///////////////////////////////////////////////////////////// // definition for Izhikevich neuron void neuron_ode( REAL t, REAL stateVar[], REAL dstateVar_dt[], neuron_pointer_t neuron ) { REAL V_now = stateVar[1], U_now = stateVar[2]; //io_printf( IO_BUF, " sv1 %9.4k V %9.4k --- sv2 %9.4k U %9.4k\n", stateVar[1], neuron->V, stateVar[2], neuron->U ); dstateVar_dt[1] = REAL_CONST(140.0) + (REAL_CONST(5.0) + REAL_CONST(0.0400) * V_now) * V_now - U_now + input_this_timestep; // V dstateVar_dt[2] = neuron->A * ( neuron->B * V_now - U_now ); // U }
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; complex_t x; ALIGN complex_t Z1[512]; complex_t *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; #ifndef FIXED_POINT real_t scale = REAL_CONST(N); #else real_t scale = REAL_CONST(4.0/N); #endif /* pre-FFT complex multiplication */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n]; ComplexMult(&RE(Z1[k]), &IM(Z1[k]), RE(x), IM(x), RE(sincos[k]), IM(sincos[k])); RE(Z1[k]) = MUL_R(RE(Z1[k]), scale); IM(Z1[k]) = MUL_R(IM(Z1[k]), scale); RE(x) = X_in[N2 - 1 - n] - X_in[ n]; IM(x) = X_in[N2 + n] + X_in[N - 1 - n]; ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]), RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8])); RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale); IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale); } /* complex FFT, any non-scaling FFT can be used here */ cfftf(mdct->cfft, Z1); /* post-FFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; ComplexMult(&RE(x), &IM(x), RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k])); X_out[ n] = -RE(x); X_out[N2 - 1 - n] = IM(x); X_out[N2 + n] = -IM(x); X_out[N - 1 - n] = RE(x); } }
/* * Parameter: * coderInfo(IO)(O:coderInfo->scale_factor) * xr(unused) * xr_pow(IO) * xi(O) * xmin(I) */ static int32_t FixNoise(CoderInfo *coderInfo, coef_t *xr_pow, int32_t *xi, real_32_t *xmin) { register int32_t i, sb; int32_t start, end; static real_32_t log_ifqstep = REAL_CONST(7.6943735514); // 1.0 / log(ifqstep) static real_32_t realconst1 = REAL_CONST(0.6931471806); //log2 static real_32_t realconst2 = REAL_CONST(0.5); for (sb = 0; sb < coderInfo->nr_of_sfb; sb++) { eng_t eng = 0; frac_t maxfixstep; start = coderInfo->sfb_offset[sb]; end = coderInfo->sfb_offset[sb+1]; for ( i=start; i< end; i++) eng += (int64_t)(COEF2INT(xr_pow[i]))*COEF2INT(xr_pow[i]); if ( (eng == 0) || (xmin[sb]==0) ) maxfixstep = FRAC_ICONST(1); else { maxfixstep = faac_sqrt(eng/(end-start)* MUL_R(xmin[sb],faac_sqrt(xmin[sb])) ); if ( maxfixstep == 0 ) maxfixstep = FRAC_ICONST(1); else maxfixstep = ((real_t)1<<(FRAC_BITS+REAL_BITS))/maxfixstep; } #ifdef DUMP_MAXFIXSTEP printf("sb = %d, maxfixstep = %.8f\n",sb, FRAC2FLOAT(maxfixstep)); #endif for (i = start; i < end; i++) { #ifdef DUMP_MAXFIXSTEP printf("xr_pow[%d] = %.8f\t",i,COEF2FLOAT(xr_pow[i])); #endif xr_pow[i] = MUL_F(xr_pow[i],maxfixstep); #ifdef DUMP_MAXFIXSTEP printf("xr_pow[%d]*fix = %.8f\n",i,COEF2FLOAT(xr_pow[i])); #endif } QuantizeBand(xr_pow, xi, start, end); coderInfo->scale_factor[sb] = (int32_t)REAL2INT(MUL_R(faac_log(maxfixstep)-FRAC2REAL_BIT*realconst1, log_ifqstep) - realconst2)+1; #ifdef DUMP_MAXFIXSTEP printf("scale_factor = %d\n", coderInfo->scale_factor[sb]); #endif } #ifdef DUMP_MAXFIXSTEP exit(1); #endif return 0; }
static INLINE int16_t real_to_int16(real_t sig_in) { if (sig_in >= 0) { sig_in += (1 << (REAL_BITS-1)); if (sig_in >= REAL_CONST(32768)) return 32767; } else { sig_in += -(1 << (REAL_BITS-1)); if (sig_in <= REAL_CONST(-32768)) return -32768; } return (sig_in >> REAL_BITS); }
static void tns_ma_filter(real_t *spectrum, uint16_t size, int8_t inc, real_t *lpc, uint8_t order) { /* - Simple all-zero filter of order "order" defined by y(n) = x(n) + a(2)*x(n-1) + ... + a(order+1)*x(n-order) - The state variables of the filter are initialized to zero every time - The output data is written over the input data ("in-place operation") - An input vector of "size" samples is processed and the index increment to the next data sample is given by "inc" */ uint8_t j; uint16_t i; real_t y, state[TNS_MAX_ORDER]; for (i = 0; i < order; i++) state[i] = REAL_CONST(0.0); for (i = 0; i < size; i++) { y = *spectrum; for (j = 0; j < order; j++) y += MUL_C(state[j], lpc[j+1]); for (j = order-1; j > 0; j--) state[j] = state[j-1]; state[0] = *spectrum; *spectrum = y; spectrum += inc; } }
/* best balance between speed and accuracy so far from ODE solve comparison work */ void rk2_kernel_midpoint( REAL h, neuron_pointer_t neuron ) { REAL lastV1 = neuron->V, lastU1 = neuron->U, a = neuron->A, b = neuron->B; // to match Mathematica names REAL pre_alph = REAL_CONST(140.0) + input_this_timestep - lastU1, alpha = pre_alph + ( REAL_CONST(5.0) + REAL_CONST(0.0400) * lastV1 ) * lastV1, eta = lastV1 + REAL_HALF( h * alpha ), beta = REAL_HALF( h * ( b * lastV1 - lastU1 ) * a ); // could be represented as a long fract? // neuron->V = lastV1 + neuron->V += h * ( pre_alph - beta + ( REAL_CONST(5.0) + REAL_CONST(0.0400) * eta ) * eta ); // neuron->U = lastU1 + neuron->U += a * h * ( -lastU1 - beta + b * eta ); }
static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], complex_t *alpha_0, complex_t *alpha_1, uint8_t k) { real_t tmp, mul; acorr_coef ac; auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); if (ac.det == 0) { RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } else { mul = DIV_R(REAL_CONST(1.0), ac.det); tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))); RE(alpha_1[k]) = MUL_R(tmp, mul); tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))); IM(alpha_1[k]) = MUL_R(tmp, mul); } if (RE(ac.r11) == 0) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; } else { mul = DIV_R(REAL_CONST(1.0), RE(ac.r11)); tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))); RE(alpha_0[k]) = MUL_R(tmp, mul); tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))); IM(alpha_0[k]) = MUL_R(tmp, mul); } if ((MUL_R(RE(alpha_0[k]),RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]),IM(alpha_0[k])) >= REAL_CONST(16)) || (MUL_R(RE(alpha_1[k]),RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]),IM(alpha_1[k])) >= REAL_CONST(16))) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } }
static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], complex_t *alpha_0, complex_t *alpha_1, real_t *rxx) { uint8_t k; real_t tmp, mul; acorr_coef ac; for (k = 1; k < sbr->f_master[0]; k++) { auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); if (ac.det == 0) { RE(alpha_0[k]) = 0; RE(alpha_1[k]) = 0; } else { mul = DIV_R(REAL_CONST(1.0), ac.det); tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02)); RE(alpha_0[k]) = -MUL_R(tmp, mul); tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); RE(alpha_1[k]) = MUL_R(tmp, mul); } if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) { RE(alpha_0[k]) = REAL_CONST(0); RE(alpha_1[k]) = REAL_CONST(0); } /* reflection coefficient */ if (RE(ac.r11) == 0) { rxx[k] = COEF_CONST(0.0); } else { rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11)); rxx[k] = -rxx[k]; if (rxx[k] > COEF_CONST( 1.0)) rxx[k] = COEF_CONST(1.0); if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0); } } }
static INLINE real_t iquant(int16_t q, const real_t *tab, uint8_t *error) { #ifdef FIXED_POINT static const real_t errcorr[] = { REAL_CONST(0), REAL_CONST(1.0/8.0), REAL_CONST(2.0/8.0), REAL_CONST(3.0/8.0), REAL_CONST(4.0/8.0), REAL_CONST(5.0/8.0), REAL_CONST(6.0/8.0), REAL_CONST(7.0/8.0), REAL_CONST(0) }; real_t x1, x2; int16_t sgn = 1; if (q < 0) { q = -q; sgn = -1; } if (q < IQ_TABLE_SIZE) return sgn * tab[q]; /* linear interpolation */ x1 = tab[q>>3]; x2 = tab[(q>>3) + 1]; return sgn * 16 * (MUL_R(errcorr[q&7],(x2-x1)) + x1); #else if (q < 0) { /* tab contains a value for all possible q [0,8192] */ if (-q < IQ_TABLE_SIZE) return -tab[-q]; *error = 17; return 0; } else { /* tab contains a value for all possible q [0,8192] */ if (q < IQ_TABLE_SIZE) return tab[q]; *error = 17; return 0; } #endif }
neuron_pointer_t create_izh_neuron( REAL A, REAL B, REAL C, REAL D, REAL V, REAL U, REAL I ) { neuron_pointer_t neuron = spin1_malloc( sizeof( neuron_t ) ); neuron->A = A; io_printf( WHERE_TO, "\nA = %11.4k \n", neuron->A ); neuron->B = B; io_printf( WHERE_TO, "B = %11.4k \n", neuron->B ); neuron->C = C; io_printf( WHERE_TO, "C = %11.4k mV\n", neuron->C ); neuron->D = D; io_printf( WHERE_TO, "D = %11.4k ??\n\n", neuron->D ); neuron->V = V; io_printf( WHERE_TO, "V = %11.4k mV\n", neuron->V ); neuron->U = U; io_printf( WHERE_TO, "U = %11.4k ??\n\n", neuron->U ); neuron->I_offset = I; io_printf( WHERE_TO, "I = %11.4k nA?\n", neuron->I_offset ); neuron->this_h = machine_timestep * REAL_CONST(1.001); io_printf( WHERE_TO, "h = %11.4k ms\n", neuron->this_h ); return neuron; }
static INLINE real_t iquant(int16_t q, const real_t *tab, uint8_t *error) { #ifndef BIG_IQ_TABLE /* For FIXED_POINT the iq_table is prescaled by 3 bits (iq_table[]/8) */ /* BIG_IQ_TABLE allows you to use the full 8192 value table, if this is not * defined a 1026 value table and interpolation will be used */ static const real_t errcorr[] = { REAL_CONST(0), REAL_CONST(1.0/8.0), REAL_CONST(2.0/8.0), REAL_CONST(3.0/8.0), REAL_CONST(4.0/8.0), REAL_CONST(5.0/8.0), REAL_CONST(6.0/8.0), REAL_CONST(7.0/8.0), REAL_CONST(0) }; real_t x1, x2; int16_t sgn = 1; if (q < 0) { q = -q; sgn = -1; } if (q < IQ_TABLE_SIZE) { //#define IQUANT_PRINT #ifdef IQUANT_PRINT //printf("0x%.8X\n", sgn * tab[q]); printf("%d\n", sgn * tab[q]); #endif return sgn * tab[q]; } if (q >= 8192) { *error = 17; return 0; } /* linear interpolation */ x1 = tab[q>>3]; x2 = tab[(q>>3) + 1]; return sgn * 16 * (MUL_R(errcorr[q&7],(x2-x1)) + x1); #else /* #ifndef BIG_IQ_TABLE */ if (q < 0) { /* tab contains a value for all possible q [0,8192] */ if (LIKELY(-q < IQ_TABLE_SIZE)) return -tab[-q]; *error = 17; return 0; } else { /* tab contains a value for all possible q [0,8192] */ if (LIKELY(q < IQ_TABLE_SIZE)) return tab[q]; *error = 17; return 0; } #endif }
void drc_decode(drc_info *drc, real_t *spec) { uint16_t i, bd, top; #ifdef FIXED_POINT int32_t exp, frac; #else real_t factor, exp; #endif uint16_t bottom = 0; if (drc->num_bands == 1) drc->band_top[0] = 1024/4 - 1; for (bd = 0; bd < drc->num_bands; bd++) { top = 4 * (drc->band_top[bd] + 1); #ifndef FIXED_POINT /* Decode DRC gain factor */ if (drc->dyn_rng_sgn[bd]) /* compress */ exp = -drc->ctrl1 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/REAL_CONST(24.0); else /* boost */ exp = drc->ctrl2 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/REAL_CONST(24.0); factor = (real_t)pow(2.0, exp); /* Apply gain factor */ for (i = bottom; i < top; i++) spec[i] *= factor; #else /* Decode DRC gain factor */ if (drc->dyn_rng_sgn[bd]) /* compress */ { exp = -1 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/ 24; frac = -1 * (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level)) % 24; } else { /* boost */ exp = (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level))/ 24; frac = (drc->dyn_rng_ctl[bd] - (DRC_REF_LEVEL - drc->prog_ref_level)) % 24; } /* Apply gain factor */ if (exp < 0) { for (i = bottom; i < top; i++) { spec[i] >>= -exp; if (frac) spec[i] = MUL_R(spec[i],drc_pow2_table[frac+23]); } } else { for (i = bottom; i < top; i++) { spec[i] <<= exp; if (frac) spec[i] = MUL_R(spec[i],drc_pow2_table[frac+23]); } } #endif bottom = top; }
static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) { uint8_t k; rxx[0] = REAL_CONST(0.0); deg[1] = REAL_CONST(0.0); for (k = 2; k < sbr->k0; k++) { deg[k] = 0.0; if ((k % 2 == 0) && (rxx[k] < REAL_CONST(0.0))) { if (rxx[k-1] < 0.0) { deg[k] = REAL_CONST(1.0); if (rxx[k-2] > REAL_CONST(0.0)) { deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] > REAL_CONST(0.0)) { deg[k] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]); } } if ((k % 2 == 1) && (rxx[k] > REAL_CONST(0.0))) { if (rxx[k-1] > REAL_CONST(0.0)) { deg[k] = REAL_CONST(1.0); if (rxx[k-2] < REAL_CONST(0.0)) { deg[k-1] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]); } } else if (rxx[k-2] < REAL_CONST(0.0)) { deg[k] = REAL_CONST(1.0) - MUL_R(rxx[k-1], rxx[k-1]); } } } }
#endif #ifdef SCALABLE_DEC || (object_type == 6) /* TODO */ #endif ) { return 1; } #endif return 0; } ALIGN static const real_t codebook[8] = { REAL_CONST(0.570829), REAL_CONST(0.696616), REAL_CONST(0.813004), REAL_CONST(0.911304), REAL_CONST(0.984900), REAL_CONST(1.067894), REAL_CONST(1.194601), REAL_CONST(1.369533) }; void lt_prediction(ic_stream *ics, ltp_info *ltp, real_t *spec, int16_t *lt_pred_stat, fb_info *fb, uint8_t win_shape, uint8_t win_shape_prev, uint8_t sr_index, uint8_t object_type, uint16_t frame_len) { uint8_t sfb;
static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch) { uint8_t l, k, m; real_t E_total, E_total_est, G_target, acc; for (l = 0; l < sbr->L_E[ch]; l++) { for (k = 0; k < sbr->N_G[l]; k++) { E_total_est = E_total = 0; for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++) { /* E_curr: integer */ /* G_lim_boost: fixed point */ /* E_total_est: integer */ /* E_total: integer */ E_total_est += sbr->E_curr[ch][m-sbr->kx][l]; E_total += MUL_R(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]); } /* G_target: fixed point */ if ((E_total_est + EPS) == 0) G_target = 0; else G_target = E_total / (E_total_est + EPS); acc = 0; for (m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++) { real_t alpha; /* alpha: fixed point */ if (m < sbr->kx + sbr->M - 1) { alpha = max(deg[m], deg[m + 1]); } else { alpha = deg[m]; } adj->G_lim_boost[l][m-sbr->kx] = MUL_R(alpha, G_target) + MUL_R((REAL_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]); /* acc: integer */ acc += MUL_R(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]); } /* acc: fixed point */ if (acc + EPS == 0) acc = 0; else acc = E_total / (acc + EPS); for(m = sbr->f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++) { adj->G_lim_boost[l][m-sbr->kx] = MUL_R(acc, adj->G_lim_boost[l][m-sbr->kx]); } } } for (l = 0; l < sbr->L_E[ch]; l++) { for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) { for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k]; m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++) { adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]); } } } }
/* * Parameter: * coderInfo(I) * xr(I) * xmin(O) * quality(I) */ static void CalcAllowedDist(CoderInfo *coderInfo, pow_t *xr2, real_32_t *xmin, real_32_t quality) { register int32_t sfb, start, end, l; int32_t last = coderInfo->lastx; int32_t lastsb = 0; int32_t *cb_offset = coderInfo->sfb_offset; int32_t num_cb = coderInfo->nr_of_sfb; eng_t avgenrg = coderInfo->avgenrg; static real_32_t realconst1 = REAL_CONST(0.075); static real_32_t realconst2 = REAL_CONST(1.4); static real_32_t realconst3 = REAL_CONST(0.4); static real_32_t realconst4 = REAL_CONST(147.84); /* 132 * 1.12 */ for (sfb = 0; sfb < num_cb; sfb++) { if (last > cb_offset[sfb]) lastsb = sfb; } for (sfb = 0; sfb < num_cb; sfb++) { real_t thr; real_32_t tmp; eng_t enrg = 0; start = cb_offset[sfb]; end = cb_offset[sfb + 1]; if (sfb > lastsb) { xmin[sfb] = 0; continue; } if (coderInfo->block_type != ONLY_SHORT_WINDOW) { eng_t enmax = -1; int32_t lmax; lmax = start; for (l = start; l < end; l++) { if (enmax < xr2[l]) { enmax = xr2[l]; lmax = l; } } start = lmax - 2; end = lmax + 3; if (start < 0) start = 0; if (end > last) end = last; } for (l = start; l < end; l++) { enrg += xr2[l]; } if ( (avgenrg == 0) || (enrg==0) ) thr = 0; else { thr = (avgenrg<<REAL_BITS)*(end-start)/enrg; thr = faac_pow(thr, REAL_ICONST(sfb)/(lastsb*10)-realconst3); } tmp = DIV_R(REAL_ICONST(last-start),REAL_ICONST(last)); tmp = MUL_R(MUL_R(tmp,tmp),tmp) + realconst1; thr = MUL_R(realconst2,thr) + tmp; xmin[sfb] = DIV_R(DIV_R(realconst4,thr),quality); #ifdef DUMP_XMIN printf("xmin[%d] = %.8f\n",sfb,REAL2FLOAT(xmin[sfb])); #endif } #ifdef DUMP_XMIN // exit(1); #endif }
void* output_to_PCM_sux(NeAACDecHandle hDecoder, real_t **input, void *sample_buffer, uint8_t channels, uint16_t frame_len, uint8_t format) { uint8_t ch; uint16_t i; int16_t *short_sample_buffer = (int16_t*)sample_buffer; int32_t *int_sample_buffer = (int32_t*)sample_buffer; /* Copy output to a standard PCM buffer */ for (ch = 0; ch < channels; ch++) { switch (format) { case FAAD_FMT_16BIT: for(i = 0; i < frame_len; i++) { int32_t tmp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->upMatrix, hDecoder->internal_channel); if (tmp >= 0) { tmp += (1 << (REAL_BITS-1)); if (tmp >= REAL_CONST(32767)) { tmp = REAL_CONST(32767); } } else { tmp += -(1 << (REAL_BITS-1)); if (tmp <= REAL_CONST(-32768)) { tmp = REAL_CONST(-32768); } } tmp >>= REAL_BITS; short_sample_buffer[(i*channels)+ch] = (int16_t)tmp; } break; case FAAD_FMT_24BIT: for(i = 0; i < frame_len; i++) { int32_t tmp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->upMatrix, hDecoder->internal_channel); if (tmp >= 0) { tmp += (1 << (REAL_BITS-9)); tmp >>= (REAL_BITS-8); if (tmp >= 8388607) { tmp = 8388607; } } else { tmp += -(1 << (REAL_BITS-9)); tmp >>= (REAL_BITS-8); if (tmp <= -8388608) { tmp = -8388608; } } int_sample_buffer[(i*channels)+ch] = (int32_t)tmp; } break; case FAAD_FMT_32BIT: for(i = 0; i < frame_len; i++) { int32_t tmp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->upMatrix, hDecoder->internal_channel); if (tmp >= 0) { tmp += (1 << (16-REAL_BITS-1)); tmp <<= (16-REAL_BITS); } else { tmp += -(1 << (16-REAL_BITS-1)); tmp <<= (16-REAL_BITS); } int_sample_buffer[(i*channels)+ch] = (int32_t)tmp; } break; case FAAD_FMT_FIXED: for(i = 0; i < frame_len; i++) { real_t tmp = get_sample(input, ch, i, hDecoder->downMatrix, hDecoder->upMatrix, hDecoder->internal_channel); int_sample_buffer[(i*channels)+ch] = (int32_t)tmp; } break; }
//--------------------------------------- input_t synapse_dynamics_get_intrinsic_bias(index_t neuron_index) { use(neuron_index); return REAL_CONST(0.0); }
#include "izh_curr_stochastic.h" #include "random.h" #include "normal.h" #include <debug.h> static REAL input_this_timestep; // used with file static scope to send input data around static REAL machine_timestep = REAL_CONST( 1.0 ); // in msecs static const REAL V_threshold = REAL_CONST( 30.0 ); static const REAL SIMPLE_TQ_OFFSET = REAL_CONST( 1.85 ); // function that converts the input into the real value to be used by the neuron REAL neuron_get_exc_input(REAL exc_input) { return exc_input; } // function that converts the input into the real value to be used by the neuron REAL neuron_get_inh_input(REAL inh_input) { return inh_input; } ///////////////////////////////////////////////////////////// // definition for Izhikevich neuron void neuron_ode( REAL t, REAL stateVar[], REAL dstateVar_dt[], neuron_pointer_t neuron ) {
/* calculate linear prediction coefficients using the covariance method */ static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][32], complex_t *alpha_0, complex_t *alpha_1 #ifdef SBR_LOW_POWER , real_t *rxx #endif ) { uint8_t k; real_t tmp; acorr_coef ac; for (k = 1; k < sbr->f_master[0]; k++) { auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); #ifdef SBR_LOW_POWER if (ac.det == 0) { RE(alpha_1[k]) = 0; } else { tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); RE(alpha_1[k]) = SBR_DIV(tmp, ac.det); } if (RE(ac.r11) == 0) { RE(alpha_0[k]) = 0; } else { tmp = RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)); RE(alpha_0[k]) = -SBR_DIV(tmp, RE(ac.r11)); } if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) { RE(alpha_0[k]) = REAL_CONST(0); RE(alpha_1[k]) = REAL_CONST(0); } /* reflection coefficient */ if (RE(ac.r11) == 0) { rxx[k] = REAL_CONST(0.0); } else { rxx[k] = -SBR_DIV(RE(ac.r01), RE(ac.r11)); if (rxx[k] > REAL_CONST(1.0)) rxx[k] = REAL_CONST(1.0); if (rxx[k] < REAL_CONST(-1.0)) rxx[k] = REAL_CONST(-1.0); } #else if (ac.det == 0) { RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } else { tmp = REAL_CONST(1.0) / ac.det; RE(alpha_1[k]) = (RE(ac.r01) * RE(ac.r12) - IM(ac.r01) * IM(ac.r12) - RE(ac.r02) * RE(ac.r11)) * tmp; IM(alpha_1[k]) = (IM(ac.r01) * RE(ac.r12) + RE(ac.r01) * IM(ac.r12) - IM(ac.r02) * RE(ac.r11)) * tmp; } if (RE(ac.r11) == 0) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; } else { tmp = 1.0f / RE(ac.r11); RE(alpha_0[k]) = -(RE(ac.r01) + RE(alpha_1[k]) * RE(ac.r12) + IM(alpha_1[k]) * IM(ac.r12)) * tmp; IM(alpha_0[k]) = -(IM(ac.r01) + IM(alpha_1[k]) * RE(ac.r12) - RE(alpha_1[k]) * IM(ac.r12)) * tmp; } if ((RE(alpha_0[k])*RE(alpha_0[k]) + IM(alpha_0[k])*IM(alpha_0[k]) >= 16) || (RE(alpha_1[k])*RE(alpha_1[k]) + IM(alpha_1[k])*IM(alpha_1[k]) >= 16)) { RE(alpha_0[k]) = 0; IM(alpha_0[k]) = 0; RE(alpha_1[k]) = 0; IM(alpha_1[k]) = 0; } #endif } }
static uint8_t allocate_channel_pair(NeAACDecHandle hDecoder, uint8_t channel, uint8_t paired_channel) { uint8_t mul = 1; #ifdef MAIN_DEC /* MAIN object type prediction */ if (hDecoder->object_type == MAIN) { /* allocate the state only when needed */ if (hDecoder->pred_stat[channel] == NULL) { hDecoder->pred_stat[channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state)); reset_all_predictors(hDecoder->pred_stat[channel], hDecoder->frameLength); } if (hDecoder->pred_stat[paired_channel] == NULL) { hDecoder->pred_stat[paired_channel] = (pred_state*)faad_malloc(hDecoder->frameLength * sizeof(pred_state)); reset_all_predictors(hDecoder->pred_stat[paired_channel], hDecoder->frameLength); } } #endif #ifdef LTP_DEC if (is_ltp_ot(hDecoder->object_type)) { /* allocate the state only when needed */ if (hDecoder->lt_pred_stat[channel] == NULL) { hDecoder->lt_pred_stat[channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t)); memset(hDecoder->lt_pred_stat[channel], 0, hDecoder->frameLength*4 * sizeof(int16_t)); } if (hDecoder->lt_pred_stat[paired_channel] == NULL) { hDecoder->lt_pred_stat[paired_channel] = (int16_t*)faad_malloc(hDecoder->frameLength*4 * sizeof(int16_t)); memset(hDecoder->lt_pred_stat[paired_channel], 0, hDecoder->frameLength*4 * sizeof(int16_t)); } } #endif if (hDecoder->time_out[channel] == NULL) { mul = 1; #ifdef SBR_DEC hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 0; if ((hDecoder->sbr_present_flag == 1) || (hDecoder->forceUpSampling == 1)) { /* SBR requires 2 times as much output data */ mul = 2; hDecoder->sbr_alloced[hDecoder->fr_ch_ele] = 1; } #endif hDecoder->time_out[channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->time_out[channel], 0, mul*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->time_out[paired_channel] == NULL) { hDecoder->time_out[paired_channel] = (real_t*)faad_malloc(mul*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->time_out[paired_channel], 0, mul*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->fb_intermed[channel] == NULL) { hDecoder->fb_intermed[channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->fb_intermed[channel], 0, hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->fb_intermed[paired_channel] == NULL) { hDecoder->fb_intermed[paired_channel] = (real_t*)faad_malloc(hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->fb_intermed[paired_channel], 0, hDecoder->frameLength*sizeof(real_t)); } #ifdef SSR_DEC if (hDecoder->object_type == SSR) { if (hDecoder->ssr_overlap[cpe->channel] == NULL) { hDecoder->ssr_overlap[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->ssr_overlap[cpe->channel], 0, 2*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->ssr_overlap[cpe->paired_channel] == NULL) { hDecoder->ssr_overlap[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); memset(hDecoder->ssr_overlap[cpe->paired_channel], 0, 2*hDecoder->frameLength*sizeof(real_t)); } if (hDecoder->prev_fmd[cpe->channel] == NULL) { uint16_t k; hDecoder->prev_fmd[cpe->channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); for (k = 0; k < 2*hDecoder->frameLength; k++) hDecoder->prev_fmd[cpe->channel][k] = REAL_CONST(-1); } if (hDecoder->prev_fmd[cpe->paired_channel] == NULL) { uint16_t k; hDecoder->prev_fmd[cpe->paired_channel] = (real_t*)faad_malloc(2*hDecoder->frameLength*sizeof(real_t)); for (k = 0; k < 2*hDecoder->frameLength; k++) hDecoder->prev_fmd[cpe->paired_channel][k] = REAL_CONST(-1); } } #endif return 0; }
void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) { uint16_t k; complex_t x; ALIGN complex_t Z1[512]; complex_t *sincos = mdct->sincos; uint16_t N = mdct->N; uint16_t N2 = N >> 1; uint16_t N4 = N >> 2; uint16_t N8 = N >> 3; #ifndef FIXED_POINT real_t scale = REAL_CONST(N); #else real_t scale = REAL_CONST(4.0/N); #endif #ifdef ALLOW_SMALL_FRAMELENGTH #ifdef FIXED_POINT /* detect non-power of 2 */ if (N & (N-1)) { /* adjust scale for non-power of 2 MDCT */ /* *= sqrt(2048/1920) */ scale = MUL_C(scale, COEF_CONST(1.0327955589886444)); } #endif #endif /* pre-FFT complex multiplication */ for (k = 0; k < N8; k++) { uint16_t n = k << 1; RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n]; ComplexMult(&RE(Z1[k]), &IM(Z1[k]), RE(x), IM(x), RE(sincos[k]), IM(sincos[k])); RE(Z1[k]) = MUL_R(RE(Z1[k]), scale); IM(Z1[k]) = MUL_R(IM(Z1[k]), scale); RE(x) = X_in[N2 - 1 - n] - X_in[ n]; IM(x) = X_in[N2 + n] + X_in[N - 1 - n]; ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]), RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8])); RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale); IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale); } /* complex FFT, any non-scaling FFT can be used here */ cfftf(mdct->cfft, Z1); /* post-FFT complex multiplication */ for (k = 0; k < N4; k++) { uint16_t n = k << 1; ComplexMult(&RE(x), &IM(x), RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k])); X_out[ n] = -RE(x); X_out[N2 - 1 - n] = IM(x); X_out[N2 + n] = -IM(x); X_out[N - 1 - n] = RE(x); } }
//--------------------------------------- input_t synapse_dynamics_get_intrinsic_bias(uint32_t time, index_t neuron_index) { use(time); use(neuron_index); return REAL_CONST(0.0); }