Reduction in area = %3d. Reduction in delay = %3d. ", 
            nLatches - Abc_NtkLatchNum(pNtk), nLevels - Abc_NtkLevel(pNtk) );
        PRT( "Total runtime", clock() - clkTotal );
    }
    timeRetime = clock() - clkTotal;
    return RetValue;
}
Exemplo n.º 2
0
/**Function*************************************************************

  Synopsis    [Performs retiming in one direction.]

  Description [Currently does not retime over black boxes.]
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkRetimeIncremental( Abc_Ntk_t * pNtk, int nDelayLim, int fForward, int fMinDelay, int fOneStep, int fVerbose )
{
    Abc_Ntk_t * pNtkCopy = NULL;
    Vec_Ptr_t * vBoxes;
    st__table * tLatches;
    int nLatches = Abc_NtkLatchNum(pNtk);
    int nIdMaxStart = Abc_NtkObjNumMax(pNtk);
    int RetValue;
    int nIterLimit = -1; // Suppress "might be used uninitialized"
    if ( Abc_NtkNodeNum(pNtk) == 0 )
        return 0;
    // reorder CI/CO/latch inputs
    Abc_NtkOrderCisCos( pNtk );
    if ( fMinDelay ) 
    {
        nIterLimit = fOneStep? 1 : 2 * Abc_NtkLevel(pNtk);
        pNtkCopy = Abc_NtkDup( pNtk );
        tLatches = Abc_NtkRetimePrepareLatches( pNtkCopy );
        st__free_table( tLatches );
    }
    // collect latches and remove CIs/COs
    tLatches = Abc_NtkRetimePrepareLatches( pNtk );
    // share the latches
    Abc_NtkRetimeShareLatches( pNtk, 0 );    
    // save boxes
    vBoxes = pNtk->vBoxes;  pNtk->vBoxes = NULL;
    // perform the retiming
    if ( fMinDelay )
        Abc_NtkRetimeMinDelay( pNtk, pNtkCopy, nDelayLim, nIterLimit, fForward, fVerbose );
    else
        Abc_NtkRetimeOneWay( pNtk, fForward, fVerbose );
    if ( fMinDelay ) 
        Abc_NtkDelete( pNtkCopy );
    // share the latches
    Abc_NtkRetimeShareLatches( pNtk, 0 );    
    // restore boxes
    pNtk->vBoxes = vBoxes;
    // finalize the latches
    RetValue = Abc_NtkRetimeFinalizeLatches( pNtk, tLatches, nIdMaxStart );
    st__free_table( tLatches );
    if ( RetValue == 0 )
        return 0;
    // fix the COs
//    Abc_NtkLogicMakeSimpleCos( pNtk, 0 );
    // check for correctness
    if ( !Abc_NtkCheck( pNtk ) )
        fprintf( stdout, "Abc_NtkRetimeForward(): Network check has failed.\n" );
    // return the number of latches saved
    return nLatches - Abc_NtkLatchNum(pNtk);
}
Exemplo n.º 3
0
/**Function*************************************************************

  Synopsis    []

  Description []

  SideEffects []

  SeeAlso     []

***********************************************************************/
int Abc_NtkMfs( Abc_Ntk_t * pNtk, Mfs_Par_t * pPars )
{
    extern Aig_Man_t * Abc_NtkToDar( Abc_Ntk_t * pNtk, int fExors, int fRegisters );

    Bdc_Par_t Pars = {0}, * pDecPars = &Pars;
    ProgressBar * pProgress;
    Mfs_Man_t * p;
    Abc_Obj_t * pObj;
    Vec_Vec_t * vLevels;
    Vec_Ptr_t * vNodes;
    int i, k, nNodes, nFaninMax;
    abctime clk = Abc_Clock(), clk2;
    int nTotalNodesBeg = Abc_NtkNodeNum(pNtk);
    int nTotalEdgesBeg = Abc_NtkGetTotalFanins(pNtk);

    assert( Abc_NtkIsLogic(pNtk) );
    nFaninMax = Abc_NtkGetFaninMax(pNtk);
    if ( pPars->fResub )
    {
        if ( nFaninMax > 8 )
        {
            printf( "Nodes with more than %d fanins will not be processed.\n", 8 );
            nFaninMax = 8;
        }
    }
    else
    {
        if ( nFaninMax > MFS_FANIN_MAX )
        {
            printf( "Nodes with more than %d fanins will not be processed.\n", MFS_FANIN_MAX );
            nFaninMax = MFS_FANIN_MAX;
        }
    }
    // perform the network sweep
//    Abc_NtkSweep( pNtk, 0 );
    // convert into the AIG
    if ( !Abc_NtkToAig(pNtk) )
    {
        fprintf( stdout, "Converting to AIGs has failed.\n" );
        return 0;
    }
    assert( Abc_NtkHasAig(pNtk) );

    // start the manager
    p = Mfs_ManAlloc( pPars );
    p->pNtk = pNtk;
    p->nFaninMax = nFaninMax;

    // precomputer power-aware metrics
    if ( pPars->fPower )
    {
        extern Vec_Int_t * Abc_NtkPowerEstimate( Abc_Ntk_t * pNtk, int fProbOne );
        if ( pPars->fResub )
            p->vProbs = Abc_NtkPowerEstimate( pNtk, 0 );
        else
            p->vProbs = Abc_NtkPowerEstimate( pNtk, 1 );
#if 0
        printf( "Total switching before = %7.2f.\n", Abc_NtkMfsTotalSwitching(pNtk) );
#else
		p->TotalSwitchingBeg = Abc_NtkMfsTotalSwitching(pNtk);
#endif
    }

    if ( pNtk->pExcare )
    {
        Abc_Ntk_t * pTemp;
        if ( Abc_NtkPiNum((Abc_Ntk_t *)pNtk->pExcare) != Abc_NtkCiNum(pNtk) )
            printf( "The PI count of careset (%d) and logic network (%d) differ. Careset is not used.\n",
                Abc_NtkPiNum((Abc_Ntk_t *)pNtk->pExcare), Abc_NtkCiNum(pNtk) );
        else
        {
            pTemp = Abc_NtkStrash( (Abc_Ntk_t *)pNtk->pExcare, 0, 0, 0 );
            p->pCare = Abc_NtkToDar( pTemp, 0, 0 );
            Abc_NtkDelete( pTemp );
            p->vSuppsInv = Aig_ManSupportsInverse( p->pCare );
        }
    }
    if ( p->pCare != NULL )
        printf( "Performing optimization with %d external care clauses.\n", Aig_ManCoNum(p->pCare) );
    // prepare the BDC manager
    if ( !pPars->fResub )
    {
        pDecPars->nVarsMax = (nFaninMax < 3) ? 3 : nFaninMax;
        pDecPars->fVerbose = pPars->fVerbose;
        p->vTruth = Vec_IntAlloc( 0 );
        p->pManDec = Bdc_ManAlloc( pDecPars );
    }

    // label the register outputs
    if ( p->pCare )
    {
        Abc_NtkForEachCi( pNtk, pObj, i )
            pObj->pData = (void *)(ABC_PTRUINT_T)i;
    }

    // compute levels
    Abc_NtkLevel( pNtk );
    Abc_NtkStartReverseLevels( pNtk, pPars->nGrowthLevel );

    // compute don't-cares for each node
    nNodes = 0;
    p->nTotalNodesBeg = nTotalNodesBeg;
    p->nTotalEdgesBeg = nTotalEdgesBeg;
    if ( pPars->fResub )
    {
#if 0
        printf( "TotalSwitching (%7.2f --> ", Abc_NtkMfsTotalSwitching(pNtk) );
#endif
		if (pPars->fPower)
		{
			Abc_NtkMfsPowerResub( p, pPars);
		} else
		{
        pProgress = Extra_ProgressBarStart( stdout, Abc_NtkObjNumMax(pNtk) );
        Abc_NtkForEachNode( pNtk, pObj, i )
        {
            if ( p->pPars->nDepthMax && (int)pObj->Level > p->pPars->nDepthMax )
                continue;
            if ( Abc_ObjFaninNum(pObj) < 2 || Abc_ObjFaninNum(pObj) > nFaninMax )
                continue;
            if ( !p->pPars->fVeryVerbose )
                Extra_ProgressBarUpdate( pProgress, i, NULL );
            if ( pPars->fResub )
                Abc_NtkMfsResub( p, pObj );
            else
                Abc_NtkMfsNode( p, pObj );
        }
        Extra_ProgressBarStop( pProgress );
#if 0
        printf( " %7.2f )\n", Abc_NtkMfsTotalSwitching(pNtk) );
#endif
    }
	} else
Exemplo n.º 4
0
/**Function*************************************************************

  Synopsis    [Performs minimum-register retiming.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
Abc_Ntk_t *
Abc_FlowRetime_MinReg( Abc_Ntk_t * pNtk, int fVerbose, 
                       int fComputeInitState, int fGuaranteeInitState, int fBlockConst,
                       int fForwardOnly, int fBackwardOnly, int nMaxIters,
                       int maxDelay, int fFastButConservative ) {

  int i;
  Abc_Obj_t   *pObj, *pNext;
  InitConstraint_t *pData;

  // create manager
  pManMR = ALLOC( MinRegMan_t, 1 );

  pManMR->pNtk = pNtk;
  pManMR->fVerbose = fVerbose;
  pManMR->fComputeInitState = fComputeInitState;
  pManMR->fGuaranteeInitState = fGuaranteeInitState;
  pManMR->fBlockConst = fBlockConst;
  pManMR->fForwardOnly = fForwardOnly;
  pManMR->fBackwardOnly = fBackwardOnly;
  pManMR->nMaxIters = nMaxIters;
  pManMR->maxDelay = maxDelay;
  pManMR->fComputeInitState = fComputeInitState;
  pManMR->fConservTimingOnly = fFastButConservative;
  pManMR->vNodes = Vec_PtrAlloc(100);
  pManMR->vInitConstraints = Vec_PtrAlloc(2);
  pManMR->pInitNtk = NULL;
  pManMR->pInitToOrig = NULL;
  pManMR->sizeInitToOrig = 0;

  vprintf("Flow-based minimum-register retiming...\n");  

  if (!Abc_NtkHasOnlyLatchBoxes(pNtk)) {
    printf("\tERROR: Can not retime with black/white boxes\n");
    return pNtk;
  }

  if (maxDelay) {
    vprintf("\tmax delay constraint = %d\n", maxDelay);
    if (maxDelay < (i = Abc_NtkLevel(pNtk))) {
      printf("ERROR: max delay constraint (%d) must be > current max delay (%d)\n", maxDelay, i);
      return pNtk;
    }
  }

  // print info about type of network
  vprintf("\tnetlist type = ");
  if (Abc_NtkIsNetlist( pNtk )) { vprintf("netlist/"); }
  else if (Abc_NtkIsLogic( pNtk )) { vprintf("logic/"); }
  else if (Abc_NtkIsStrash( pNtk )) { vprintf("strash/"); }
  else { vprintf("***unknown***/"); }
  if (Abc_NtkHasSop( pNtk )) { vprintf("sop\n"); }
  else if (Abc_NtkHasBdd( pNtk )) { vprintf("bdd\n"); }
  else if (Abc_NtkHasAig( pNtk )) { vprintf("aig\n"); }
  else if (Abc_NtkHasMapping( pNtk )) { vprintf("mapped\n"); }
  else { vprintf("***unknown***\n"); }

  vprintf("\tinitial reg count = %d\n", Abc_NtkLatchNum(pNtk));
  vprintf("\tinitial levels = %d\n", Abc_NtkLevel(pNtk));

  // remove bubbles from latch boxes
  if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk);
  vprintf("\tpushing bubbles out of latch boxes\n");
  Abc_NtkForEachLatch( pNtk, pObj, i )
    Abc_FlowRetime_RemoveLatchBubbles(pObj);
  if (pManMR->fVerbose) Abc_FlowRetime_PrintInitStateInfo(pNtk);

  // check for box inputs/outputs
  Abc_NtkForEachLatch( pNtk, pObj, i ) {
    assert(Abc_ObjFaninNum(pObj) == 1);
    assert(Abc_ObjFanoutNum(pObj) == 1);
    assert(!Abc_ObjFaninC0(pObj));

    pNext = Abc_ObjFanin0(pObj);
    assert(Abc_ObjIsBi(pNext));
    assert(Abc_ObjFaninNum(pNext) <= 1);
    if(Abc_ObjFaninNum(pNext) == 0) // every Bi should have a fanin
      Abc_FlowRetime_AddDummyFanin( pNext );
 
    pNext = Abc_ObjFanout0(pObj);
    assert(Abc_ObjIsBo(pNext));
    assert(Abc_ObjFaninNum(pNext) == 1);
    assert(!Abc_ObjFaninC0(pNext));
  }
Exemplo n.º 5
0
/**Function*************************************************************

  Synopsis    [Write the network into file.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_Write( Abc_Ntk_t * pNtk, char * pFileName, Io_FileType_t FileType )
{
    Abc_Ntk_t * pNtkTemp, * pNtkCopy;
    // check if the current network is available
    if ( pNtk == NULL )
    {
        fprintf( stdout, "Empty network.\n" );
        return;
    }
    // check if the file extension if given
    if ( FileType == IO_FILE_NONE || FileType == IO_FILE_UNKNOWN )
    {
        fprintf( stdout, "The generic file writer requires a known file extension.\n" );
        return;
    }
    // write the AIG formats
    if ( FileType == IO_FILE_AIGER || FileType == IO_FILE_BAF )
    {
        if ( !Abc_NtkIsStrash(pNtk) )
        {
            fprintf( stdout, "Writing this format is only possible for structurally hashed AIGs.\n" );
            return;
        }
        if ( FileType == IO_FILE_AIGER )
            Io_WriteAiger( pNtk, pFileName, 1 );
        else // if ( FileType == IO_FILE_BAF )
            Io_WriteBaf( pNtk, pFileName );
        return;
    }
    // write non-netlist types
    if ( FileType == IO_FILE_CNF )
    {
        Io_WriteCnf( pNtk, pFileName, 0 );
        return;
    }
    if ( FileType == IO_FILE_DOT )
    {
        Io_WriteDot( pNtk, pFileName );
        return;
    }
    if ( FileType == IO_FILE_GML )
    {
        Io_WriteGml( pNtk, pFileName );
        return;
    }
/*
    if ( FileType == IO_FILE_BLIFMV )
    {
        Io_WriteBlifMv( pNtk, pFileName );
        return;
    }
*/
    // convert logic network into netlist
    if ( FileType == IO_FILE_PLA )
    {
        if ( Abc_NtkLevel(pNtk) > 1 )
        {
            fprintf( stdout, "PLA writing is available for collapsed networks.\n" );
            return;
        }
        if ( Abc_NtkIsComb(pNtk) )
            pNtkTemp = Abc_NtkToNetlist( pNtk );
        else
        {
            fprintf( stdout, "Latches are writen into the PLA file at PI/PO pairs.\n" );
            pNtkCopy = Abc_NtkDup( pNtk );
            Abc_NtkMakeComb( pNtkCopy );
            pNtkTemp = Abc_NtkToNetlist( pNtk );
            Abc_NtkDelete( pNtkCopy );
        }
        if ( !Abc_NtkToSop( pNtk, 1 ) )
            return;
    }
    else if ( FileType == IO_FILE_BENCH )
    {
        if ( !Abc_NtkIsStrash(pNtk) )
        {
            fprintf( stdout, "Writing traditional BENCH is available for AIGs only (use \"write_bench\").\n" );
            return;
        }
        pNtkTemp = Abc_NtkToNetlistBench( pNtk );
    }
    else
        pNtkTemp = Abc_NtkToNetlist( pNtk );

    if ( pNtkTemp == NULL )
    {
        fprintf( stdout, "Converting to netlist has failed.\n" );
        return;
    }

    if ( FileType == IO_FILE_BLIF )
    {
        if ( !Abc_NtkHasSop(pNtkTemp) && !Abc_NtkHasMapping(pNtkTemp) )
            Abc_NtkToSop( pNtkTemp, 0 );
        Io_WriteBlif( pNtkTemp, pFileName, 1 );
    }
    else if ( FileType == IO_FILE_BLIFMV )
    {
        if ( !Abc_NtkConvertToBlifMv( pNtkTemp ) )
            return;
        Io_WriteBlifMv( pNtkTemp, pFileName );
    }
    else if ( FileType == IO_FILE_BENCH )
        Io_WriteBench( pNtkTemp, pFileName );
    else if ( FileType == IO_FILE_PLA )
        Io_WritePla( pNtkTemp, pFileName );
    else if ( FileType == IO_FILE_EQN )
    {
        if ( !Abc_NtkHasAig(pNtkTemp) )
            Abc_NtkToAig( pNtkTemp );
        Io_WriteEqn( pNtkTemp, pFileName );
    }
    else if ( FileType == IO_FILE_VERILOG )
    {
        if ( !Abc_NtkHasAig(pNtkTemp) && !Abc_NtkHasMapping(pNtkTemp) )
            Abc_NtkToAig( pNtkTemp );
        Io_WriteVerilog( pNtkTemp, pFileName );
    }
    else 
        fprintf( stderr, "Unknown file format.\n" );
    Abc_NtkDelete( pNtkTemp );
}
Exemplo n.º 6
0
/**Function*************************************************************

  Synopsis    [Writes the graph structure of network for DOT.]

  Description [Useful for graph visualization using tools such as GraphViz: 
  http://www.graphviz.org/]
  
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Io_WriteDotNtk( Abc_Ntk_t * pNtk, Vec_Ptr_t * vNodes, Vec_Ptr_t * vNodesShow, char * pFileName, int fGateNames, int fUseReverse )
{
    FILE * pFile;
    Abc_Obj_t * pNode, * pFanin;
    char * pSopString;
    int LevelMin, LevelMax, fHasCos, Level, i, k, fHasBdds, fCompl;
    int Limit = 300;

    assert( Abc_NtkIsStrash(pNtk) || Abc_NtkIsLogic(pNtk) );

    if ( vNodes->nSize < 1 )
    {
        printf( "The set has no nodes. DOT file is not written.\n" );
        return;
    }

    if ( vNodes->nSize > Limit )
    {
        printf( "The set has more than %d nodes. DOT file is not written.\n", Limit );
        return;
    }

    // start the stream
    if ( (pFile = fopen( pFileName, "w" )) == NULL )
    {
        fprintf( stdout, "Cannot open the intermediate file \"%s\".\n", pFileName );
        return;
    }

    // transform logic functions from BDD to SOP
    if ( fHasBdds = Abc_NtkIsBddLogic(pNtk) )
    {
        if ( !Abc_NtkBddToSop(pNtk, 0) )
        {
            printf( "Io_WriteDotNtk(): Converting to SOPs has failed.\n" );
            return;
        }
    }

    // mark the nodes from the set
    Vec_PtrForEachEntry( vNodes, pNode, i )
        pNode->fMarkC = 1;
    if ( vNodesShow )
        Vec_PtrForEachEntry( vNodesShow, pNode, i )
            pNode->fMarkB = 1;

    // get the levels of nodes
    LevelMax = Abc_NtkLevel( pNtk );
    if ( fUseReverse )
    {
        LevelMin = Abc_NtkLevelReverse( pNtk );
        assert( LevelMax == LevelMin );
        Vec_PtrForEachEntry( vNodes, pNode, i )
            if ( Abc_ObjIsNode(pNode) )
                pNode->Level = LevelMax - pNode->Level + 1;
    }

    // find the largest and the smallest levels
    LevelMin = 10000;
    LevelMax = -1;
    fHasCos  = 0;
    Vec_PtrForEachEntry( vNodes, pNode, i )
    {
        if ( Abc_ObjIsCo(pNode) )
        {
            fHasCos = 1;
            continue;
        }
        if ( LevelMin > (int)pNode->Level )
            LevelMin = pNode->Level;
        if ( LevelMax < (int)pNode->Level )
            LevelMax = pNode->Level;
    }

    // set the level of the CO nodes
    if ( fHasCos )
    {
        LevelMax++;
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( Abc_ObjIsCo(pNode) )
                pNode->Level = LevelMax;
        }
    }

    // write the DOT header
    fprintf( pFile, "# %s\n",  "Network structure generated by ABC" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "digraph network {\n" );
    fprintf( pFile, "size = \"7.5,10\";\n" );
//    fprintf( pFile, "size = \"10,8.5\";\n" );
//    fprintf( pFile, "size = \"14,11\";\n" );
//    fprintf( pFile, "page = \"8,11\";\n" );
//  fprintf( pFile, "ranksep = 0.5;\n" );
//  fprintf( pFile, "nodesep = 0.5;\n" );
    fprintf( pFile, "center = true;\n" );
//    fprintf( pFile, "orientation = landscape;\n" );
//  fprintf( pFile, "edge [fontsize = 10];\n" );
//  fprintf( pFile, "edge [dir = none];\n" );
    fprintf( pFile, "edge [dir = back];\n" );
    fprintf( pFile, "\n" );

    // labels on the left of the picture
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  node [shape = plaintext];\n" );
    fprintf( pFile, "  edge [style = invis];\n" );
    fprintf( pFile, "  LevelTitle1 [label=\"\"];\n" );
    fprintf( pFile, "  LevelTitle2 [label=\"\"];\n" );
    // generate node names with labels
    for ( Level = LevelMax; Level >= LevelMin; Level-- )
    {
        // the visible node name
        fprintf( pFile, "  Level%d", Level );
        fprintf( pFile, " [label = " );
        // label name
        fprintf( pFile, "\"" );
        fprintf( pFile, "\"" );
        fprintf( pFile, "];\n" );
    }

    // genetate the sequence of visible/invisible nodes to mark levels
    fprintf( pFile, "  LevelTitle1 ->  LevelTitle2 ->" );
    for ( Level = LevelMax; Level >= LevelMin; Level-- )
    {
        // the visible node name
        fprintf( pFile, "  Level%d",  Level );
        // the connector
        if ( Level != LevelMin )
            fprintf( pFile, " ->" );
        else
            fprintf( pFile, ";" );
    }
    fprintf( pFile, "\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate title box on top
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  rank = same;\n" );
    fprintf( pFile, "  LevelTitle1;\n" );
    fprintf( pFile, "  title1 [shape=plaintext,\n" );
    fprintf( pFile, "          fontsize=20,\n" );
    fprintf( pFile, "          fontname = \"Times-Roman\",\n" );
    fprintf( pFile, "          label=\"" );
    fprintf( pFile, "%s", "Network structure visualized by ABC" );
    fprintf( pFile, "\\n" );
    fprintf( pFile, "Benchmark \\\"%s\\\". ", pNtk->pName );
    fprintf( pFile, "Time was %s. ",  Extra_TimeStamp() );
    fprintf( pFile, "\"\n" );
    fprintf( pFile, "         ];\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate statistics box
    fprintf( pFile, "{\n" );
    fprintf( pFile, "  rank = same;\n" );
    fprintf( pFile, "  LevelTitle2;\n" );
    fprintf( pFile, "  title2 [shape=plaintext,\n" );
    fprintf( pFile, "          fontsize=18,\n" );
    fprintf( pFile, "          fontname = \"Times-Roman\",\n" );
    fprintf( pFile, "          label=\"" );
    if ( Abc_NtkObjNum(pNtk) == Vec_PtrSize(vNodes) )
        fprintf( pFile, "The network contains %d logic nodes and %d latches.", Abc_NtkNodeNum(pNtk), Abc_NtkLatchNum(pNtk) );
    else
        fprintf( pFile, "The set contains %d logic nodes and spans %d levels.", Abc_NtkCountLogicNodes(vNodes), LevelMax - LevelMin + 1 );
    fprintf( pFile, "\\n" );
    fprintf( pFile, "\"\n" );
    fprintf( pFile, "         ];\n" );
    fprintf( pFile, "}" );
    fprintf( pFile, "\n" );
    fprintf( pFile, "\n" );

    // generate the POs
    if ( fHasCos )
    {
        fprintf( pFile, "{\n" );
        fprintf( pFile, "  rank = same;\n" );
        // the labeling node of this level
        fprintf( pFile, "  Level%d;\n",  LevelMax );
        // generate the PO nodes
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( !Abc_ObjIsCo(pNode) )
                continue;
            fprintf( pFile, "  Node%d [label = \"%s%s\"", 
                pNode->Id, 
                (Abc_ObjIsBi(pNode)? Abc_ObjName(Abc_ObjFanout0(pNode)):Abc_ObjName(pNode)), 
                (Abc_ObjIsBi(pNode)? "_in":"") );
            fprintf( pFile, ", shape = %s", (Abc_ObjIsBi(pNode)? "box":"invtriangle") );
            if ( pNode->fMarkB )
                fprintf( pFile, ", style = filled" );
            fprintf( pFile, ", color = coral, fillcolor = coral" );
            fprintf( pFile, "];\n" );
        }
        fprintf( pFile, "}" );
        fprintf( pFile, "\n" );
        fprintf( pFile, "\n" );
    }

    // generate nodes of each rank
    for ( Level = LevelMax - fHasCos; Level >= LevelMin && Level > 0; Level-- )
    {
        fprintf( pFile, "{\n" );
        fprintf( pFile, "  rank = same;\n" );
        // the labeling node of this level
        fprintf( pFile, "  Level%d;\n",  Level );
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( (int)pNode->Level != Level )
                continue;
            if ( Abc_ObjFaninNum(pNode) == 0 )
                continue;
//            fprintf( pFile, "  Node%d [label = \"%d\"", pNode->Id, pNode->Id );
            if ( Abc_NtkIsStrash(pNtk) )
                pSopString = "";
            else if ( Abc_NtkHasMapping(pNtk) && fGateNames )
                pSopString = Mio_GateReadName(pNode->pData);
            else if ( Abc_NtkHasMapping(pNtk) )
                pSopString = Abc_NtkPrintSop(Mio_GateReadSop(pNode->pData));
            else
                pSopString = Abc_NtkPrintSop(pNode->pData);
            fprintf( pFile, "  Node%d [label = \"%d\\n%s\"", pNode->Id, pNode->Id, pSopString );

            fprintf( pFile, ", shape = ellipse" );
            if ( pNode->fMarkB )
                fprintf( pFile, ", style = filled" );
            fprintf( pFile, "];\n" );
        }
        fprintf( pFile, "}" );
        fprintf( pFile, "\n" );
        fprintf( pFile, "\n" );
    }

    // generate the PI nodes if any
    if ( LevelMin == 0 )
    {
        fprintf( pFile, "{\n" );
        fprintf( pFile, "  rank = same;\n" );
        // the labeling node of this level
        fprintf( pFile, "  Level%d;\n",  LevelMin );
        // generate the PO nodes
        Vec_PtrForEachEntry( vNodes, pNode, i )
        {
            if ( !Abc_ObjIsCi(pNode) )
            {
                // check if the costant node is present
                if ( Abc_ObjFaninNum(pNode) == 0 && Abc_ObjFanoutNum(pNode) > 0 )
                {
                    fprintf( pFile, "  Node%d [label = \"Const%d\"", pNode->Id, Abc_NtkIsStrash(pNode->pNtk) || Abc_NodeIsConst1(pNode) );
                    fprintf( pFile, ", shape = ellipse" );
                    if ( pNode->fMarkB )
                        fprintf( pFile, ", style = filled" );
                    fprintf( pFile, ", color = coral, fillcolor = coral" );
                    fprintf( pFile, "];\n" );
                }
                continue;
            }
            fprintf( pFile, "  Node%d [label = \"%s\"", 
                pNode->Id, 
                (Abc_ObjIsBo(pNode)? Abc_ObjName(Abc_ObjFanin0(pNode)):Abc_ObjName(pNode)) );
            fprintf( pFile, ", shape = %s", (Abc_ObjIsBo(pNode)? "box":"triangle") );
            if ( pNode->fMarkB )
                fprintf( pFile, ", style = filled" );
            fprintf( pFile, ", color = coral, fillcolor = coral" );
            fprintf( pFile, "];\n" );
        }
        fprintf( pFile, "}" );
        fprintf( pFile, "\n" );
        fprintf( pFile, "\n" );
    }
Exemplo n.º 7
0
/**Function*************************************************************

  Synopsis    [Print the vital stats of the network.]

  Description []
               
  SideEffects []

  SeeAlso     []

***********************************************************************/
void Abc_NtkPrintStats( FILE * pFile, Abc_Ntk_t * pNtk, int fFactored )
{
    int Num;

//    if ( Abc_NtkIsStrash(pNtk) )
//        Abc_AigCountNext( pNtk->pManFunc );

    fprintf( pFile, "%-13s:",       pNtk->pName );
    if ( Abc_NtkAssertNum(pNtk) )
        fprintf( pFile, " i/o/a = %4d/%4d/%4d", Abc_NtkPiNum(pNtk), Abc_NtkPoNum(pNtk), Abc_NtkAssertNum(pNtk) );
    else
        fprintf( pFile, " i/o = %4d/%4d", Abc_NtkPiNum(pNtk), Abc_NtkPoNum(pNtk) );
    fprintf( pFile, "  lat = %4d", Abc_NtkLatchNum(pNtk) );
    if ( Abc_NtkIsNetlist(pNtk) )
    {
        fprintf( pFile, "  net = %5d", Abc_NtkNetNum(pNtk) );
        fprintf( pFile, "  nd = %5d",  Abc_NtkNodeNum(pNtk) );
        fprintf( pFile, "  wbox = %3d", Abc_NtkWhiteboxNum(pNtk) );
        fprintf( pFile, "  bbox = %3d", Abc_NtkBlackboxNum(pNtk) );
    }
    else if ( Abc_NtkIsStrash(pNtk) )
    {        
        fprintf( pFile, "  and = %5d", Abc_NtkNodeNum(pNtk) );
        if ( Num = Abc_NtkGetChoiceNum(pNtk) )
            fprintf( pFile, " (choice = %d)", Num );
        if ( Num = Abc_NtkGetExorNum(pNtk) )
            fprintf( pFile, " (exor = %d)", Num );
//        if ( Num2 = Abc_NtkGetMuxNum(pNtk) )
//            fprintf( pFile, " (mux = %d)", Num2-Num );
//        if ( Num2 )
//            fprintf( pFile, " (other = %d)", Abc_NtkNodeNum(pNtk)-3*Num2 );
    }
    else 
    {
        fprintf( pFile, "  nd = %5d", Abc_NtkNodeNum(pNtk) );
        fprintf( pFile, "  net = %5d", Abc_NtkGetTotalFanins(pNtk) );
    }

    if ( Abc_NtkIsStrash(pNtk) || Abc_NtkIsNetlist(pNtk) )
    {
    }
    else if ( Abc_NtkHasSop(pNtk) )   
    {

        fprintf( pFile, "  cube = %5d",  Abc_NtkGetCubeNum(pNtk) );
//        fprintf( pFile, "  lit(sop) = %5d",  Abc_NtkGetLitNum(pNtk) );
        if ( fFactored )
            fprintf( pFile, "  lit(fac) = %5d",  Abc_NtkGetLitFactNum(pNtk) );
    }
    else if ( Abc_NtkHasAig(pNtk) )
        fprintf( pFile, "  aig  = %5d",  Abc_NtkGetAigNodeNum(pNtk) );
    else if ( Abc_NtkHasBdd(pNtk) )
        fprintf( pFile, "  bdd  = %5d",  Abc_NtkGetBddNodeNum(pNtk) );
    else if ( Abc_NtkHasMapping(pNtk) )
    {
        fprintf( pFile, "  area = %5.2f", Abc_NtkGetMappedArea(pNtk) );
        fprintf( pFile, "  delay = %5.2f", Abc_NtkDelayTrace(pNtk) );
    }
    else if ( !Abc_NtkHasBlackbox(pNtk) )
    {
        assert( 0 );
    }

    if ( Abc_NtkIsStrash(pNtk) )
        fprintf( pFile, "  lev = %3d", Abc_AigLevel(pNtk) );
    else 
        fprintf( pFile, "  lev = %3d", Abc_NtkLevel(pNtk) );

    fprintf( pFile, "\n" );

//    Abc_NtkCrossCut( pNtk );

    // print the statistic into a file
/*
    {
        FILE * pTable;
        pTable = fopen( "iscas/seqmap__stats.txt", "a+" );
        fprintf( pTable, "%s ",  pNtk->pName );
        fprintf( pTable, "%d ", Abc_NtkPiNum(pNtk) );
        fprintf( pTable, "%d ", Abc_NtkPoNum(pNtk) );
        fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) );
        fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) );
        fprintf( pTable, "%d ", Abc_NtkLevel(pNtk) );
        fprintf( pTable, "\n" );
        fclose( pTable );
    }
*/
/*
    // print the statistic into a file
    {
        FILE * pTable;
        pTable = fopen( "stats.txt", "a+" );
        fprintf( pTable, "%s ",  pNtk->pSpec );
        fprintf( pTable, "%.0f ", Abc_NtkGetMappedArea(pNtk) );
        fprintf( pTable, "%.2f ", Abc_NtkDelayTrace(pNtk) );
        fprintf( pTable, "\n" );
        fclose( pTable );
    }
*/

/*
    // print the statistic into a file
    {
        FILE * pTable;
        pTable = fopen( "x/stats_new.txt", "a+" );
        fprintf( pTable, "%s ",  pNtk->pName );
//        fprintf( pTable, "%d ", Abc_NtkPiNum(pNtk) );
//        fprintf( pTable, "%d ", Abc_NtkPoNum(pNtk) );
//        fprintf( pTable, "%d ", Abc_NtkLevel(pNtk) );
//        fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) );
//        fprintf( pTable, "%d ", Abc_NtkGetTotalFanins(pNtk) );
//        fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) );
//        fprintf( pTable, "%.2f ", (float)(s_MappingMem)/(float)(1<<20) );
        fprintf( pTable, "%.2f", (float)(s_MappingTime)/(float)(CLOCKS_PER_SEC) );
//        fprintf( pTable, "%.2f", (float)(s_ResynTime)/(float)(CLOCKS_PER_SEC) );
        fprintf( pTable, "\n" );
        fclose( pTable );

        s_ResynTime = 0;
    }
*/

/*
    // print the statistic into a file
    {
        static int Counter = 0;
        extern int timeRetime;
        FILE * pTable;
        Counter++;
        pTable = fopen( "a/ret__stats.txt", "a+" );
        fprintf( pTable, "%s ", pNtk->pName );
        fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) );
        fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) );
        fprintf( pTable, "%d ", Abc_NtkLevel(pNtk) );
        fprintf( pTable, "%.2f ", (float)(timeRetime)/(float)(CLOCKS_PER_SEC) );
        if ( Counter % 4 == 0 )
            fprintf( pTable, "\n" );
        fclose( pTable );
    }
*/

/*
    // print the statistic into a file
    {
        static int Counter = 0;
        extern int timeRetime;
        FILE * pTable;
        Counter++;
        pTable = fopen( "d/stats.txt", "a+" );
        fprintf( pTable, "%s ", pNtk->pName );
//        fprintf( pTable, "%d ", Abc_NtkPiNum(pNtk) );
//        fprintf( pTable, "%d ", Abc_NtkPoNum(pNtk) );
//        fprintf( pTable, "%d ", Abc_NtkLatchNum(pNtk) );
        fprintf( pTable, "%d ", Abc_NtkNodeNum(pNtk) );
        fprintf( pTable, "%.2f ", (float)(timeRetime)/(float)(CLOCKS_PER_SEC) );
        fprintf( pTable, "\n" );
        fclose( pTable );
    }
*/

/*
    s_TotalNodes += Abc_NtkNodeNum(pNtk);
    printf( "Total nodes = %6d   %6.2f Mb   Changes = %6d.\n", 
        s_TotalNodes, s_TotalNodes * 20.0 / (1<<20), s_TotalChanges );
*/
}