コード例 #1
0
Cube::Cube(const position_type &where, std::shared_ptr<Texture> texture )
		: Object3D(where) {
	// 8 points, 6 surfaces

	position_type
			    blf(-1.0, -1.0, 1.0)    // front rectangle
	,       brf(1.0, -1.0, 1.0)
	,       trf(1.0, 1.0, 1.0)
	,       tlf(-1.0, 1.0, 1.0)
	,       blr(-1.0, -1.0, -1.0)    // rear rectangle
	,       brr(1.0, -1.0, -1.0)
	,       trr(1.0, 1.0, -1.0)
	,       tlr(-1.0, 1.0, -1.0);

  position_type
    negZ(0.0, 0.0, -1.0)
    , posZ(0.0, 0.0, 1.0)
    , negY(0.0, -1.0, 0.0)
    , posY(0.0, 1.0, 0.0)
    , negX(-1.0, 0.0, 0.0)
    , posX(1.0, 0.0, 0.0);

	// if changing the order, make sure to change accessors so they grab the correct object
  this->add_child(new Rectangle(POSITION_INHERIT, { blf, blr, brr, brf }, { negY, negY, negY, negY }, texture));    // bottom negY
  this->add_child(new Rectangle(POSITION_INHERIT, { trr, brr, blr, tlr }, { negZ, negZ, negZ, negZ }, texture));    // rear   negZ
  this->add_child(new Rectangle(POSITION_INHERIT, { trf, brf, brr, trr }, { posX, posX, posX, posX }, texture));    // right  posX
  this->add_child(new Rectangle(POSITION_INHERIT, { tlr, blr, blf, tlf }, { negX, negX, negX, negX }, texture));    // left   negX
  this->add_child(new Rectangle(POSITION_INHERIT, { tlf, blf, brf, trf }, { posZ, posZ, posZ, posZ }, texture));    // front  posZ
  this->add_child(new Rectangle(POSITION_INHERIT, { tlr, tlf, trf, trr }, { posY, posY, posY, posY }, texture));    // top    posY

}    // Cube
コード例 #2
0
ファイル: interpreter_ppc.cpp プロジェクト: lizhekang/TCJDK
address AbstractInterpreterGenerator::generate_result_handler_for(BasicType type) {
  //
  // Registers alive
  //   R3_RET
  //   LR
  //
  // Registers updated
  //   R3_RET
  //

  Label done;
  address entry = __ pc();

  switch (type) {
  case T_BOOLEAN:
    // convert !=0 to 1
    __ neg(R0, R3_RET);
    __ orr(R0, R3_RET, R0);
    __ srwi(R3_RET, R0, 31);
    break;
  case T_BYTE:
     // sign extend 8 bits
     __ extsb(R3_RET, R3_RET);
     break;
  case T_CHAR:
     // zero extend 16 bits
     __ clrldi(R3_RET, R3_RET, 48);
     break;
  case T_SHORT:
     // sign extend 16 bits
     __ extsh(R3_RET, R3_RET);
     break;
  case T_INT:
     // sign extend 32 bits
     __ extsw(R3_RET, R3_RET);
     break;
  case T_LONG:
     break;
  case T_OBJECT:
    // unbox result if not null
    __ cmpdi(CCR0, R3_RET, 0);
    __ beq(CCR0, done);
    __ ld(R3_RET, 0, R3_RET);
    __ verify_oop(R3_RET);
    break;
  case T_FLOAT:
     break;
  case T_DOUBLE:
     break;
  case T_VOID:
     break;
  default: ShouldNotReachHere();
  }

  __ BIND(done);
  __ blr();

  return entry;
}
コード例 #3
0
ファイル: interpreter_ppc.cpp プロジェクト: lizhekang/TCJDK
// Abstract method entry.
//
address InterpreterGenerator::generate_abstract_entry(void) {
  address entry = __ pc();

  //
  // Registers alive
  //   R16_thread     - JavaThread*
  //   R19_method     - callee's method (method to be invoked)
  //   R1_SP          - SP prepared such that caller's outgoing args are near top
  //   LR             - return address to caller
  //
  // Stack layout at this point:
  //
  //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
  //           alignment (optional)
  //           [outgoing Java arguments]
  //           ...
  //   PARENT  [PARENT_IJAVA_FRAME_ABI]
  //            ...
  //

  // Can't use call_VM here because we have not set up a new
  // interpreter state. Make the call to the vm and make it look like
  // our caller set up the JavaFrameAnchor.
  __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);

  // Push a new C frame and save LR.
  __ save_LR_CR(R0);
  __ push_frame_reg_args(0, R11_scratch1);

  // This is not a leaf but we have a JavaFrameAnchor now and we will
  // check (create) exceptions afterward so this is ok.
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
                  R16_thread);

  // Pop the C frame and restore LR.
  __ pop_frame();
  __ restore_LR_CR(R0);

  // Reset JavaFrameAnchor from call_VM_leaf above.
  __ reset_last_Java_frame();

#ifdef CC_INTERP
  // Return to frame manager, it will handle the pending exception.
  __ blr();
#else
  // We don't know our caller, so jump to the general forward exception stub,
  // which will also pop our full frame off. Satisfy the interface of
  // SharedRuntime::generate_forward_exception()
  __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
  __ mtctr(R11_scratch1);
  __ bctr();
#endif

  return entry;
}
コード例 #4
0
address CppInterpreterGenerator::generate_result_handler_for(BasicType type)
{
  address start = __ pc();

  switch (type) {
  case T_VOID:
    break;

  case T_BOOLEAN:
    {
      Label zero;

      __ compare (r3, 0);
      __ beq (zero);
      __ load (r3, 1);
      __ bind (zero);
    }
    break;

  case T_CHAR:
    __ andi_ (r3, r3, 0xffff);
    break;

  case T_BYTE:
    __ extsb (r3, r3);
    break;
    
  case T_SHORT:
    __ extsh (r3, r3);
    break;

  case T_INT:
#ifdef PPC64
    __ extsw (r3, r3);
#endif
    break;

  case T_LONG:
  case T_FLOAT:
  case T_DOUBLE:
    break;

  case T_OBJECT:
    __ load (r3, STATE(_oop_temp));
    __ verify_oop (r3);
    break;

  default:
    ShouldNotReachHere();
  }
  __ blr ();

  return start;
}
コード例 #5
0
address CppInterpreterGenerator::generate_stack_to_native_abi_converter(
    BasicType type)
{
  const Register stack = r5;

  address start = __ pc();

  switch (type) {
  case T_VOID:
    break;

  case T_BOOLEAN:
  case T_CHAR:
  case T_BYTE:
  case T_SHORT:
  case T_INT:
    __ load (stack, STATE(_stack));
    __ lwa (r3, Address(stack, wordSize));
    break;

  case T_LONG:
    __ load (stack, STATE(_stack));
    __ load (r3, Address(stack, wordSize));
#ifdef PPC32
    __ load (r4, Address(stack, wordSize * 2));
#endif
    break;

  case T_FLOAT:
    __ load (stack, STATE(_stack));
    __ lfs (f1, Address(stack, wordSize));
    break;

  case T_DOUBLE:
    __ load (stack, STATE(_stack));
    __ lfd (f1, Address(stack, wordSize));
    break;

  case T_OBJECT:
    __ load (stack, STATE(_stack));
    __ load (r3, Address(stack, wordSize));
    __ verify_oop (r3);
    break;
    
  default:
    ShouldNotReachHere();
  }
  __ blr ();

  return start;
}
コード例 #6
0
address CppInterpreterGenerator::generate_stack_to_stack_converter(
    BasicType type)
{
  const Register stack = r3;

  address start = __ pc();

  switch (type) {
  case T_VOID:
    break;

  case T_BOOLEAN:
  case T_CHAR:
  case T_BYTE:
  case T_SHORT:
  case T_INT:
  case T_FLOAT:
    __ load (stack, STATE(_stack));
    __ lwz (r0, Address(stack, wordSize));
    __ stw (r0, Address(Rlocals, 0));
    __ subi (Rlocals, Rlocals, wordSize);
    break;

  case T_LONG:
  case T_DOUBLE:
    __ load (stack, STATE(_stack));
    __ load (r0, Address(stack, wordSize));
    __ store (r0, Address(Rlocals, -wordSize));
#ifdef PPC32
    __ load (r0, Address(stack, wordSize * 2));
    __ store (r0, Address(Rlocals, 0));
#endif
    __ subi (Rlocals, Rlocals, wordSize * 2);
    break;

  case T_OBJECT:
    __ load (stack, STATE(_stack));
    __ load (r0, Address(stack, wordSize));
    __ verify_oop (r0);
    __ store (r0, Address(Rlocals, 0));
    __ subi (Rlocals, Rlocals, wordSize);
    break;

  default:
    ShouldNotReachHere();
  }
  __ blr ();

  return start;
}
コード例 #7
0
address CppInterpreterGenerator::generate_tosca_to_stack_converter(
    BasicType type)
{
  address start = __ pc();

  switch (type) {
  case T_VOID:
    break;

  case T_BOOLEAN:
  case T_CHAR:
  case T_BYTE:
  case T_SHORT:
  case T_INT:
    __ stw (r3, Address(Rlocals, 0));
    __ subi (Rlocals, Rlocals, wordSize);
    break;
    
  case T_LONG:
    __ store (r3, Address(Rlocals, -wordSize));
#ifdef PPC32
    __ store (r4, Address(Rlocals, 0));
#endif
    __ subi (Rlocals, Rlocals, wordSize * 2);
    break;

  case T_FLOAT:
    __ stfs (f1, Address(Rlocals, 0));
    __ subi (Rlocals, Rlocals, wordSize);
    break;

  case T_DOUBLE:
    __ stfd (f1, Address(Rlocals, -wordSize));
    __ subi (Rlocals, Rlocals, wordSize * 2);
    break;

  case T_OBJECT:
    __ verify_oop (r3);
    __ store (r3, Address(Rlocals, 0));
    __ subi (Rlocals, Rlocals, wordSize);
    break;

  default:
    ShouldNotReachHere();
  }
  __ blr ();

  return start;
}
コード例 #8
0
address InterpreterGenerator::generate_empty_entry()
{
  if (!UseFastEmptyMethods)
    return NULL;

  Label& slow_path = fast_accessor_slow_entry_path;
  
  address start = __ pc();

  // Drop into the slow path if we need a safepoint check.
  __ load (r3, (intptr_t) SafepointSynchronize::address_of_state());
  __ load (r0, Address(r3, 0));
  __ compare (r0, SafepointSynchronize::_not_synchronized);
  __ bne (slow_path);

  // Ok, we're done :)
  __ blr ();

  return start;
}
コード例 #9
0
  // These stubs get called from some dumb test routine.
  // I'll write them properly when they're called from
  // something that's actually doing something.
  address generate_arraycopy_stub(const char *name, int line)
  {
#ifdef PPC
    StubCodeMark mark(this, "StubRoutines", name);
    address start = __ enter();

    const Register from  = r3;  // source array address
    const Register to    = r4;  // destination array address
    const Register count = r5;  // element count

    __ compare (count, 0);
    __ beqlr ();
    __ unimplemented (__FILE__, line);
    __ blr ();

    return start;
#else
    return UnimplementedStub();
#endif // PPC
  }
コード例 #10
0
Cube::Cube( const position_type &where, Texture::pointer_type texture )
	: Object( where, texture )
{
	glm::vec3
		blf( -1.0, -1.0, 1.0 )    // front rectangle
		, brf( 1.0, -1.0, 1.0 )
		, trf( 1.0, 1.0, 1.0 )
		, tlf( -1.0, 1.0, 1.0 )
		, blr( -1.0, -1.0, -1.0 )    // rear rectangle
		, brr( 1.0, -1.0, -1.0 )
		, trr( 1.0, 1.0, -1.0 )
		, tlr( -1.0, 1.0, -1.0 )
		;

	glm::vec3
		negZ( 0.0, 0.0, -1.0 )
		, posZ( 0.0, 0.0, 1.0 )
		, negY( 0.0, -1.0, 0.0 )
		, posY( 0.0, 1.0, 0.0 )
		, negX( -1.0, 0.0, 0.0 )
		, posX( 1.0, 0.0, 0.0 )
		;

	// gl_triangle strip
	// for ccw winding:  top left, bottom left, top right, bottom right

	auto add_components = [ &]( const std::vector<Component::pointer_type>& vec )
	{
		for ( auto& v : vec )
			this->components.emplace_back( v );
	};

	add_components( Triangle::from_quad( std::vector<glm::vec3>( { blf, blr, brf, brr } ), negY, texture ) );	// bottom
	add_components( Triangle::from_quad( std::vector<glm::vec3>( { trr, brr, tlr, blr } ), negZ, texture ) );	// rear
	add_components( Triangle::from_quad( std::vector<glm::vec3>( { trf, brf, trr, brr } ), posX, texture ) );    // right  posX
	add_components( Triangle::from_quad( std::vector<glm::vec3>( { tlr, blr, tlf, blf } ), negX, texture ) );    // left   negX
	add_components( Triangle::from_quad( std::vector<glm::vec3>( { tlf, blf, trf, brf } ), posZ, texture ) );    // front  posZ
	add_components( Triangle::from_quad( std::vector<glm::vec3>( { tlr, tlf, trr, trf } ), posY, texture ) );    // top    posY
}
コード例 #11
0
  address generate_call_stub(address& return_address)
  {
    assert (!TaggedStackInterpreter, "not supported");
    
    StubCodeMark mark(this, "StubRoutines", "call_stub");
    address start = __ enter();

    const Register call_wrapper    = r3;
    const Register result          = r4;
    const Register result_type     = r5;
    const Register method          = r6;
    const Register entry_point     = r7;
    const Register parameters      = r8;
    const Register parameter_words = r9;
    const Register thread          = r10;

#ifdef ASSERT
    // Make sure we have no pending exceptions
    {
      StackFrame frame;
      Label label;

      __ load (r0, Address(thread, Thread::pending_exception_offset()));
      __ compare (r0, 0);
      __ beq (label);
      __ prolog (frame);
      __ should_not_reach_here (__FILE__, __LINE__);
      __ epilog (frame);
      __ blr ();
      __ bind (label);
    }
#endif // ASSERT

    // Calculate the frame size
    StackFrame frame;
    for (int i = 0; i < StackFrame::max_crfs; i++)
      frame.get_cr_field();
    for (int i = 0; i < StackFrame::max_gprs; i++)
      frame.get_register();
    StubRoutines::set_call_stub_base_size(frame.unaligned_size() + 3*wordSize);
    // the 3 extra words are for call_wrapper, result and result_type

    const Register parameter_bytes = parameter_words;

    __ shift_left (parameter_bytes, parameter_words, LogBytesPerWord);    

    const Register frame_size = r11;
    const Register padding    = r12;

    __ addi (frame_size, parameter_bytes, StubRoutines::call_stub_base_size());
    __ calc_padding_for_alignment (padding, frame_size, StackAlignmentInBytes);
    __ add (frame_size, frame_size, padding);

    // Save the link register and create the new frame
    __ mflr (r0);
    __ store (r0, Address(r1, StackFrame::lr_save_offset * wordSize));
    __ neg (r0, frame_size);
    __ store_update_indexed (r1, r1, r0);
#ifdef PPC64
    __ mfcr (r0);
    __ store (r0, Address(r1, StackFrame::cr_save_offset * wordSize));
#endif // PPC64

    // Calculate the address of the interpreter's local variables
    const Register locals = frame_size;

    __ addi (locals, r1, frame.start_of_locals() - wordSize);
    __ add (locals, locals, padding);
    __ add (locals, locals, parameter_bytes);

    // Store the call wrapper address and the result stuff
    const int initial_offset = 1;
    int offset = initial_offset;

    __ store (call_wrapper, Address(locals, offset++ * wordSize));
    __ store (result,       Address(locals, offset++ * wordSize));
    __ store (result_type,  Address(locals, offset++ * wordSize));

    // Store the registers
#ifdef PPC32
    __ mfcr (r0);
    __ store (r0, Address(locals, offset++ * wordSize));
#endif // PPC32
    for (int i = 14; i < 32; i++) {
      __ store (as_Register(i), Address(locals, offset++ * wordSize));
    }
    const int final_offset = offset;

    // Store the location of call_wrapper
    frame::set_call_wrapper_offset((final_offset - initial_offset) * wordSize);

#ifdef ASSERT
    // Check that we wrote all the way to the end of the frame.
    // The frame may have been resized when we return from the
    // interpreter, so the start of the frame may have moved
    // but the end will be where we left it and we rely on this
    // to find our stuff.
    {
      StackFrame frame;
      Label label;

      __ load (r3, Address(r1, 0));
      __ subi (r3, r3, final_offset * wordSize);
      __ compare (r3, locals);
      __ beq (label);
      __ prolog (frame);
      __ should_not_reach_here (__FILE__, __LINE__);
      __ epilog (frame);
      __ blr ();
      __ bind (label);
    }
#endif // ASSERT

    // Pass parameters if any
    {
      Label loop, done;

      __ compare (parameter_bytes, 0);
      __ ble (done);

      const Register src = parameters;
      const Register dst = padding;

      __ mr (dst, locals);
      __ shift_right (r0, parameter_bytes, LogBytesPerWord);      
      __ mtctr (r0);
      __ bind (loop);
      __ load (r0, Address(src, 0));
      __ store (r0, Address(dst, 0));
      __ addi (src, src, wordSize);
      __ subi (dst, dst, wordSize);
      __ bdnz (loop);

      __ bind (done);
    }

    // Make the call
    __ mr (Rmethod, method);
    __ mr (Rlocals, locals);
    __ mr (Rthread, thread);
    __ mtctr (entry_point);
    __ bctrl();

    // This is used to identify call_stub stack frames
    return_address = __ pc();

    // Figure out where our stuff is stored
    __ load (locals, Address(r1, 0));
    __ subi (locals, locals, final_offset * wordSize);

#ifdef ASSERT
    // Rlocals should contain the address we just calculated.
    {
      StackFrame frame;
      Label label;

      __ compare (Rlocals, locals);
      __ beq (label);
      __ prolog (frame);
      __ should_not_reach_here (__FILE__, __LINE__);
      __ epilog (frame);
      __ blr ();
      __ bind (label);
    }
#endif // ASSERT
 
    // Is an exception being thrown?
    Label exit;

    __ load (r0, Address(Rthread, Thread::pending_exception_offset()));
    __ compare (r0, 0);
    __ bne (exit);

    // Store result depending on type
    const Register result_addr = r6;

    Label is_int, is_long, is_object;

    offset = initial_offset + 1; // skip call_wrapper
    __ load (result_addr, Address(locals, offset++ * wordSize));
    __ load (result_type, Address(locals, offset++ * wordSize));
    __ compare (result_type, T_INT);
    __ beq (is_int);
    __ compare (result_type, T_LONG);
    __ beq (is_long);
    __ compare (result_type, T_OBJECT);
    __ beq (is_object);
    
    __ should_not_reach_here (__FILE__, __LINE__);

    __ bind (is_int);
    __ stw (r3, Address(result_addr, 0));
    __ b (exit);
    
    __ bind (is_long);
#ifdef PPC32
    __ store (r4, Address(result_addr, wordSize));
#endif
    __ store (r3, Address(result_addr, 0));
    __ b (exit);
    
    __ bind (is_object);
    __ store (r3, Address(result_addr, 0));
    //__ b (exit);

    // Restore the registers
    __ bind (exit);
#ifdef PPC32
    __ load (r0, Address(locals, offset++ * wordSize));
    __ mtcr (r0);
#endif // PPC32
    for (int i = 14; i < 32; i++) {
      __ load (as_Register(i), Address(locals, offset++ * wordSize));
    }
#ifdef PPC64
    __ load (r0, Address(r1, StackFrame::cr_save_offset * wordSize));
    __ mtcr (r0);
#endif // PPC64
    assert (offset == final_offset, "save and restore must match");

    // Unwind and return
    __ load (r1, Address(r1, StackFrame::back_chain_offset * wordSize));
    __ load (r0, Address(r1, StackFrame::lr_save_offset * wordSize));
    __ mtlr (r0);
    __ blr ();
    
    return start;
  }
コード例 #12
0
address InterpreterGenerator::generate_normal_entry(bool synchronized)
{
  assert_different_registers(Rmethod, Rlocals, Rthread, Rstate, Rmonitor);
  
  Label re_dispatch;
  Label call_interpreter;
  Label call_method;
  Label call_non_interpreted_method;
  Label return_with_exception;
  Label return_from_method;
  Label resume_interpreter;
  Label return_to_initial_caller;
  Label more_monitors;
  Label throwing_exception;

  // We use the same code for synchronized and not
  if (normal_entry)
    return normal_entry;

  address start = __ pc();

  // There are two ways in which we can arrive at this entry.
  // There is the special case where a normal interpreted method
  // calls another normal interpreted method, and there is the
  // general case of when we enter from somewhere else: from
  // call_stub, from C1 or C2, or from a fast accessor which
  // deferred. In the special case we're already in frame manager
  // code: we arrive at re_dispatch with Rstate containing the
  // previous interpreter state.  In the general case we arrive
  // at start with no previous interpreter state so we set Rstate
  // to NULL to indicate this.
  __ bind (fast_accessor_slow_entry_path);
  __ load (Rstate, 0);
  __ bind (re_dispatch);

  // Adjust the caller's stack frame to accomodate any additional
  // local variables we have contiguously with our parameters.
  generate_adjust_callers_stack();

  // Allocate and initialize our stack frame.
  generate_compute_interpreter_state(false);

  // Call the interpreter ==============================================
  __ bind (call_interpreter);

  // We can setup the frame anchor with everything we want at
  // this point as we are thread_in_Java and no safepoints can
  // occur until we go to vm mode. We do have to clear flags
  // on return from vm but that is it
  __ set_last_Java_frame ();

  // Call interpreter
  address interpreter = JvmtiExport::can_post_interpreter_events() ?
    CAST_FROM_FN_PTR(address, BytecodeInterpreter::runWithChecks) :
    CAST_FROM_FN_PTR(address, BytecodeInterpreter::run);    

  __ mr (r3, Rstate);
  __ call (interpreter);
  __ fixup_after_potential_safepoint ();

  // Clear the frame anchor
  __ reset_last_Java_frame ();

  // Examine the message from the interpreter to decide what to do
  __ lwz (r4, STATE(_msg));
  __ compare (r4, BytecodeInterpreter::call_method);
  __ beq (call_method);
  __ compare (r4, BytecodeInterpreter::return_from_method);
  __ beq (return_from_method);
  __ compare (r4, BytecodeInterpreter::more_monitors);
  __ beq (more_monitors);
  __ compare (r4, BytecodeInterpreter::throwing_exception);
  __ beq (throwing_exception);

  __ load (r3, (intptr_t) "error: bad message from interpreter: %d\n");
  __ call (CAST_FROM_FN_PTR(address, printf));
  __ should_not_reach_here (__FILE__, __LINE__);

  // Handle a call_method message ======================================
  __ bind (call_method);

  __ load (Rmethod, STATE(_result._to_call._callee));
  __ verify_oop(Rmethod);
  __ load (Rlocals, STATE(_stack));
  __ lhz (r0, Address(Rmethod, methodOopDesc::size_of_parameters_offset()));
  __ shift_left (r0, r0, LogBytesPerWord);
  __ add (Rlocals, Rlocals, r0);

  __ load (r0, STATE(_result._to_call._callee_entry_point));
  __ load (r3, (intptr_t) start);
  __ compare (r0, r3);
  __ bne (call_non_interpreted_method);

  // Interpreted methods are intercepted and re-dispatched -----------
  __ load (r0, CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation));
  __ mtlr (r0);
  __ b (re_dispatch);

  // Non-interpreted methods are dispatched normally -----------------
  __ bind (call_non_interpreted_method);
  __ mtctr (r0);
  __ bctrl ();

  // Restore Rstate
  __ load (Rstate, Address(r1, StackFrame::back_chain_offset * wordSize));
  __ subi (Rstate, Rstate, sizeof(BytecodeInterpreter));

  // Check for pending exceptions
  __ load (r0, Address(Rthread, Thread::pending_exception_offset()));
  __ compare (r0, 0);
  __ bne (return_with_exception);

  // Convert the result and resume
  generate_convert_result(CppInterpreter::_tosca_to_stack);
  __ b (resume_interpreter);

  // Handle a return_from_method message ===============================
  __ bind (return_from_method);

  __ load (r0, STATE(_prev_link));
  __ compare (r0, 0);
  __ beq (return_to_initial_caller);

  // "Return" from a re-dispatch -------------------------------------

  generate_convert_result(CppInterpreter::_stack_to_stack);
  generate_unwind_interpreter_state();

  // Resume the interpreter
  __ bind (resume_interpreter);

  __ store (Rlocals, STATE(_stack));
  __ load (Rlocals, STATE(_locals));
  __ load (Rmethod, STATE(_method));
  __ verify_oop(Rmethod);
  __ load (r0, BytecodeInterpreter::method_resume);
  __ stw (r0, STATE(_msg));
  __ b (call_interpreter);

  // Return to the initial caller (call_stub etc) --------------------
  __ bind (return_to_initial_caller);

  generate_convert_result(CppInterpreter::_stack_to_native_abi);
  generate_unwind_interpreter_state();
  __ blr ();

  // Handle a more_monitors message ====================================
  __ bind (more_monitors);

  generate_more_monitors();

  __ load (r0, BytecodeInterpreter::got_monitors);
  __ stw (r0, STATE(_msg));
  __ b (call_interpreter);

  // Handle a throwing_exception message ===============================
  __ bind (throwing_exception);

  // Check we actually have an exception
#ifdef ASSERT
  {
    Label ok;
    __ load (r0, Address(Rthread, Thread::pending_exception_offset()));
    __ compare (r0, 0);
    __ bne (ok);
    __ should_not_reach_here (__FILE__, __LINE__);
    __ bind (ok);
  }
#endif

  // Return to wherever
  generate_unwind_interpreter_state();
  __ bind (return_with_exception);
  __ compare (Rstate, 0);
  __ bne (resume_interpreter);
  __ blr ();

  normal_entry = start;
  return start;
}
コード例 #13
0
address InterpreterGenerator::generate_native_entry(bool synchronized)
{
  const Register handler  = r14;
  const Register function = r15;

  assert_different_registers(Rmethod, Rlocals, Rthread, Rstate, Rmonitor,
			     handler, function);

  // We use the same code for synchronized and not
  if (native_entry)
    return native_entry;

  address start = __ pc();

  // Allocate and initialize our stack frame.
  __ load (Rstate, 0);
  generate_compute_interpreter_state(true);

  // Make sure method is native and not abstract
#ifdef ASSERT
  {
    Label ok;
    __ lwz (r0, Address(Rmethod, methodOopDesc::access_flags_offset()));
    __ andi_ (r0, r0, JVM_ACC_NATIVE | JVM_ACC_ABSTRACT);
    __ compare (r0, JVM_ACC_NATIVE);
    __ beq (ok);
    __ should_not_reach_here (__FILE__, __LINE__);
    __ bind (ok);
  }
#endif

  // Lock if necessary
  Label not_synchronized_1;
  
  __ bne (CRsync, not_synchronized_1);
  __ lock_object (Rmonitor);
  __ bind (not_synchronized_1);
  
  // Get signature handler
  const Address signature_handler_addr(
    Rmethod, methodOopDesc::signature_handler_offset());

  Label return_to_caller, got_signature_handler;

  __ load (handler, signature_handler_addr);
  __ compare (handler, 0);
  __ bne (got_signature_handler);
  __ call_VM (noreg,
              CAST_FROM_FN_PTR(address,
                               InterpreterRuntime::prepare_native_call),
              Rmethod,
              CALL_VM_NO_EXCEPTION_CHECKS);
  __ load (r0, Address(Rthread, Thread::pending_exception_offset()));
  __ compare (r0, 0);
  __ bne (return_to_caller);
  __ load (handler, signature_handler_addr);
  __ bind (got_signature_handler); 

  // Get the native function entry point
  const Address native_function_addr(
    Rmethod, methodOopDesc::native_function_offset());

  Label got_function;

  __ load (function, native_function_addr);
#ifdef ASSERT
  {
    // InterpreterRuntime::prepare_native_call() sets the mirror
    // handle and native function address first and the signature
    // handler last, so function should always be set here.
    Label ok;
    __ compare (function, 0);
    __ bne (ok);
    __ should_not_reach_here (__FILE__, __LINE__);
    __ bind (ok);
  }
#endif

  // Call signature handler
  __ mtctr (handler);
  __ bctrl ();
  __ mr (handler, r0);

  // Pass JNIEnv
  __ la (r3, Address(Rthread, JavaThread::jni_environment_offset()));

  // Pass mirror handle if static
  const Address oop_temp_addr = STATE(_oop_temp);

  Label not_static;

  __ bne (CRstatic, not_static);
  __ get_mirror_handle (r4);
  __ store (r4, oop_temp_addr);
  __ la (r4, oop_temp_addr);
  __ bind (not_static);

  // Set up the Java frame anchor
  __ set_last_Java_frame ();

  // Change the thread state to native
  const Address thread_state_addr(Rthread, JavaThread::thread_state_offset());
#ifdef ASSERT
  {
    Label ok;
    __ lwz (r0, thread_state_addr);
    __ compare (r0, _thread_in_Java);
    __ beq (ok);
    __ should_not_reach_here (__FILE__, __LINE__);
    __ bind (ok);
  }
#endif
  __ load (r0, _thread_in_native);
  __ stw (r0, thread_state_addr);

  // Make the call
  __ call (function);
  __ fixup_after_potential_safepoint ();

  // The result will be in r3 (and maybe r4 on 32-bit) or f1.
  // Wherever it is, we need to store it before calling anything
  const Register r3_save      = r16;
#ifdef PPC32
  const Register r4_save      = r17;
#endif
  const FloatRegister f1_save = f14;

  __ mr (r3_save, r3);
#ifdef PPC32
  __ mr (r4_save, r4);
#endif
  __ fmr (f1_save, f1);

  // Switch thread to "native transition" state before reading the
  // synchronization state.  This additional state is necessary
  // because reading and testing the synchronization state is not
  // atomic with respect to garbage collection.
  __ load (r0, _thread_in_native_trans);
  __ stw (r0, thread_state_addr);

  // Ensure the new state is visible to the VM thread.
  if(os::is_MP()) {
    if (UseMembar)
      __ sync ();
    else
      __ serialize_memory (r3, r4);
  }

  // Check for safepoint operation in progress and/or pending
  // suspend requests.  We use a leaf call in order to leave
  // the last_Java_frame setup undisturbed.
  Label block, no_block;

  __ load (r3, (intptr_t) SafepointSynchronize::address_of_state());
  __ lwz (r0, Address(r3, 0));
  __ compare (r0, SafepointSynchronize::_not_synchronized);
  __ bne (block);
  __ lwz (r0, Address(Rthread, JavaThread::suspend_flags_offset()));
  __ compare (r0, 0);
  __ beq (no_block);
  __ bind (block);
  __ call_VM_leaf (
       CAST_FROM_FN_PTR(address, 
                        JavaThread::check_special_condition_for_native_trans));
  __ fixup_after_potential_safepoint ();
  __ bind (no_block);

  // Change the thread state
  __ load (r0, _thread_in_Java);
  __ stw (r0, thread_state_addr);

  // Reset the frame anchor  
  __ reset_last_Java_frame ();

  // If the result was an OOP then unbox it and store it in the frame
  // (where it will be safe from garbage collection) before we release
  // the handle it might be protected by
  Label non_oop, store_oop;
  
  __ load (r0, (intptr_t) AbstractInterpreter::result_handler(T_OBJECT));
  __ compare (r0, handler);
  __ bne (non_oop);
  __ compare (r3_save, 0);
  __ beq (store_oop);
  __ load (r3_save, Address(r3_save, 0));
  __ bind (store_oop);
  __ store (r3_save, STATE(_oop_temp));
  __ bind (non_oop);

  // Reset handle block
  __ load (r3, Address(Rthread, JavaThread::active_handles_offset()));
  __ load (r0, 0);
  __ stw (r0, Address(r3, JNIHandleBlock::top_offset_in_bytes()));

  // If there is an exception we skip the result handler and return.
  // Note that this also skips unlocking which seems totally wrong,
  // but apparently this is what the asm interpreter does so we do
  // too.
  __ load (r0, Address(Rthread, Thread::pending_exception_offset()));
  __ compare (r0, 0);
  __ bne (return_to_caller);
  
  // Unlock if necessary
  Label not_synchronized_2;
  
  __ bne (CRsync, not_synchronized_2);
  __ unlock_object (Rmonitor);
  __ bind (not_synchronized_2);

  // Restore saved result and call the result handler
  __ mr (r3, r3_save);
#ifdef PPC32
  __ mr (r4, r4_save);
#endif
  __ fmr (f1, f1_save);
  __ mtctr (handler);
  __ bctrl ();
  
  // Unwind the current activation and return
  __ bind (return_to_caller);

  generate_unwind_interpreter_state();
  __ blr ();

  native_entry = start;
  return start;
}
コード例 #14
0
address InterpreterGenerator::generate_accessor_entry()
{
  if (!UseFastAccessorMethods)
    return NULL;

  Label& slow_path = fast_accessor_slow_entry_path;
  
  address start = __ pc();

  // Drop into the slow path if we need a safepoint check.
  __ load (r3, (intptr_t) SafepointSynchronize::address_of_state());
  __ load (r0, Address(r3, 0));
  __ compare (r0, SafepointSynchronize::_not_synchronized);
  __ bne (slow_path);
  
  // Load the object pointer and drop into the slow path
  // if we have a NullPointerException.
  const Register object = r4;

  __ load (object, Address(Rlocals, 0));
  __ compare (object, 0);
  __ beq (slow_path);

  // Read the field index from the bytecode, which looks like this:
  //  0:  0x2a:    aload_0
  //  1:  0xb4:    getfield
  //  2:             index (high byte)
  //  3:             index (low byte)
  //  4:  0xac/b0: ireturn/areturn
  const Register index = r5;
  
  __ load (index, Address(Rmethod, methodOopDesc::const_offset()));
  __ lwz (index, Address(index, constMethodOopDesc::codes_offset()));
#ifdef ASSERT
  {
    Label ok;
    __ shift_right (r0, index, 16);
    __ compare (r0, (Bytecodes::_aload_0 << 8) | Bytecodes::_getfield);
    __ beq (ok);
    __ should_not_reach_here (__FILE__, __LINE__);
    __ bind (ok);
  }
#endif
  __ andi_ (index, index, 0xffff);

  // Locate the entry in the constant pool cache
  const Register entry = r6;
  
  __ load (entry, Address(Rmethod, methodOopDesc::constants_offset()));
  __ load (entry, Address(entry,constantPoolOopDesc::cache_offset_in_bytes()));
  __ la (entry, Address(entry, constantPoolCacheOopDesc::base_offset()));
  __ shift_left(r0, index,
       exact_log2(in_words(ConstantPoolCacheEntry::size())) + LogBytesPerWord);
  __ add (entry, entry, r0);

  // Check the validity of the cache entry by testing whether the
  // _indices field contains Bytecode::_getfield in b1 byte.
  __ load (r0, Address(entry, ConstantPoolCacheEntry::indices_offset()));
  __ shift_right (r0, r0, 16);
  __ andi_ (r0, r0, 0xff);
  __ compare (r0, Bytecodes::_getfield);
  __ bne (slow_path);

  // Calculate the type and offset of the field
  const Register offset = r7;
  const Register type   = r8;

  __ load (offset, Address(entry, ConstantPoolCacheEntry::f2_offset()));
  __ load (type, Address(entry, ConstantPoolCacheEntry::flags_offset()));
  ConstantPoolCacheEntry::verify_tosBits();
  __ shift_right (type, type, ConstantPoolCacheEntry::tosBits);

  // Load the value
  Label is_object, is_int, is_byte, is_short, is_char;

  __ compare (type, atos);
  __ beq (is_object);
  __ compare (type, itos);
  __ beq (is_int);
  __ compare (type, btos);
  __ beq (is_byte);
  __ compare (type, stos);
  __ beq (is_short);
  __ compare (type, ctos);
  __ beq (is_char);

  __ load (r3, (intptr_t) "error: unknown type: %d\n");
  __ mr (r4, type);
  __ call (CAST_FROM_FN_PTR(address, printf));
  __ should_not_reach_here (__FILE__, __LINE__);

  __ bind (is_object);
  __ load_indexed (r3, object, offset);
  __ blr ();

  __ bind (is_int);
  __ lwax (r3, object, offset);
  __ blr ();

  __ bind (is_byte);
  __ lbax (r3, object, offset);
  __ blr ();

  __ bind (is_short);
  __ lhax (r3, object, offset);
  __ blr ();

  __ bind (is_char);
  __ lhzx (r3, object, offset);
  __ blr ();

  return start;  
}
コード例 #15
0
ファイル: interpreter_ppc.cpp プロジェクト: lizhekang/TCJDK
// Call an accessor method (assuming it is resolved, otherwise drop into
// vanilla (slow path) entry.
address InterpreterGenerator::generate_accessor_entry(void) {
  if (!UseFastAccessorMethods && (!FLAG_IS_ERGO(UseFastAccessorMethods))) {
    return NULL;
  }

  Label Lslow_path, Lacquire;

  const Register
         Rclass_or_obj = R3_ARG1,
         Rconst_method = R4_ARG2,
         Rcodes        = Rconst_method,
         Rcpool_cache  = R5_ARG3,
         Rscratch      = R11_scratch1,
         Rjvmti_mode   = Rscratch,
         Roffset       = R12_scratch2,
         Rflags        = R6_ARG4,
         Rbtable       = R7_ARG5;

  static address branch_table[number_of_states];

  address entry = __ pc();

  // Check for safepoint:
  // Ditch this, real man don't need safepoint checks.

  // Also check for JVMTI mode
  // Check for null obj, take slow path if so.
  __ ld(Rclass_or_obj, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp));
  __ lwz(Rjvmti_mode, thread_(interp_only_mode));
  __ cmpdi(CCR1, Rclass_or_obj, 0);
  __ cmpwi(CCR0, Rjvmti_mode, 0);
  __ crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2);
  __ beq(CCR0, Lslow_path); // this==null or jvmti_mode!=0

  // Do 2 things in parallel:
  // 1. Load the index out of the first instruction word, which looks like this:
  //    <0x2a><0xb4><index (2 byte, native endianess)>.
  // 2. Load constant pool cache base.
  __ ld(Rconst_method, in_bytes(Method::const_offset()), R19_method);
  __ ld(Rcpool_cache, in_bytes(ConstMethod::constants_offset()), Rconst_method);

  __ lhz(Rcodes, in_bytes(ConstMethod::codes_offset()) + 2, Rconst_method); // Lower half of 32 bit field.
  __ ld(Rcpool_cache, ConstantPool::cache_offset_in_bytes(), Rcpool_cache);

  // Get the const pool entry by means of <index>.
  const int codes_shift = exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord);
  __ slwi(Rscratch, Rcodes, codes_shift); // (codes&0xFFFF)<<codes_shift
  __ add(Rcpool_cache, Rscratch, Rcpool_cache);

  // Check if cpool cache entry is resolved.
  // We are resolved if the indices offset contains the current bytecode.
  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
  // Big Endian:
  __ lbz(Rscratch, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::indices_offset()) + 7 - 2, Rcpool_cache);
  __ cmpwi(CCR0, Rscratch, Bytecodes::_getfield);
  __ bne(CCR0, Lslow_path);
  __ isync(); // Order succeeding loads wrt. load of _indices field from cpool_cache.

  // Finally, start loading the value: Get cp cache entry into regs.
  __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcpool_cache);
  __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcpool_cache);

  // Following code is from templateTable::getfield_or_static
  // Load pointer to branch table
  __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);

  // Get volatile flag
  __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // extract volatile bit
  // note: sync is needed before volatile load on PPC64

  // Check field type
  __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);

#ifdef ASSERT
  Label LFlagInvalid;
  __ cmpldi(CCR0, Rflags, number_of_states);
  __ bge(CCR0, LFlagInvalid);

  __ ld(R9_ARG7, 0, R1_SP);
  __ ld(R10_ARG8, 0, R21_sender_SP);
  __ cmpd(CCR0, R9_ARG7, R10_ARG8);
  __ asm_assert_eq("backlink", 0x543);
#endif // ASSERT
  __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.

  // Load from branch table and dispatch (volatile case: one instruction ahead)
  __ sldi(Rflags, Rflags, LogBytesPerWord);
  __ cmpwi(CCR6, Rscratch, 1); // volatile?
  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // volatile ? size of 1 instruction : 0
  }
  __ ldx(Rbtable, Rbtable, Rflags);

  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
    __ subf(Rbtable, Rscratch, Rbtable); // point to volatile/non-volatile entry point
  }
  __ mtctr(Rbtable);
  __ bctr();

#ifdef ASSERT
  __ bind(LFlagInvalid);
  __ stop("got invalid flag", 0x6541);

  bool all_uninitialized = true,
       all_initialized   = true;
  for (int i = 0; i<number_of_states; ++i) {
    all_uninitialized = all_uninitialized && (branch_table[i] == NULL);
    all_initialized   = all_initialized   && (branch_table[i] != NULL);
  }
  assert(all_uninitialized != all_initialized, "consistency"); // either or

  __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
  if (branch_table[vtos] == 0) branch_table[vtos] = __ pc(); // non-volatile_entry point
  if (branch_table[dtos] == 0) branch_table[dtos] = __ pc(); // non-volatile_entry point
  if (branch_table[ftos] == 0) branch_table[ftos] = __ pc(); // non-volatile_entry point
  __ stop("unexpected type", 0x6551);
#endif

  if (branch_table[itos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
    branch_table[itos] = __ pc(); // non-volatile_entry point
    __ lwax(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  if (branch_table[ltos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
    branch_table[ltos] = __ pc(); // non-volatile_entry point
    __ ldx(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  if (branch_table[btos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
    branch_table[btos] = __ pc(); // non-volatile_entry point
    __ lbzx(R3_RET, Rclass_or_obj, Roffset);
    __ extsb(R3_RET, R3_RET);
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  if (branch_table[ctos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
    branch_table[ctos] = __ pc(); // non-volatile_entry point
    __ lhzx(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  if (branch_table[stos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
    branch_table[stos] = __ pc(); // non-volatile_entry point
    __ lhax(R3_RET, Rclass_or_obj, Roffset);
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  if (branch_table[atos] == 0) { // generate only once
    __ align(32, 28, 28); // align load
    __ fence(); // volatile entry point (one instruction before non-volatile_entry point)
    branch_table[atos] = __ pc(); // non-volatile_entry point
    __ load_heap_oop(R3_RET, (RegisterOrConstant)Roffset, Rclass_or_obj);
    __ verify_oop(R3_RET);
    //__ dcbt(R3_RET); // prefetch
    __ beq(CCR6, Lacquire);
    __ blr();
  }

  __ align(32, 12);
  __ bind(Lacquire);
  __ twi_0(R3_RET);
  __ isync(); // acquire
  __ blr();

#ifdef ASSERT
  for (int i = 0; i<number_of_states; ++i) {
    assert(branch_table[i], "accessor_entry initialization");
    //tty->print_cr("accessor_entry: branch_table[%d] = 0x%llx (opcode 0x%llx)", i, branch_table[i], *((unsigned int*)branch_table[i]));
  }
#endif

  __ bind(Lslow_path);
  __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), Rscratch);
  __ flush();

  return entry;
}
コード例 #16
0
ファイル: interpreter_ppc.cpp プロジェクト: lizhekang/TCJDK
// Interpreter intrinsic for WeakReference.get().
// 1. Don't push a full blown frame and go on dispatching, but fetch the value
//    into R8 and return quickly
// 2. If G1 is active we *must* execute this intrinsic for corrrectness:
//    It contains a GC barrier which puts the reference into the satb buffer
//    to indicate that someone holds a strong reference to the object the
//    weak ref points to!
address InterpreterGenerator::generate_Reference_get_entry(void) {
  // Code: _aload_0, _getfield, _areturn
  // parameter size = 1
  //
  // The code that gets generated by this routine is split into 2 parts:
  //    1. the "intrinsified" code for G1 (or any SATB based GC),
  //    2. the slow path - which is an expansion of the regular method entry.
  //
  // Notes:
  // * In the G1 code we do not check whether we need to block for
  //   a safepoint. If G1 is enabled then we must execute the specialized
  //   code for Reference.get (except when the Reference object is null)
  //   so that we can log the value in the referent field with an SATB
  //   update buffer.
  //   If the code for the getfield template is modified so that the
  //   G1 pre-barrier code is executed when the current method is
  //   Reference.get() then going through the normal method entry
  //   will be fine.
  // * The G1 code can, however, check the receiver object (the instance
  //   of java.lang.Reference) and jump to the slow path if null. If the
  //   Reference object is null then we obviously cannot fetch the referent
  //   and so we don't need to call the G1 pre-barrier. Thus we can use the
  //   regular method entry code to generate the NPE.
  //
  // This code is based on generate_accessor_enty.

  address entry = __ pc();

  const int referent_offset = java_lang_ref_Reference::referent_offset;
  guarantee(referent_offset > 0, "referent offset not initialized");

  if (UseG1GC) {
     Label slow_path;

    // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);

    // In the G1 code we don't check if we need to reach a safepoint. We
    // continue and the thread will safepoint at the next bytecode dispatch.

    // If the receiver is null then it is OK to jump to the slow path.
    __ ld(R3_RET, Interpreter::stackElementSize, CC_INTERP_ONLY(R17_tos) NOT_CC_INTERP(R15_esp)); // get receiver

    // Check if receiver == NULL and go the slow path.
    __ cmpdi(CCR0, R3_RET, 0);
    __ beq(CCR0, slow_path);

    // Load the value of the referent field.
    __ load_heap_oop(R3_RET, referent_offset, R3_RET);

    // Generate the G1 pre-barrier code to log the value of
    // the referent field in an SATB buffer. Note with
    // these parameters the pre-barrier does not generate
    // the load of the previous value.

    // Restore caller sp for c2i case.
#ifdef ASSERT
      __ ld(R9_ARG7, 0, R1_SP);
      __ ld(R10_ARG8, 0, R21_sender_SP);
      __ cmpd(CCR0, R9_ARG7, R10_ARG8);
      __ asm_assert_eq("backlink", 0x544);
#endif // ASSERT
    __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.

    __ g1_write_barrier_pre(noreg,         // obj
                            noreg,         // offset
                            R3_RET,        // pre_val
                            R11_scratch1,  // tmp
                            R12_scratch2,  // tmp
                            true);         // needs_frame

    __ blr();

    // Generate regular method entry.
    __ bind(slow_path);
    __ branch_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
    __ flush();

    return entry;
  } else {
    return generate_accessor_entry();
  }
}
コード例 #17
0
ファイル: interpreter_ppc.cpp プロジェクト: lizhekang/TCJDK
address AbstractInterpreterGenerator::generate_slow_signature_handler() {
  // Slow_signature handler that respects the PPC C calling conventions.
  //
  // We get called by the native entry code with our output register
  // area == 8. First we call InterpreterRuntime::get_result_handler
  // to copy the pointer to the signature string temporarily to the
  // first C-argument and to return the result_handler in
  // R3_RET. Since native_entry will copy the jni-pointer to the
  // first C-argument slot later on, it is OK to occupy this slot
  // temporarilly. Then we copy the argument list on the java
  // expression stack into native varargs format on the native stack
  // and load arguments into argument registers. Integer arguments in
  // the varargs vector will be sign-extended to 8 bytes.
  //
  // On entry:
  //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  //     this method
  //   R19_method
  //
  // On exit (just before return instruction):
  //   R3_RET            - contains the address of the result_handler.
  //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.

  const int LogSizeOfTwoInstructions = 3;

  // FIXME: use Argument:: GL: Argument names different numbers!
  const int max_fp_register_arguments  = 13;
  const int max_int_register_arguments = 6;  // first 2 are reserved

  const Register arg_java       = R21_tmp1;
  const Register arg_c          = R22_tmp2;
  const Register signature      = R23_tmp3;  // is string
  const Register sig_byte       = R24_tmp4;
  const Register fpcnt          = R25_tmp5;
  const Register argcnt         = R26_tmp6;
  const Register intSlot        = R27_tmp7;
  const Register target_sp      = R28_tmp8;
  const FloatRegister floatSlot = F0;

  address entry = __ function_entry();

  __ save_LR_CR(R0);
  __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
  // We use target_sp for storing arguments in the C frame.
  __ mr(target_sp, R1_SP);
  __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);

  __ mr(arg_java, R3_ARG1);

  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);

  // Signature is in R3_RET. Signature is callee saved.
  __ mr(signature, R3_RET);

  // Get the result handler.
  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);

  {
    Label L;
    // test if static
    // _access_flags._flags must be at offset 0.
    // TODO PPC port: requires change in shared code.
    //assert(in_bytes(AccessFlags::flags_offset()) == 0,
    //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
    // _access_flags must be a 32 bit value.
    assert(sizeof(AccessFlags) == 4, "wrong size");
    __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
    // testbit with condition register.
    __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
    __ btrue(CCR0, L);
    // For non-static functions, pass "this" in R4_ARG2 and copy it
    // to 2nd C-arg slot.
    // We need to box the Java object here, so we use arg_java
    // (address of current Java stack slot) as argument and don't
    // dereference it as in case of ints, floats, etc.
    __ mr(R4_ARG2, arg_java);
    __ addi(arg_java, arg_java, -BytesPerWord);
    __ std(R4_ARG2, _abi(carg_2), target_sp);
    __ bind(L);
  }

  // Will be incremented directly after loop_start. argcnt=0
  // corresponds to 3rd C argument.
  __ li(argcnt, -1);
  // arg_c points to 3rd C argument
  __ addi(arg_c, target_sp, _abi(carg_3));
  // no floating-point args parsed so far
  __ li(fpcnt, 0);

  Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
  Label loop_start, loop_end;
  Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;

  // signature points to '(' at entry
#ifdef ASSERT
  __ lbz(sig_byte, 0, signature);
  __ cmplwi(CCR0, sig_byte, '(');
  __ bne(CCR0, do_dontreachhere);
#endif

  __ bind(loop_start);

  __ addi(argcnt, argcnt, 1);
  __ lbzu(sig_byte, 1, signature);

  __ cmplwi(CCR0, sig_byte, ')'); // end of signature
  __ beq(CCR0, loop_end);

  __ cmplwi(CCR0, sig_byte, 'B'); // byte
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'C'); // char
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'D'); // double
  __ beq(CCR0, do_double);

  __ cmplwi(CCR0, sig_byte, 'F'); // float
  __ beq(CCR0, do_float);

  __ cmplwi(CCR0, sig_byte, 'I'); // int
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'J'); // long
  __ beq(CCR0, do_long);

  __ cmplwi(CCR0, sig_byte, 'S'); // short
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
  __ beq(CCR0, do_int);

  __ cmplwi(CCR0, sig_byte, 'L'); // object
  __ beq(CCR0, do_object);

  __ cmplwi(CCR0, sig_byte, '['); // array
  __ beq(CCR0, do_array);

  //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
  //  __ beq(CCR0, do_void);

  __ bind(do_dontreachhere);

  __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);

  __ bind(do_array);

  {
    Label start_skip, end_skip;

    __ bind(start_skip);
    __ lbzu(sig_byte, 1, signature);
    __ cmplwi(CCR0, sig_byte, '[');
    __ beq(CCR0, start_skip); // skip further brackets
    __ cmplwi(CCR0, sig_byte, '9');
    __ bgt(CCR0, end_skip);   // no optional size
    __ cmplwi(CCR0, sig_byte, '0');
    __ bge(CCR0, start_skip); // skip optional size
    __ bind(end_skip);

    __ cmplwi(CCR0, sig_byte, 'L');
    __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
    __ b(do_boxed);          // otherwise, go directly to do_boxed
  }

  __ bind(do_object);
  {
    Label L;
    __ bind(L);
    __ lbzu(sig_byte, 1, signature);
    __ cmplwi(CCR0, sig_byte, ';');
    __ bne(CCR0, L);
   }
  // Need to box the Java object here, so we use arg_java (address of
  // current Java stack slot) as argument and don't dereference it as
  // in case of ints, floats, etc.
  Label do_null;
  __ bind(do_boxed);
  __ ld(R0,0, arg_java);
  __ cmpdi(CCR0, R0, 0);
  __ li(intSlot,0);
  __ beq(CCR0, do_null);
  __ mr(intSlot, arg_java);
  __ bind(do_null);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_int);
  __ lwa(intSlot, 0, arg_java);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_long);
  __ ld(intSlot, -BytesPerWord, arg_java);
  __ std(intSlot, 0, arg_c);
  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
  __ blt(CCR0, move_intSlot_to_ARG);
  __ b(loop_start);

  __ bind(do_float);
  __ lfs(floatSlot, 0, arg_java);
#if defined(LINUX)
  // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
  // in the least significant word of an argument slot.
#if defined(VM_LITTLE_ENDIAN)
  __ stfs(floatSlot, 0, arg_c);
#else
  __ stfs(floatSlot, 4, arg_c);
#endif
#elif defined(AIX)
  // Although AIX runs on big endian CPU, float is in most significant
  // word of an argument slot.
  __ stfs(floatSlot, 0, arg_c);
#else
#error "unknown OS"
#endif
  __ addi(arg_java, arg_java, -BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
  __ blt(CCR0, move_floatSlot_to_FARG);
  __ b(loop_start);

  __ bind(do_double);
  __ lfd(floatSlot, - BytesPerWord, arg_java);
  __ stfd(floatSlot, 0, arg_c);
  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
  __ addi(arg_c, arg_c, BytesPerWord);
  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
  __ blt(CCR0, move_floatSlot_to_FARG);
  __ b(loop_start);

  __ bind(loop_end);

  __ pop_frame();
  __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
  __ restore_LR_CR(R0);

  __ blr();

  Label move_int_arg, move_float_arg;
  __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
  __ mr(R5_ARG3, intSlot);  __ b(loop_start);
  __ mr(R6_ARG4, intSlot);  __ b(loop_start);
  __ mr(R7_ARG5, intSlot);  __ b(loop_start);
  __ mr(R8_ARG6, intSlot);  __ b(loop_start);
  __ mr(R9_ARG7, intSlot);  __ b(loop_start);
  __ mr(R10_ARG8, intSlot); __ b(loop_start);

  __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
  __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
  __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
  __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
  __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
  __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
  __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
  __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
  __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
  __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
  __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
  __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
  __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
  __ fmr(F13_ARG13, floatSlot); __ b(loop_start);

  __ bind(move_intSlot_to_ARG);
  __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
  __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
  __ add(R11_scratch1, R0, R11_scratch1);
  __ mtctr(R11_scratch1/*branch_target*/);
  __ bctr();
  __ bind(move_floatSlot_to_FARG);
  __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
  __ addi(fpcnt, fpcnt, 1);
  __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
  __ add(R11_scratch1, R0, R11_scratch1);
  __ mtctr(R11_scratch1/*branch_target*/);
  __ bctr();

  return entry;
}
address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
  const char *name;
  switch (type) {
    case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break;
    case T_BYTE:    name = "jni_fast_GetByteField";    break;
    case T_CHAR:    name = "jni_fast_GetCharField";    break;
    case T_SHORT:   name = "jni_fast_GetShortField";   break;
    case T_INT:     name = "jni_fast_GetIntField";     break;
    case T_LONG:    name = "jni_fast_GetLongField";    break;
    case T_FLOAT:   name = "jni_fast_GetFloatField";   break;
    case T_DOUBLE:  name = "jni_fast_GetDoubleField";  break;
    default:        ShouldNotReachHere();
  }
  ResourceMark rm;
  BufferBlob* blob = BufferBlob::create(name, BUFFER_SIZE);
  CodeBuffer cbuf(blob);
  MacroAssembler* masm = new MacroAssembler(&cbuf);
  address fast_entry = __ pc();

  Label slow;

  unsigned long offset;
  __ adrp(rcounter_addr,
	  SafepointSynchronize::safepoint_counter_addr(), offset);
  Address safepoint_counter_addr(rcounter_addr, offset);
  __ ldrw(rcounter, safepoint_counter_addr);
  __ andw(rscratch1, rcounter, 1);
  __ cbnzw(rscratch1, slow);
  __ eor(robj, c_rarg1, rcounter);
  __ eor(robj, robj, rcounter);               // obj, since
                                              // robj ^ rcounter ^ rcounter == robj
                                              // robj is address dependent on rcounter.
  __ ldr(robj, Address(robj, 0));             // *obj
  __ lsr(roffset, c_rarg2, 2);                // offset

  assert(count < LIST_CAPACITY, "LIST_CAPACITY too small");
  speculative_load_pclist[count] = __ pc();   // Used by the segfault handler
  switch (type) {
    case T_BOOLEAN: __ ldrb    (result, Address(robj, roffset)); break;
    case T_BYTE:    __ ldrsb   (result, Address(robj, roffset)); break;
    case T_CHAR:    __ ldrh    (result, Address(robj, roffset)); break;
    case T_SHORT:   __ ldrsh   (result, Address(robj, roffset)); break;
    case T_FLOAT:   __ ldrw    (result, Address(robj, roffset)); break;
    case T_INT:     __ ldrsw   (result, Address(robj, roffset)); break;
    case T_DOUBLE:
    case T_LONG:    __ ldr     (result, Address(robj, roffset)); break;
    default:        ShouldNotReachHere();
  }

  // counter_addr is address dependent on result.
  __ eor(rcounter_addr, rcounter_addr, result);
  __ eor(rcounter_addr, rcounter_addr, result);
  __ ldrw(rscratch1, safepoint_counter_addr);
  __ cmpw(rcounter, rscratch1);
  __ br (Assembler::NE, slow);

  switch (type) {
    case T_FLOAT:   __ fmovs(v0, result); break;
    case T_DOUBLE:  __ fmovd(v0, result); break;
    default:        __ mov(r0, result);   break;
  }
  __ ret(lr);

  slowcase_entry_pclist[count++] = __ pc();
  __ bind(slow);
  address slow_case_addr;
  switch (type) {
    case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break;
    case T_BYTE:    slow_case_addr = jni_GetByteField_addr();    break;
    case T_CHAR:    slow_case_addr = jni_GetCharField_addr();    break;
    case T_SHORT:   slow_case_addr = jni_GetShortField_addr();   break;
    case T_INT:     slow_case_addr = jni_GetIntField_addr();     break;
    case T_LONG:    slow_case_addr = jni_GetLongField_addr();    break;
    case T_FLOAT:   slow_case_addr = jni_GetFloatField_addr();   break;
    case T_DOUBLE:  slow_case_addr = jni_GetDoubleField_addr();  break;
    default:        ShouldNotReachHere();
  }

  {
    __ enter();
    __ lea(rscratch1, ExternalAddress(slow_case_addr));
    __ blr(rscratch1);
    __ maybe_isb();
    __ leave();
    __ ret(lr);
  }
  __ flush ();

  return fast_entry;
}