コード例 #1
0
ファイル: MultipleBoxes.cpp プロジェクト: 54UL/bullet3
void MultipleBoxesExample::initPhysics()
{
	m_guiHelper->setUpAxis(1);

	createEmptyDynamicsWorld();
	
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);

	if (m_dynamicsWorld->getDebugDrawer())
		m_dynamicsWorld->getDebugDrawer()->setDebugMode(btIDebugDraw::DBG_DrawWireframe+btIDebugDraw::DBG_DrawContactPoints);

	///create a few basic rigid bodies
	btBoxShape* groundShape = createBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
	m_collisionShapes.push_back(groundShape);

	btTransform groundTransform;
	groundTransform.setIdentity();
	groundTransform.setOrigin(btVector3(0,-50,0)); 
	{
		btScalar mass(0.);
		createRigidBody(mass,groundTransform,groundShape, btVector4(0,0,1,1));
	}


	{
		//create a few dynamic rigidbodies
		// Re-using the same collision is better for memory usage and performance
        btBoxShape* colShape = createBoxShape(btVector3(1,1,1));
		 
		m_collisionShapes.push_back(colShape);

		/// Create Dynamic Objects
		btTransform startTransform;
		startTransform.setIdentity();

		btScalar	mass(1.f);

		//rigidbody is dynamic if and only if mass is non zero, otherwise static
		bool isDynamic = (mass != 0.f);

		btVector3 localInertia(0,0,0);
		if (isDynamic)
			colShape->calculateLocalInertia(mass,localInertia);

		
		for(int i=0;i<TOTAL_BOXES;++i) {
			startTransform.setOrigin(btVector3(
									 btScalar(0),
									 btScalar(20+i*2),
									 btScalar(0)));
			createRigidBody(mass,startTransform,colShape);		 
		}
	}

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
コード例 #2
0
ファイル: BSPSceneObject.cpp プロジェクト: PH3NIX/CubicVR
BSPSceneObject::BSPSceneObject(char * filename, int curveTesselation) : RigidSceneObject()
{
	hasVisibility = true;
	
	bspObject = new BSP();
	bspObject->Load(filename,curveTesselation);
	bspObject->buildSingleCluster();
	
	bind(bspObject->clusterObject);
	
	//		bspObject->disableVIS(true);
	//		bspObject->showAll(true);
	
	setMass(0);
	setMargin(0.01f);
	createRigidBody();
	mRigidBody->setActivationState(WANTS_DEACTIVATION); 
	
	segmentMask = new BITSET;
	segmentMask->Init(bspObject->clusterObject.numSegments);
	segmentMask->SetAll();
	
//	createRigidBody();
//	colShape->setMargin(0.005);
}
コード例 #3
0
void WorldObjectAbstract::initWorldObject(Ogre::SceneManager* m_pSceneMgr, PhysicsWrapper* physics)
{
	createRigidBody(physics);	
	createSceneNode(m_pSceneMgr);

	if(physics != NULL)
		attachToDynamicWorld(physics);
}
コード例 #4
0
void ConstraintPhysicsSetup::initPhysics()
{
	m_guiHelper->setUpAxis(1);

	createEmptyDynamicsWorld();

	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
	int mode = btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawConstraints + btIDebugDraw::DBG_DrawConstraintLimits;
	m_dynamicsWorld->getDebugDrawer()->setDebugMode(mode);

	{
		SliderParams slider("target vel", &targetVel);
		slider.m_minVal = -4;
		slider.m_maxVal = 4;
		m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
	}

	{
		SliderParams slider("max impulse", &maxImpulse);
		slider.m_minVal = 0;
		slider.m_maxVal = 1000;
		m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
	}

	{
		SliderParams slider("actual vel", &actualHingeVelocity);
		slider.m_minVal = -4;
		slider.m_maxVal = 4;
		m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
	}

	val = 1.f;
	{
		SliderParams slider("angle", &val);
		slider.m_minVal = -720;
		slider.m_maxVal = 720;
		m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
	}

	{  // create a door using hinge constraint attached to the world
		btCollisionShape* pDoorShape = new btBoxShape(btVector3(2.0f, 5.0f, 0.2f));
		m_collisionShapes.push_back(pDoorShape);
		btTransform doorTrans;
		doorTrans.setIdentity();
		doorTrans.setOrigin(btVector3(-5.0f, -2.0f, 0.0f));
		btRigidBody* pDoorBody = createRigidBody(1.0, doorTrans, pDoorShape);
		pDoorBody->setActivationState(DISABLE_DEACTIVATION);
		const btVector3 btPivotA(10.f + 2.1f, -2.0f, 0.0f);  // right next to the door slightly outside

		spDoorHinge = new btHingeAccumulatedAngleConstraint(*pDoorBody, btPivotA, btAxisA);

		m_dynamicsWorld->addConstraint(spDoorHinge);

		spDoorHinge->setDbgDrawSize(btScalar(5.f));
	}

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
コード例 #5
0
btRigidBody* AWPhysics::PhysicsManager::createBox(float x, float y, float z)
{
    return createRigidBody( 10.f,
                            btTransform( btTransform().getRotation(),
                                         btVector3(x, y, z) ),
                            new btBoxShape( btVector3(1.0, 1.0, 1.0) ) );

    mLogger << "creating Box rigid body";
}
コード例 #6
0
void CoordinateFrameDemoPhysicsSetup::initPhysics(GraphicsPhysicsBridge& gfxBridge)
{
	createEmptyDynamicsWorld();
	m_dynamicsWorld->setGravity(btVector3(0,0,0));
	gfxBridge.createPhysicsDebugDrawer(m_dynamicsWorld);
    m_dynamicsWorld->getDebugDrawer()->setDebugMode(btIDebugDraw::DBG_DrawWireframe+btIDebugDraw::DBG_DrawContactPoints);

	m_dynamicsWorld->getDebugDrawer()->setDebugMode(m_dynamicsWorld->getDebugDrawer()->getDebugMode() + btIDebugDraw::DBG_DrawFrames);

	btScalar sqr2 = btSqrt(2);
	btVector3 tetraVerts[] = {
		btVector3(1.f,	0.f,  -1/sqr2),
		btVector3(-1.f,	0.f,  -1/sqr2),
		btVector3(0, 1.f,	1/sqr2),
		btVector3(0, -1.f,	1/sqr2),
	};

	

	{
		//create a few dynamic rigidbodies
		// Re-using the same collision is better for memory usage and performance
		btCompoundShape* hull = new btCompoundShape();
		btConvexHullShape* childHull = new btConvexHullShape(&tetraVerts[0].getX(),sizeof(tetraVerts)/sizeof(btVector3),sizeof(btVector3));
		
		childHull->initializePolyhedralFeatures();
		btTransform childTrans;
		childTrans.setIdentity();
		childTrans.setOrigin(btVector3(2,0,0));
		hull->addChildShape(childTrans,childHull);
		gfxBridge.createCollisionShapeGraphicsObject(hull);
		m_collisionShapes.push_back(hull);

		/// Create Dynamic Objects
		btTransform startTransform;
		startTransform.setIdentity();

		btScalar	mass(1.f);

		//rigidbody is dynamic if and only if mass is non zero, otherwise static
		bool isDynamic = (mass != 0.f);

		btVector3 localInertia(0,0,0);
		if (isDynamic)
			hull->calculateLocalInertia(mass,localInertia);


		startTransform.setOrigin(btVector3(0,0,0));
		
		btRigidBody* body = createRigidBody(mass,startTransform,hull);
		gfxBridge.createRigidBodyGraphicsObject(body, btVector3(1, 1, 0));
	}

}
コード例 #7
0
ShipPhysicsObject::ShipPhysicsObject(GameObject* go){
  // f-16 mass 12000 kg fully loaded
  const float mass = 2.0f;
  collisionShape = new btBoxShape(btVector3(1.0, 0.5, 1.5));
  // Add a pointer to the calling GameObject for collisions
  collisionShape->setUserPointer(go);
  btVector3 localInertia(0,0,0);
  collisionShape->calculateLocalInertia(mass, localInertia);
  rigidBody = createRigidBody(collisionShape, mass, btVector3(0,0,0), 0);
  rigidBody->setActivationState(DISABLE_DEACTIVATION);
}
コード例 #8
0
btRigidBody* AWPhysics::PhysicsManager::createPlane(float x, float y, float z)
{
    return createRigidBody( 0.f, // zero mass == static object
                            btTransform( btQuaternion::getIdentity(), // wow valgrind memory analyzer found the old bug here...
                                         btVector3(x, y, z) ),
                            //                      normal                    constant
                            new btStaticPlaneShape( btVector3(0.0, 1.0, 0.0), btScalar(0.0)));
                            // assume that the plane is placed at: (x, y, z) = scalar*normal

    mLogger << "creating Plane rigid body";
}
コード例 #9
0
void StaticObject::instantiateCollisionObject()
{
	if(mCompoundShape != NULL)
	{
		const StaticObjectSettings* staticObjectSettings = static_cast<const StaticObjectSettings*>(mObjectSettings);

		btTransform startTransform = btTransform(convert(staticObjectSettings->mInitialOrientation), convert(staticObjectSettings->mInitialPosition));
		mMyMotionState = new MyMotionState(mSceneNode, startTransform);
		mRigidBody = createRigidBody(startTransform, mCompoundShape, mMyMotionState, 0.f);
		mRigidBody->setRestitution(DEFAULT_RESTITUTION_VALUE);
		mDynamicWorld->addRigidBody(mRigidBody);
	}
}
コード例 #10
0
ファイル: MotorDemo.cpp プロジェクト: 20-sim/bullet3
void MotorDemo::initPhysics()
{
	m_guiHelper->setUpAxis(1);

	// Setup the basic world

	m_Time = 0;
	m_fCyclePeriod = 2000.f; // in milliseconds

//	m_fMuscleStrength = 0.05f;
	// new SIMD solver for joints clips accumulated impulse, so the new limits for the motor
	// should be (numberOfsolverIterations * oldLimits)
	// currently solver uses 10 iterations, so:
	m_fMuscleStrength = 0.5f;


	m_collisionConfiguration = new btDefaultCollisionConfiguration();

	m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);

	btVector3 worldAabbMin(-10000,-10000,-10000);
	btVector3 worldAabbMax(10000,10000,10000);
	m_broadphase = new btAxisSweep3 (worldAabbMin, worldAabbMax);

	m_solver = new btSequentialImpulseConstraintSolver;

	m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);

	m_dynamicsWorld->setInternalTickCallback(motorPreTickCallback,this,true);
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
	

	// Setup a big ground box
	{
		btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.),btScalar(10.),btScalar(200.)));
		m_collisionShapes.push_back(groundShape);
		btTransform groundTransform;
		groundTransform.setIdentity();
		groundTransform.setOrigin(btVector3(0,-10,0));
		createRigidBody(btScalar(0.),groundTransform,groundShape);
	}

	// Spawn one ragdoll
	btVector3 startOffset(1,0.5,0);
	spawnTestRig(startOffset, false);
	startOffset.setValue(-2,0.5,0);
	spawnTestRig(startOffset, true);

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
コード例 #11
0
SmellSensor::SmellSensor(Fixation *fixation, QString typeName, SensorType type,
                         RigidBodyOrigin::RigidBodyType smellType, btScalar smellRadius) :
    Sensor(fixation)
{
    this->typeName      = typeName;
    this->type          = type;
    this->smellType     = smellType;
    this->radiusOfSmell   = smellRadius;

    intensityInput = new BrainIn(0, smellRadius);
    brainInputs.append(intensityInput);

    createRigidBody(smellRadius);
}
コード例 #12
0
void MultiBodyVehicleSetup::initPhysics(GraphicsPhysicsBridge& gfxBridge)
{
    int upAxis = 1;

    btVector4 colors[4] =
    {
        btVector4(1,0,0,1),
        btVector4(0,1,0,1),
        btVector4(0,1,1,1),
        btVector4(1,1,0,1),
    };
    int curColor = 0;



    gfxBridge.setUpAxis(upAxis);

	this->createEmptyDynamicsWorld();
    gfxBridge.createPhysicsDebugDrawer(m_dynamicsWorld);
    m_dynamicsWorld->getDebugDrawer()->setDebugMode(
        //btIDebugDraw::DBG_DrawConstraints
        +btIDebugDraw::DBG_DrawWireframe
        +btIDebugDraw::DBG_DrawContactPoints
        +btIDebugDraw::DBG_DrawAabb
        );//+btIDebugDraw::DBG_DrawConstraintLimits);

    
    createMultiBodyVehicle();
    
    if (1)
    {
        btVector3 groundHalfExtents(20,20,20);
        groundHalfExtents[upAxis]=1.f;
        btBoxShape* box = new btBoxShape(groundHalfExtents);
        box->initializePolyhedralFeatures();
        
        gfxBridge.createCollisionShapeGraphicsObject(box);
        btTransform start; start.setIdentity();
        btVector3 groundOrigin(0,0,0);
        groundOrigin[upAxis]=-1.5;
        start.setOrigin(groundOrigin);
        btRigidBody* body =  createRigidBody(0,start,box);
        btVector4 color = colors[curColor];
        curColor++;
        curColor&=3;
        gfxBridge.createRigidBodyGraphicsObject(body,color);
    }

}
コード例 #13
0
// To create from serialization data
SmellSensor::SmellSensor(QVariant data, RigidBodyOrigin::RigidBodyType smellType, Fixation * fixation) : Sensor(data, fixation)
{
    QVariantMap map = data.toMap();

    this->smellType =  smellType;

    intensityInput = new BrainIn(map["intensityInput"]);
    // the max value equals radius of smell !
    radiusOfSmell = map["radiusOfSmell"].toFloat();
    //intensityInput->setMax(radiusOfSmell);
    brainInputs.append(intensityInput);


    createRigidBody(radiusOfSmell);
}
コード例 #14
0
void	btWorldImporter::convertRigidBodyDouble( btRigidBodyDoubleData* colObjData)
{
	btScalar mass = btScalar(colObjData->m_inverseMass? 1.f/colObjData->m_inverseMass : 0.f);
	btVector3 localInertia;
	localInertia.setZero();
	btCollisionShape** shapePtr = m_shapeMap.find(colObjData->m_collisionObjectData.m_collisionShape);
	if (shapePtr && *shapePtr)
	{
		btTransform startTransform;
		colObjData->m_collisionObjectData.m_worldTransform.m_origin.m_floats[3] = 0.f;
		startTransform.deSerializeDouble(colObjData->m_collisionObjectData.m_worldTransform);
				
	//	startTransform.setBasis(btMatrix3x3::getIdentity());
		btCollisionShape* shape = (btCollisionShape*)*shapePtr;
		if (shape->isNonMoving())
		{
			mass = 0.f;
		}
		if (mass)
		{
			shape->calculateLocalInertia(mass,localInertia);
		}
		bool isDynamic = mass!=0.f;
		btRigidBody* body = createRigidBody(isDynamic,mass,startTransform,shape,colObjData->m_collisionObjectData.m_name);
		body->setFriction(static_cast<btScalar>(colObjData->m_collisionObjectData.m_friction));
		body->setRestitution(static_cast<btScalar>(colObjData->m_collisionObjectData.m_restitution));
				

#ifdef USE_INTERNAL_EDGE_UTILITY
		if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
		{
			btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)shape;
			if (trimesh->getTriangleInfoMap())
			{
				body->setCollisionFlags(body->getCollisionFlags()  | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
			}
		}
#endif //USE_INTERNAL_EDGE_UTILITY
		m_bodyMap.insert(colObjData,body);
	} else
	{
		printf("error: no shape found\n");
	}
}
コード例 #15
0
ファイル: boing.cpp プロジェクト: ristopuukko/boing
boing::boing(MObject inputShape,MString inname, MString inTypeName, MVector pos, MVector vel, MVector rot, MVector av, float mass)
{
    node = inputShape;
    name = inname;
    typeName = inTypeName;
    m_initial_velocity = vel;
    m_initial_position = pos;
    m_initial_rotation = rot;
    m_initial_angularvelocity = av;
    m_mass = mass;
    attrArray = MStringArray();
    dataArray = MStringArray();
    m_collision_shape = createCollisionShape(node);
    /*cout<<"m_collision_shape : "<<m_collision_shape<<endl;
    std::cout<<"creating a new (boing::boing) boing node : "<<inname<<" type "<<inTypeName<<"from node "<<MFnDependencyNode(inputShape).name()<<" in pos "<<m_initial_position<<" vel "<<m_initial_velocity<<" rotation "<<m_initial_rotation<<" and av "<<m_initial_angularvelocity<<endl;*/
    count++;
    std::cout<<"count = "<<count<<std::endl;
    createRigidBody();

}
コード例 #16
0
void	ColladaConverter::PreparePhysicsObject(struct btRigidBodyInput& input, bool isDynamics, btScalar mass,btCollisionShape* colShape)
{
	btTransform startTransform;
	startTransform.setIdentity();
	btVector3 startScale(1.f,1.f,1.f);

	//The 'target' points to a graphics element/node, which contains the start (world) transform
	daeElementRef elem = input.m_instanceRigidBodyRef->getTarget().getElement();
	if (elem)
	{
		domNodeRef node = *(domNodeRef*)&elem;
		m_colladadomNodes[m_numObjects] = node;

		//find transform of the node that this rigidbody maps to


		startTransform = GetbtTransformFromCOLLADA_DOM(
							node->getMatrix_array(),
							node->getRotate_array(),
							node->getTranslate_array(),
							m_unitMeterScaling
							);

		unsigned int i;
		for (i=0;i<node->getScale_array().getCount();i++)
		{
			domScaleRef scaleRef = node->getScale_array()[i];
			domFloat3 fl3 = scaleRef->getValue();
			startScale = btVector3((btScalar)fl3.get(0),(btScalar)fl3.get(1),(btScalar)fl3.get(2));
		}

		btRigidBody* body= createRigidBody(elem->getID(), isDynamics, (float) mass,startTransform,colShape);
		if (body)
		{
			//bodyName is used as identifier for constraints
			body->setUserPointer((void*)input.m_bodyName);
			m_rigidBodies[m_numObjects] = body;
			m_numObjects++;
		}
	}
}
コード例 #17
0
ファイル: mechanism.cpp プロジェクト: pbarragan/mechIdent
// virtual 
void Mechanism::initialize(stateStruct& startState){
  // Set necessary parameters from startState before initializing physics 
  setStartWithState(startState); // Virtual function: not defined in this file
  
  // Initialize Physics
  // set up world
  broadphase_ = new btDbvtBroadphase();
  collisionConfiguration_ = new btDefaultCollisionConfiguration();
  dispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  solver_ = new btSequentialImpulseConstraintSolver;
  dynamicsWorld_ = new btDiscreteDynamicsWorld(dispatcher_,broadphase_,solver_,collisionConfiguration_);

  // set gravity. y is apparently up.
  dynamicsWorld_->setGravity(btVector3(0,-10,0));

  //----------------OBJECT CREATION SECTION-------------------//
  //make the ground plane
  gndCS_ = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
  btTransform gndBT;
  gndBT.setIdentity();
  gndBT.setOrigin(btVector3(0.0f,-50.0f,0.0f));
  btScalar gndMass(0.0);

  //create the ground plane rigid body
  gndRB_ = createRigidBody(gndCS_,gndMass,gndBT);
  //add it to the dynamics world
  dynamicsWorld_->addRigidBody(gndRB_);
  //--------------END OBJECT CREATION SECTION-----------------//

  //---------INITIALIZE REMAINING PARAMETERS SECTION----------//
  //set controller values
  pGains_.setValue(5.0f,50.0f,5.0f);
  dGains_.setValue(2.0f,2.0f,2.0f);

  // change friction
  gndRB_->setFriction(0.1);
  //-------END INITIALIZE REMAINING PARAMETERS SECTION-------//

}
コード例 #18
0
void TestJointTorqueSetup::initPhysics()
{
    int upAxis = 1;
	gJointFeedbackInWorldSpace = true;
	gJointFeedbackInJointFrame = true;

	m_guiHelper->setUpAxis(upAxis);

    btVector4 colors[4] =
    {
        btVector4(1,0,0,1),
        btVector4(0,1,0,1),
        btVector4(0,1,1,1),
        btVector4(1,1,0,1),
    };
    int curColor = 0;



    

	this->createEmptyDynamicsWorld();
    m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
    m_dynamicsWorld->getDebugDrawer()->setDebugMode(
        //btIDebugDraw::DBG_DrawConstraints
        +btIDebugDraw::DBG_DrawWireframe
        +btIDebugDraw::DBG_DrawContactPoints
        +btIDebugDraw::DBG_DrawAabb
        );//+btIDebugDraw::DBG_DrawConstraintLimits);

	

    //create a static ground object
    if (1)
        {
            btVector3 groundHalfExtents(1,1,0.2);
            groundHalfExtents[upAxis]=1.f;
            btBoxShape* box = new btBoxShape(groundHalfExtents);
            box->initializePolyhedralFeatures();

            m_guiHelper->createCollisionShapeGraphicsObject(box);
            btTransform start; start.setIdentity();
            btVector3 groundOrigin(-0.4f, 3.f, 0.f);
            groundOrigin[upAxis] -=.5;
			groundOrigin[2]-=0.6;
            start.setOrigin(groundOrigin);
			btQuaternion groundOrn(btVector3(0,1,0),0.25*SIMD_PI);
		
		//	start.setRotation(groundOrn);
            btRigidBody* body =  createRigidBody(0,start,box);
			body->setFriction(0);
            btVector4 color = colors[curColor];
			curColor++;
			curColor&=3;
            m_guiHelper->createRigidBodyGraphicsObject(body,color);
        }

    {
        bool floating = false;
        bool damping = false;
        bool gyro = false;
        int numLinks = 2;
        bool spherical = false;					//set it ot false -to use 1DoF hinges instead of 3DoF sphericals
        bool canSleep = false;
        bool selfCollide = false;
          btVector3 linkHalfExtents(0.05, 0.37, 0.1);
        btVector3 baseHalfExtents(0.05, 0.37, 0.1);

        btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
        //mbC->forceMultiDof();							//if !spherical, you can comment this line to check the 1DoF algorithm
        //init the base
        btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
        float baseMass = 1.f;

        if(baseMass)
        {
            //btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
			btCollisionShape *shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
            shape->calculateLocalInertia(baseMass, baseInertiaDiag);
            delete shape;
        }

        bool isMultiDof = true;
        btMultiBody *pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep, isMultiDof);
		
        m_multiBody = pMultiBody;
        btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
	//	baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
        pMultiBody->setBasePos(basePosition);
        pMultiBody->setWorldToBaseRot(baseOriQuat);
        btVector3 vel(0, 0, 0);
    //	pMultiBody->setBaseVel(vel);

        //init the links
        btVector3 hingeJointAxis(1, 0, 0);
        
        //y-axis assumed up
        btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0);						//par body's COM to cur body's COM offset
        btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0);							//cur body's COM to cur body's PIV offset
        btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;	//par body's COM to cur body's PIV offset

        //////
        btScalar q0 = 0.f * SIMD_PI/ 180.f;
        btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
        quat0.normalize();
        /////

        for(int i = 0; i < numLinks; ++i)
        {
			float linkMass = 1.f;
			//if (i==3 || i==2)
			//	linkMass= 1000;
			btVector3 linkInertiaDiag(0.f, 0.f, 0.f);

			btCollisionShape* shape = 0;
			if (i==0)
			{
				shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2]));//
			} else
			{
				shape = new btSphereShape(radius);
			}
			shape->calculateLocalInertia(linkMass, linkInertiaDiag);
			delete shape;


            if(!spherical)
			{
                //pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
		
				if (i==0)
				{
				pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, 
					btQuaternion(0.f, 0.f, 0.f, 1.f), 
					hingeJointAxis, 
					parentComToCurrentPivot, 
					currentPivotToCurrentCom, false);
				} else
				{
					btVector3 parentComToCurrentCom(0, -radius * 2.f, 0);						//par body's COM to cur body's COM offset
					btVector3 currentPivotToCurrentCom(0, -radius, 0);							//cur body's COM to cur body's PIV offset
					btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom;	//par body's COM to cur body's PIV offset


					pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1, 
					btQuaternion(0.f, 0.f, 0.f, 1.f), 
					parentComToCurrentPivot, 
					currentPivotToCurrentCom, false);
				}
					
				//pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
		
			}
            else
			{
                //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
                pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
			}
        }

        pMultiBody->finalizeMultiDof();

		//for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)//
			for (int i=0;i<pMultiBody->getNumLinks();i++)
		{
			btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
			pMultiBody->getLink(i).m_jointFeedback = fb;
			m_jointFeedbacks.push_back(fb);
			//break;
		}
        btMultiBodyDynamicsWorld* world = m_dynamicsWorld;

        ///
        world->addMultiBody(pMultiBody);
        btMultiBody* mbC = pMultiBody;
        mbC->setCanSleep(canSleep);
        mbC->setHasSelfCollision(selfCollide);
        mbC->setUseGyroTerm(gyro);
        //
        if(!damping)
        {
            mbC->setLinearDamping(0.f);
            mbC->setAngularDamping(0.f);
        }else
        {	mbC->setLinearDamping(0.1f);
            mbC->setAngularDamping(0.9f);
        }
        //
    	m_dynamicsWorld->setGravity(btVector3(0,0,-10));

        //////////////////////////////////////////////
        if(0)//numLinks > 0)
        {
            btScalar q0 = 45.f * SIMD_PI/ 180.f;
            if(!spherical)
                if(mbC->isMultiDof())
                    mbC->setJointPosMultiDof(0, &q0);
                else
                    mbC->setJointPos(0, q0);
            else
            {
                btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
                quat0.normalize();
                mbC->setJointPosMultiDof(0, quat0);
            }
        }
        ///

        btAlignedObjectArray<btQuaternion> world_to_local;
        world_to_local.resize(pMultiBody->getNumLinks() + 1);

        btAlignedObjectArray<btVector3> local_origin;
        local_origin.resize(pMultiBody->getNumLinks() + 1);
        world_to_local[0] = pMultiBody->getWorldToBaseRot();
        local_origin[0] = pMultiBody->getBasePos();
      //  double friction = 1;
        {

        //	float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
//            btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};


            if (1)
            {
                btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0],baseHalfExtents[1],baseHalfExtents[2]));//new btSphereShape(baseHalfExtents[0]);
                m_guiHelper->createCollisionShapeGraphicsObject(shape);

                btMultiBodyLinkCollider* col= new btMultiBodyLinkCollider(pMultiBody, -1);
                col->setCollisionShape(shape);

                btTransform tr;
                tr.setIdentity();
//if we don't set the initial pose of the btCollisionObject, the simulator will do this 
				//when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
               
                tr.setOrigin(local_origin[0]);
				btQuaternion orn(btVector3(0,0,1),0.25*3.1415926538);
				
                tr.setRotation(orn);
                col->setWorldTransform(tr);

				bool isDynamic = (baseMass > 0 && floating);
				short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
				short collisionFilterMask = isDynamic? 	short(btBroadphaseProxy::AllFilter) : 	short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);


                world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//, 2,1+2);

                btVector3 color(0.0,0.0,0.5);
                m_guiHelper->createCollisionObjectGraphicsObject(col,color);

//                col->setFriction(friction);
                pMultiBody->setBaseCollider(col);

            }
        }


        for (int i=0; i < pMultiBody->getNumLinks(); ++i)
        {
            const int parent = pMultiBody->getParent(i);
            world_to_local[i+1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent+1];
            local_origin[i+1] = local_origin[parent+1] + (quatRotate(world_to_local[i+1].inverse() , pMultiBody->getRVector(i)));
        }


        for (int i=0; i < pMultiBody->getNumLinks(); ++i)
        {

            btVector3 posr = local_origin[i+1];
        //	float pos[4]={posr.x(),posr.y(),posr.z(),1};

            btScalar quat[4]={-world_to_local[i+1].x(),-world_to_local[i+1].y(),-world_to_local[i+1].z(),world_to_local[i+1].w()};
			btCollisionShape* shape =0;

			if (i==0)
			{
				shape = new btBoxShape(btVector3(linkHalfExtents[0],linkHalfExtents[1],linkHalfExtents[2]));//btSphereShape(linkHalfExtents[0]);
			} else
			{
				
				shape = new btSphereShape(radius);
			}

            m_guiHelper->createCollisionShapeGraphicsObject(shape);
            btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);

            col->setCollisionShape(shape);
            btTransform tr;
            tr.setIdentity();
            tr.setOrigin(posr);
            tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
            col->setWorldTransform(tr);
     //       col->setFriction(friction);
			bool isDynamic = 1;//(linkMass > 0);
			short collisionFilterGroup = isDynamic? short(btBroadphaseProxy::DefaultFilter) : short(btBroadphaseProxy::StaticFilter);
			short collisionFilterMask = isDynamic? 	short(btBroadphaseProxy::AllFilter) : 	short(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);

			//if (i==0||i>numLinks-2)
			{
				world->addCollisionObject(col,collisionFilterGroup,collisionFilterMask);//,2,1+2);
				   btVector4 color = colors[curColor];
			curColor++;
			curColor&=3;
            m_guiHelper->createCollisionObjectGraphicsObject(col,color);


            pMultiBody->getLink(i).m_collider=col;
			}
         
        }
    }

	btSerializer* s = new btDefaultSerializer;
	m_dynamicsWorld->serialize(s);
	b3ResourcePath p;
	char resourcePath[1024];
	if (p.findResourcePath("multibody.bullet",resourcePath,1024))
	{
		FILE* f = fopen(resourcePath,"wb");
		fwrite(s->getBufferPointer(),s->getCurrentBufferSize(),1,f);
		fclose(f);
	}
}
コード例 #19
0
ファイル: ofxPhysx.cpp プロジェクト: gnimmel/ofxPhysX
PxActor* World::addPlane(const ofVec3f& pos, const ofQuaternion& rot, float mass)
{
	assert(inited);
	return createRigidBody(PxPlaneGeometry(), mass, pos, rot);
}
コード例 #20
0
ファイル: ofxPhysx.cpp プロジェクト: gnimmel/ofxPhysX
PxActor* World::addCapsule(const float radius, const float height, const ofVec3f& pos, const ofQuaternion& rot, float mass)
{
	assert(inited);
	return createRigidBody(PxCapsuleGeometry(radius, height), mass, pos, rot);
}
コード例 #21
0
ファイル: ofxPhysx.cpp プロジェクト: gnimmel/ofxPhysX
PxActor* World::addSphere(const float size, const ofVec3f& pos, const ofQuaternion& rot, float mass)
{
	assert(inited);
	return createRigidBody(PxSphereGeometry(size), mass, pos, rot);
}
コード例 #22
0
ファイル: ofxPhysx.cpp プロジェクト: gnimmel/ofxPhysX
PxActor* World::addBox(const ofVec3f& size, const ofVec3f& pos, const ofQuaternion& rot, float mass)
{
	assert(inited);
	return createRigidBody(PxBoxGeometry(toPx(size)), mass, pos, rot);
}
コード例 #23
0
void BasicExample::initPhysics()
{
	m_guiHelper->setUpAxis(1);

	createEmptyDynamicsWorld();
	//m_dynamicsWorld->setGravity(btVector3(0,0,0));
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);

	if (m_dynamicsWorld->getDebugDrawer())
		m_dynamicsWorld->getDebugDrawer()->setDebugMode(btIDebugDraw::DBG_DrawWireframe+btIDebugDraw::DBG_DrawContactPoints);

	///create a few basic rigid bodies
	btBoxShape* groundShape = createBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
	

	//groundShape->initializePolyhedralFeatures();
	//btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
	
	m_collisionShapes.push_back(groundShape);

	btTransform groundTransform;
	groundTransform.setIdentity();
	groundTransform.setOrigin(btVector3(0,-50,0));

	{
		btScalar mass(0.);
		createRigidBody(mass,groundTransform,groundShape, btVector4(0,0,1,1));
	}


	{
		//create a few dynamic rigidbodies
		// Re-using the same collision is better for memory usage and performance

		btBoxShape* colShape = createBoxShape(btVector3(.1,.1,.1));
		

		//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
		m_collisionShapes.push_back(colShape);

		/// Create Dynamic Objects
		btTransform startTransform;
		startTransform.setIdentity();

		btScalar	mass(1.f);

		//rigidbody is dynamic if and only if mass is non zero, otherwise static
		bool isDynamic = (mass != 0.f);

		btVector3 localInertia(0,0,0);
		if (isDynamic)
			colShape->calculateLocalInertia(mass,localInertia);


		for (int k=0;k<ARRAY_SIZE_Y;k++)
		{
			for (int i=0;i<ARRAY_SIZE_X;i++)
			{
				for(int j = 0;j<ARRAY_SIZE_Z;j++)
				{
					startTransform.setOrigin(btVector3(
										btScalar(0.2*i),
										btScalar(2+.2*k),
										btScalar(0.2*j)));

			
					createRigidBody(mass,startTransform,colShape);
					

				}
			}
		}
	}

	
	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
	
}
コード例 #24
0
ファイル: ImportURDFSetup.cpp プロジェクト: rebcabin/bullet3
void ImportUrdfSetup::initPhysics()
{

	
	m_guiHelper->setUpAxis(m_upAxis);
	
	this->createEmptyDynamicsWorld();
	//m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
    m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
    m_dynamicsWorld->getDebugDrawer()->setDebugMode(
    btIDebugDraw::DBG_DrawConstraints
    +btIDebugDraw::DBG_DrawContactPoints
    +btIDebugDraw::DBG_DrawAabb
        );//+btIDebugDraw::DBG_DrawConstraintLimits);


	if (m_guiHelper->getParameterInterface())
	{
		SliderParams slider("Gravity", &m_grav);
		slider.m_minVal = -10;
		slider.m_maxVal = 10;
		m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
	}
	

	BulletURDFImporter u2b(m_guiHelper, 0);
	
	
	bool loadOk = u2b.loadURDF(m_fileName);

#ifdef TEST_MULTIBODY_SERIALIZATION	
	//test to serialize a multibody to disk or shared memory, with base, link and joint names
	btSerializer* s = new btDefaultSerializer;
#endif //TEST_MULTIBODY_SERIALIZATION

	if (loadOk)
	{
		//printTree(u2b,u2b.getRootLinkIndex());

		//u2b.printTree();

		btTransform identityTrans;
		identityTrans.setIdentity();


		{




			//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
			//int rootLinkIndex = u2b.getRootLinkIndex();
			//b3Printf("urdf root link index = %d\n",rootLinkIndex);
			MyMultiBodyCreator creation(m_guiHelper);

			ConvertURDF2Bullet(u2b,creation, identityTrans,m_dynamicsWorld,m_useMultiBody,u2b.getPathPrefix());
			m_data->m_rb = creation.getRigidBody();
			m_data->m_mb = creation.getBulletMultiBody();
			btMultiBody* mb = m_data->m_mb;
			for (int i = 0; i < u2b.getNumAllocatedCollisionShapes(); i++)
			{
				m_collisionShapes.push_back(u2b.getAllocatedCollisionShape(i));
			}

			if (m_useMultiBody && mb )
			{
				std::string*   name = new std::string(u2b.getLinkName(u2b.getRootLinkIndex()));
				m_nameMemory.push_back(name);
#ifdef TEST_MULTIBODY_SERIALIZATION
				s->registerNameForPointer(name->c_str(),name->c_str());
#endif//TEST_MULTIBODY_SERIALIZATION
				mb->setBaseName(name->c_str());
				//create motors for each btMultiBody joint
				int numLinks = mb->getNumLinks();
				for (int i=0;i<numLinks;i++)
				{
					int mbLinkIndex = i;
					int urdfLinkIndex = creation.m_mb2urdfLink[mbLinkIndex];

					std::string* jointName = new std::string(u2b.getJointName(urdfLinkIndex));
					std::string* linkName = new std::string(u2b.getLinkName(urdfLinkIndex).c_str());
#ifdef TEST_MULTIBODY_SERIALIZATION					
					s->registerNameForPointer(jointName->c_str(),jointName->c_str());
					s->registerNameForPointer(linkName->c_str(),linkName->c_str());
#endif//TEST_MULTIBODY_SERIALIZATION
					m_nameMemory.push_back(jointName);
					m_nameMemory.push_back(linkName);

					mb->getLink(i).m_linkName = linkName->c_str();
					mb->getLink(i).m_jointName = jointName->c_str();
							
					if (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute
					    ||mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::ePrismatic
					)
					{
						if (m_data->m_numMotors<MAX_NUM_MOTORS)
						{
							
							char motorName[1024];
							sprintf(motorName,"%s q'", jointName->c_str());
							btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors];
							*motorVel = 0.f;
							SliderParams slider(motorName,motorVel);
							slider.m_minVal=-4;
							slider.m_maxVal=4;
							m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
							float maxMotorImpulse = 10.1f;
							btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,0,0,maxMotorImpulse);
							//motor->setMaxAppliedImpulse(0);
							m_data->m_jointMotors[m_data->m_numMotors]=motor;
							m_dynamicsWorld->addMultiBodyConstraint(motor);
							m_data->m_numMotors++;
						}
					}

				}
			} else
			{
				if (1)
				{
					//create motors for each generic joint
					int num6Dof = creation.getNum6DofConstraints();
					for (int i=0;i<num6Dof;i++)
					{
						btGeneric6DofSpring2Constraint* c = creation.get6DofConstraint(i);
						if (c->getUserConstraintPtr())
						{
							GenericConstraintUserInfo* jointInfo = (GenericConstraintUserInfo*)c->getUserConstraintPtr();
							if ((jointInfo->m_urdfJointType ==URDFRevoluteJoint) || 
								(jointInfo->m_urdfJointType ==URDFPrismaticJoint) ||
								(jointInfo->m_urdfJointType ==URDFContinuousJoint))
							{
								int urdfLinkIndex = jointInfo->m_urdfIndex;
								std::string jointName = u2b.getJointName(urdfLinkIndex);
								char motorName[1024];
								sprintf(motorName,"%s q'", jointName.c_str());
								btScalar* motorVel = &m_data->m_motorTargetVelocities[m_data->m_numMotors];

								*motorVel = 0.f;
								SliderParams slider(motorName,motorVel);
								slider.m_minVal=-4;
								slider.m_maxVal=4;
								m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
								m_data->m_generic6DofJointMotors[m_data->m_numMotors]=c;
								bool motorOn = true;
								c->enableMotor(jointInfo->m_jointAxisIndex,motorOn);
								c->setMaxMotorForce(jointInfo->m_jointAxisIndex,10000);
								c->setTargetVelocity(jointInfo->m_jointAxisIndex,0);
								
								m_data->m_numMotors++;
							}
						}
					}
				}
				
			}
		}

		//the btMultiBody support is work-in-progress :-)

        for (int i=0;i<m_dynamicsWorld->getNumMultiBodyConstraints();i++)
        {
            m_dynamicsWorld->getMultiBodyConstraint(i)->finalizeMultiDof();
        }



		bool createGround=true;
		if (createGround)
		{
			btVector3 groundHalfExtents(20,20,20);
			groundHalfExtents[m_upAxis]=1.f;
			btBoxShape* box = new btBoxShape(groundHalfExtents);
			m_collisionShapes.push_back(box);
			box->initializePolyhedralFeatures();

			m_guiHelper->createCollisionShapeGraphicsObject(box);
			btTransform start; start.setIdentity();
			btVector3 groundOrigin(0,0,0);
			groundOrigin[m_upAxis]=-2.5;
			start.setOrigin(groundOrigin);
			btRigidBody* body =  createRigidBody(0,start,box);
			//m_dynamicsWorld->removeRigidBody(body);
		   // m_dynamicsWorld->addRigidBody(body,2,1);
			btVector3 color(0.5,0.5,0.5);
			m_guiHelper->createRigidBodyGraphicsObject(body,color);
		}

		
	}


#ifdef TEST_MULTIBODY_SERIALIZATION
	m_dynamicsWorld->serialize(s);
	b3ResourcePath p;
	char resourcePath[1024];
	if (p.findResourcePath("r2d2_multibody.bullet",resourcePath,1024))
	{
		FILE* f = fopen(resourcePath,"wb");
		fwrite(s->getBufferPointer(),s->getCurrentBufferSize(),1,f);
		fclose(f);
	}
#endif//TEST_MULTIBODY_SERIALIZATION

}
コード例 #25
0
ファイル: Hinge2Vehicle.cpp プロジェクト: Ochakko/MameBake3D
void Hinge2Vehicle::initPhysics()
{
	m_guiHelper->setUpAxis(1);


	btCollisionShape* groundShape = new btBoxShape(btVector3(50,3,50));
	m_collisionShapes.push_back(groundShape);
	m_collisionConfiguration = new btDefaultCollisionConfiguration();
	m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
	btVector3 worldMin(-1000,-1000,-1000);
	btVector3 worldMax(1000,1000,1000);
	m_broadphase = new btAxisSweep3(worldMin,worldMax);
	if (useMCLPSolver)
	{
		btDantzigSolver* mlcp = new btDantzigSolver();
		//btSolveProjectedGaussSeidel* mlcp = new btSolveProjectedGaussSeidel;
		btMLCPSolver* sol = new btMLCPSolver(mlcp);
		m_solver = sol;
	} else
	{
		m_solver = new btSequentialImpulseConstraintSolver();
	}
	m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
	if (useMCLPSolver)
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 1;//for direct solver it is better to have a small A matrix
	} else
	{
		m_dynamicsWorld ->getSolverInfo().m_minimumSolverBatchSize = 128;//for direct solver, it is better to solve multiple objects together, small batches have high overhead
	}
	m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
	

	//m_dynamicsWorld->setGravity(btVector3(0,0,0));
btTransform tr;
tr.setIdentity();
tr.setOrigin(btVector3(0,-3,0));

//either use heightfield or triangle mesh


	//create ground object
	localCreateRigidBody(0,tr,groundShape);

	btCollisionShape* chassisShape = new btBoxShape(btVector3(1.f,0.5f,2.f));
	m_collisionShapes.push_back(chassisShape);

	btCompoundShape* compound = new btCompoundShape();
	m_collisionShapes.push_back(compound);
	btTransform localTrans;
	localTrans.setIdentity();
	//localTrans effectively shifts the center of mass with respect to the chassis
	localTrans.setOrigin(btVector3(0,1,0));

	compound->addChildShape(localTrans,chassisShape);

	{
		btCollisionShape* suppShape = new btBoxShape(btVector3(0.5f,0.1f,0.5f));
		btTransform suppLocalTrans;
		suppLocalTrans.setIdentity();
		//localTrans effectively shifts the center of mass with respect to the chassis
		suppLocalTrans.setOrigin(btVector3(0,1.0,2.5));
		compound->addChildShape(suppLocalTrans, suppShape);
	}

	tr.setOrigin(btVector3(0,0.f,0));

	btScalar chassisMass = 800;
	m_carChassis = localCreateRigidBody(chassisMass,tr,compound);//chassisShape);
	//m_carChassis->setDamping(0.2,0.2);
	
	//m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
	m_wheelShape = new btCylinderShapeX(btVector3(wheelWidth,wheelRadius,wheelRadius));
	

	//const float position[4]={0,10,10,0};
	//const float quaternion[4]={0,0,0,1};
	//const float color[4]={0,1,0,1};
	//const float scaling[4] = {1,1,1,1};

	btVector3 wheelPos[4] = {
		btVector3(btScalar(-1.), btScalar(-0.25), btScalar(1.25)),
		btVector3(btScalar(1.), btScalar(-0.25), btScalar(1.25)),
		btVector3(btScalar(1.), btScalar(-0.25), btScalar(-1.25)),
		btVector3(btScalar(-1.), btScalar(-0.25), btScalar(-1.25))
	};

	
	for (int i=0;i<4;i++)
	{ 
		// create a Hinge2 joint
		// create two rigid bodies
		// static bodyA (parent) on top:
		
		
		btRigidBody* pBodyA = this->m_carChassis;//m_chassis;//createRigidBody( 0.0, tr, m_wheelShape);
		pBodyA->setActivationState(DISABLE_DEACTIVATION);
		// dynamic bodyB (child) below it :
		btTransform tr;
		tr.setIdentity();
		tr.setOrigin(wheelPos[i]);
		
		btRigidBody* pBodyB = createRigidBody(10.0, tr, m_wheelShape);
		pBodyB->setFriction(1110);
		pBodyB->setActivationState(DISABLE_DEACTIVATION);
		// add some data to build constraint frames
		btVector3 parentAxis(0.f, 1.f, 0.f); 
		btVector3 childAxis(1.f, 0.f, 0.f); 
		btVector3 anchor = tr.getOrigin();//(0.f, 0.f, 0.f);
		btHinge2Constraint* pHinge2 = new btHinge2Constraint(*pBodyA, *pBodyB, anchor, parentAxis, childAxis);
		
		//m_guiHelper->get2dCanvasInterface();
		

		pHinge2->setLowerLimit(-SIMD_HALF_PI * 0.5f);
		pHinge2->setUpperLimit( SIMD_HALF_PI * 0.5f);
		// add constraint to world
		m_dynamicsWorld->addConstraint(pHinge2, true);
		// draw constraint frames and limits for debugging
		{
			int motorAxis = 3;
			pHinge2->enableMotor(motorAxis,true);
			pHinge2->setMaxMotorForce(motorAxis,1000);
			pHinge2->setTargetVelocity(motorAxis,-1);
		}

		{
			int motorAxis = 5;
			pHinge2->enableMotor(motorAxis,true);
			pHinge2->setMaxMotorForce(motorAxis,1000);
			pHinge2->setTargetVelocity(motorAxis,0);
		}

		pHinge2->setDbgDrawSize(btScalar(5.f));
	}


	{
		btCollisionShape* liftShape = new btBoxShape(btVector3(0.5f,2.0f,0.05f));
		m_collisionShapes.push_back(liftShape);
		btTransform liftTrans;
		m_liftStartPos = btVector3(0.0f, 2.5f, 3.05f);
		liftTrans.setIdentity();
		liftTrans.setOrigin(m_liftStartPos);
		m_liftBody = localCreateRigidBody(10,liftTrans, liftShape);

		btTransform localA, localB;
		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, M_PI_2, 0);
		localA.setOrigin(btVector3(0.0, 1.0, 3.05));
		localB.getBasis().setEulerZYX(0, M_PI_2, 0);
		localB.setOrigin(btVector3(0.0, -1.5, -0.05));
		m_liftHinge = new btHingeConstraint(*m_carChassis,*m_liftBody, localA, localB);
//		m_liftHinge->setLimit(-LIFT_EPS, LIFT_EPS);
		m_liftHinge->setLimit(0.0f, 0.0f);
		m_dynamicsWorld->addConstraint(m_liftHinge, true);

		btCollisionShape* forkShapeA = new btBoxShape(btVector3(1.0f,0.1f,0.1f));
		m_collisionShapes.push_back(forkShapeA);
		btCompoundShape* forkCompound = new btCompoundShape();
		m_collisionShapes.push_back(forkCompound);
		btTransform forkLocalTrans;
		forkLocalTrans.setIdentity();
		forkCompound->addChildShape(forkLocalTrans, forkShapeA);

		btCollisionShape* forkShapeB = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeB);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(-0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeB);

		btCollisionShape* forkShapeC = new btBoxShape(btVector3(0.1f,0.02f,0.6f));
		m_collisionShapes.push_back(forkShapeC);
		forkLocalTrans.setIdentity();
		forkLocalTrans.setOrigin(btVector3(0.9f, -0.08f, 0.7f));
		forkCompound->addChildShape(forkLocalTrans, forkShapeC);

		btTransform forkTrans;
		m_forkStartPos = btVector3(0.0f, 0.6f, 3.2f);
		forkTrans.setIdentity();
		forkTrans.setOrigin(m_forkStartPos);
		m_forkBody = localCreateRigidBody(5, forkTrans, forkCompound);

		localA.setIdentity();
		localB.setIdentity();
		localA.getBasis().setEulerZYX(0, 0, M_PI_2);
		localA.setOrigin(btVector3(0.0f, -1.9f, 0.05f));
		localB.getBasis().setEulerZYX(0, 0, M_PI_2);
		localB.setOrigin(btVector3(0.0, 0.0, -0.1));
		m_forkSlider = new btSliderConstraint(*m_liftBody, *m_forkBody, localA, localB, true);
		m_forkSlider->setLowerLinLimit(0.1f);
		m_forkSlider->setUpperLinLimit(0.1f);
//		m_forkSlider->setLowerAngLimit(-LIFT_EPS);
//		m_forkSlider->setUpperAngLimit(LIFT_EPS);
		m_forkSlider->setLowerAngLimit(0.0f);
		m_forkSlider->setUpperAngLimit(0.0f);
		m_dynamicsWorld->addConstraint(m_forkSlider, true);


		btCompoundShape* loadCompound = new btCompoundShape();
		m_collisionShapes.push_back(loadCompound);
		btCollisionShape* loadShapeA = new btBoxShape(btVector3(2.0f,0.5f,0.5f));
		m_collisionShapes.push_back(loadShapeA);
		btTransform loadTrans;
		loadTrans.setIdentity();
		loadCompound->addChildShape(loadTrans, loadShapeA);
		btCollisionShape* loadShapeB = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeB);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeB);
		btCollisionShape* loadShapeC = new btBoxShape(btVector3(0.1f,1.0f,1.0f));
		m_collisionShapes.push_back(loadShapeC);
		loadTrans.setIdentity();
		loadTrans.setOrigin(btVector3(-2.1f, 0.0f, 0.0f));
		loadCompound->addChildShape(loadTrans, loadShapeC);
		loadTrans.setIdentity();
		m_loadStartPos = btVector3(0.0f, 3.5f, 7.0f);
		loadTrans.setOrigin(m_loadStartPos);
		m_loadBody  = localCreateRigidBody(loadMass, loadTrans, loadCompound);
	}



	
	resetForklift();
	
//	setCameraDistance(26.f);

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
コード例 #26
0
void ImportSDFSetup::initPhysics()
{

	int upAxis = 2;
	m_guiHelper->setUpAxis(upAxis);

	this->createEmptyDynamicsWorld();
	//m_dynamicsWorld->getSolverInfo().m_numIterations = 100;
    m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
    m_dynamicsWorld->getDebugDrawer()->setDebugMode(
    btIDebugDraw::DBG_DrawConstraints
    +btIDebugDraw::DBG_DrawContactPoints
    +btIDebugDraw::DBG_DrawAabb
        );//+btIDebugDraw::DBG_DrawConstraintLimits);


	btVector3 gravity(0,0,0);
	gravity[upAxis]=-9.8;

	m_dynamicsWorld->setGravity(gravity);

    BulletURDFImporter u2b(m_guiHelper);
    
    bool loadOk =  u2b.loadSDF(m_fileName);


	if (loadOk)
	{
		//printTree(u2b,u2b.getRootLinkIndex());

		//u2b.printTree();

		btTransform identityTrans;
		identityTrans.setIdentity();


        
        for (int m =0; m<u2b.getNumModels();m++)
		{

            u2b.activateModel(m);
            
			btMultiBody* mb = 0;


			//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
			int rootLinkIndex = u2b.getRootLinkIndex();
			b3Printf("urdf root link index = %d\n",rootLinkIndex);
			MyMultiBodyCreator creation(m_guiHelper);

			ConvertURDF2Bullet(u2b,creation, identityTrans,m_dynamicsWorld,m_useMultiBody,u2b.getPathPrefix());
			mb = creation.getBulletMultiBody();
			
		}

	
        for (int i=0;i<m_dynamicsWorld->getNumMultiBodyConstraints();i++)
        {
            m_dynamicsWorld->getMultiBodyConstraint(i)->finalizeMultiDof();
        }



		bool createGround=true;
		if (createGround)
		{
			btVector3 groundHalfExtents(20,20,20);
			groundHalfExtents[upAxis]=1.f;
			btBoxShape* box = new btBoxShape(groundHalfExtents);
			box->initializePolyhedralFeatures();

			m_guiHelper->createCollisionShapeGraphicsObject(box);
			btTransform start; start.setIdentity();
			btVector3 groundOrigin(0,0,0);
			groundOrigin[upAxis]=-2.5;
			start.setOrigin(groundOrigin);
			btRigidBody* body =  createRigidBody(0,start,box);
			//m_dynamicsWorld->removeRigidBody(body);
		   // m_dynamicsWorld->addRigidBody(body,2,1);
			btVector3 color(0.5,0.5,0.5);
			m_guiHelper->createRigidBodyGraphicsObject(body,color);
		}

		///this extra stepSimulation call makes sure that all the btMultibody transforms are properly propagates.
		m_dynamicsWorld->stepSimulation(1. / 240., 0);// 1., 10, 1. / 240.);
	}


}
コード例 #27
0
ファイル: SimpleJoint.cpp プロジェクト: 54UL/bullet3
void SimpleJointExample::initPhysics()
{
	m_guiHelper->setUpAxis(1);

	createEmptyDynamicsWorld();
	
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);

	if (m_dynamicsWorld->getDebugDrawer())
		m_dynamicsWorld->getDebugDrawer()->setDebugMode(btIDebugDraw::DBG_DrawWireframe+btIDebugDraw::DBG_DrawContactPoints);

	///create a few basic rigid bodies
	btBoxShape* groundShape = createBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
	m_collisionShapes.push_back(groundShape);

	btTransform groundTransform;
	groundTransform.setIdentity();
	groundTransform.setOrigin(btVector3(0,-50,0)); 
	{
		btScalar mass(0.);
		createRigidBody(mass,groundTransform,groundShape, btVector4(0,0,1,1));
	}


	{
		//create a few dynamic rigidbodies
		// Re-using the same collision is better for memory usage and performance
        btBoxShape* colShape = createBoxShape(btVector3(1,1,1));
		 
		m_collisionShapes.push_back(colShape);

		/// Create Dynamic Objects
		btTransform startTransform;
		startTransform.setIdentity();

		btScalar	mass(1.f);

		//rigidbody is dynamic if and only if mass is non zero, otherwise static
		bool isDynamic = (mass != 0.f);

		btVector3 localInertia(0,0,0);
		if (isDynamic)
			colShape->calculateLocalInertia(mass,localInertia);


		startTransform.setOrigin(btVector3(
								 btScalar(0),
								 btScalar(10),
								 btScalar(0)));
		btRigidBody* dynamicBox = createRigidBody(mass,startTransform,colShape);	

		//create a static rigid body
		mass = 0;
		startTransform.setOrigin(btVector3(
								 btScalar(0),
								 btScalar(20),
								 btScalar(0)));
		
		btRigidBody* staticBox = createRigidBody(mass,startTransform,colShape);	

		//create a simple p2pjoint constraint
		btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*dynamicBox, *staticBox, btVector3(0,3,0), btVector3(0,0,0));
		p2p->m_setting.m_damping = 0.0625;
		p2p->m_setting.m_impulseClamp = 0.95;
		m_dynamicsWorld->addConstraint(p2p);
	}

	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
コード例 #28
0
btCollisionObject* btBulletWorldImporter::createCollisionObject(const btTransform& startTransform,btCollisionShape* shape, const char* bodyName)
{
	return createRigidBody(false,0,startTransform,shape,bodyName);
}
コード例 #29
0
void RigidBodyFromObjExample::initPhysics()
{
	m_guiHelper->setUpAxis(1);

	createEmptyDynamicsWorld();
	
	m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);

	//if (m_dynamicsWorld->getDebugDrawer())
	//	m_dynamicsWorld->getDebugDrawer()->setDebugMode(btIDebugDraw::DBG_DrawWireframe+btIDebugDraw::DBG_DrawContactPoints);

	///create a few basic rigid bodies
	btBoxShape* groundShape = createBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
	m_collisionShapes.push_back(groundShape);

	btTransform groundTransform;
	groundTransform.setIdentity();
	groundTransform.setOrigin(btVector3(0,-50,0)); 
	{
		btScalar mass(0.);
		createRigidBody(mass,groundTransform,groundShape, btVector4(0,0,1,1));
	}

	//load our obj mesh
	const char* fileName = "teddy.obj";//sphere8.obj";//sponza_closed.obj";//sphere8.obj";
    char relativeFileName[1024];
    if (b3ResourcePath::findResourcePath(fileName, relativeFileName, 1024))
    {
		char pathPrefix[1024];
		b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
	}
	
	GLInstanceGraphicsShape* glmesh = LoadMeshFromObj(relativeFileName, "");
	printf("[INFO] Obj loaded: Extracted %d verticed from obj file [%s]\n", glmesh->m_numvertices, fileName);

	const GLInstanceVertex& v = glmesh->m_vertices->at(0);
	btConvexHullShape* shape = new btConvexHullShape((const btScalar*)(&(v.xyzw[0])), glmesh->m_numvertices, sizeof(GLInstanceVertex));

	float scaling[4] = {0.1,0.1,0.1,1};
	
	btVector3 localScaling(scaling[0],scaling[1],scaling[2]);
	shape->setLocalScaling(localScaling);
	    
    if (m_options & OptimizeConvexObj)
    {
        shape->optimizeConvexHull();
    }

    if (m_options & ComputePolyhedralFeatures)
    {
        shape->initializePolyhedralFeatures();    
    }
	
	
	
	//shape->setMargin(0.001);
	m_collisionShapes.push_back(shape);

	btTransform startTransform;
	startTransform.setIdentity();

	btScalar	mass(1.f);
	bool isDynamic = (mass != 0.f);
	btVector3 localInertia(0,0,0);
	if (isDynamic)
		shape->calculateLocalInertia(mass,localInertia);

	float color[4] = {1,1,1,1};
	float orn[4] = {0,0,0,1};
	float pos[4] = {0,3,0,0};
	btVector3 position(pos[0],pos[1],pos[2]);
	startTransform.setOrigin(position);
        btRigidBody* body = createRigidBody(mass,startTransform,shape);


	
	bool useConvexHullForRendering = ((m_options & ObjUseConvexHullForRendering)!=0);
    
	    
	if (!useConvexHullForRendering)
    {
		int shapeId = m_guiHelper->registerGraphicsShape(&glmesh->m_vertices->at(0).xyzw[0], 
																		glmesh->m_numvertices, 
																		&glmesh->m_indices->at(0), 
																		glmesh->m_numIndices,
																		B3_GL_TRIANGLES, -1);
		shape->setUserIndex(shapeId);
		int renderInstance = m_guiHelper->registerGraphicsInstance(shapeId,pos,orn,color,scaling);
		body->setUserIndex(renderInstance);
    }
    
	m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
コード例 #30
0
bool	btBulletWorldImporter::convertAllObjects(  bParse::btBulletFile* bulletFile2)
{
	int i;
	
	for (i=0;i<bulletFile2->m_bvhs.size();i++)
	{
		btOptimizedBvh* bvh = createOptimizedBvh();

		if (bulletFile2->getFlags() & bParse::FD_DOUBLE_PRECISION)
		{
			btQuantizedBvhDoubleData* bvhData = (btQuantizedBvhDoubleData*)bulletFile2->m_bvhs[i];
			bvh->deSerializeDouble(*bvhData);
		} else
		{
			btQuantizedBvhFloatData* bvhData = (btQuantizedBvhFloatData*)bulletFile2->m_bvhs[i];
			bvh->deSerializeFloat(*bvhData);
		}
		m_bvhMap.insert(bulletFile2->m_bvhs[i],bvh);
	}



	btHashMap<btHashPtr,btCollisionShape*>	shapeMap;

	for (i=0;i<bulletFile2->m_collisionShapes.size();i++)
	{
		btCollisionShapeData* shapeData = (btCollisionShapeData*)bulletFile2->m_collisionShapes[i];
		btCollisionShape* shape = convertCollisionShape(shapeData);
		if (shape)
		{
	//		printf("shapeMap.insert(%x,%x)\n",shapeData,shape);
			shapeMap.insert(shapeData,shape);
		}

		if (shape&& shapeData->m_name)
		{
			char* newname = duplicateName(shapeData->m_name);
			m_objectNameMap.insert(shape,newname);
			m_nameShapeMap.insert(newname,shape);
		}
	}

	btHashMap<btHashPtr,btCollisionObject*>	bodyMap;

	for (i=0;i<bulletFile2->m_rigidBodies.size();i++)
	{
		if (bulletFile2->getFlags() & bParse::FD_DOUBLE_PRECISION)
		{
			btRigidBodyDoubleData* colObjData = (btRigidBodyDoubleData*)bulletFile2->m_rigidBodies[i];
			btScalar mass = btScalar(colObjData->m_inverseMass? 1.f/colObjData->m_inverseMass : 0.f);
			btVector3 localInertia;
			localInertia.setZero();
			btCollisionShape** shapePtr = shapeMap.find(colObjData->m_collisionObjectData.m_collisionShape);
			if (shapePtr && *shapePtr)
			{
				btTransform startTransform;
				startTransform.deSerializeDouble(colObjData->m_collisionObjectData.m_worldTransform);
			//	startTransform.setBasis(btMatrix3x3::getIdentity());
				btCollisionShape* shape = (btCollisionShape*)*shapePtr;
				if (shape->isNonMoving())
				{
					mass = 0.f;
				}

				if (mass)
				{
					shape->calculateLocalInertia(mass,localInertia);
				}
				bool isDynamic = mass!=0.f;
				
				btRigidBody* body = createRigidBody(isDynamic,mass,startTransform,shape,colObjData->m_collisionObjectData.m_name);
#ifdef USE_INTERNAL_EDGE_UTILITY
				if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
				{
					btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)shape;
					if (trimesh->getTriangleInfoMap())
					{
						body->setCollisionFlags(body->getCollisionFlags()  | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
					}
				}
#endif //USE_INTERNAL_EDGE_UTILITY
				bodyMap.insert(colObjData,body);
			} else
			{
				printf("error: no shape found\n");
			}
	
		} else
		{
			btRigidBodyFloatData* colObjData = (btRigidBodyFloatData*)bulletFile2->m_rigidBodies[i];
			btScalar mass = btScalar(colObjData->m_inverseMass? 1.f/colObjData->m_inverseMass : 0.f);
			btVector3 localInertia;
			localInertia.setZero();
			btCollisionShape** shapePtr = shapeMap.find(colObjData->m_collisionObjectData.m_collisionShape);
			if (shapePtr && *shapePtr)
			{
				btTransform startTransform;
				startTransform.deSerializeFloat(colObjData->m_collisionObjectData.m_worldTransform);
			//	startTransform.setBasis(btMatrix3x3::getIdentity());
				btCollisionShape* shape = (btCollisionShape*)*shapePtr;
				if (shape->isNonMoving())
				{
					mass = 0.f;
				}
				if (mass)
				{
					shape->calculateLocalInertia(mass,localInertia);
				}
				bool isDynamic = mass!=0.f;
				btRigidBody* body = createRigidBody(isDynamic,mass,startTransform,shape,colObjData->m_collisionObjectData.m_name);
#ifdef USE_INTERNAL_EDGE_UTILITY
				if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
				{
					btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)shape;
					if (trimesh->getTriangleInfoMap())
					{
						body->setCollisionFlags(body->getCollisionFlags()  | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
					}
				}
#endif //USE_INTERNAL_EDGE_UTILITY
				bodyMap.insert(colObjData,body);
			} else
			{
				printf("error: no shape found\n");
			}
		}
	}

	for (i=0;i<bulletFile2->m_collisionObjects.size();i++)
	{
		if (bulletFile2->getFlags() & bParse::FD_DOUBLE_PRECISION)
		{
			btCollisionObjectDoubleData* colObjData = (btCollisionObjectDoubleData*)bulletFile2->m_collisionObjects[i];
			btCollisionShape** shapePtr = shapeMap.find(colObjData->m_collisionShape);
			if (shapePtr && *shapePtr)
			{
				btTransform startTransform;
				startTransform.deSerializeDouble(colObjData->m_worldTransform);
				btCollisionShape* shape = (btCollisionShape*)*shapePtr;
				btCollisionObject* body = createCollisionObject(startTransform,shape,colObjData->m_name);

#ifdef USE_INTERNAL_EDGE_UTILITY
				if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
				{
					btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)shape;
					if (trimesh->getTriangleInfoMap())
					{
						body->setCollisionFlags(body->getCollisionFlags()  | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
					}
				}
#endif //USE_INTERNAL_EDGE_UTILITY
				bodyMap.insert(colObjData,body);
			} else
			{
				printf("error: no shape found\n");
			}
	
		} else
		{
			btCollisionObjectFloatData* colObjData = (btCollisionObjectFloatData*)bulletFile2->m_collisionObjects[i];
			btCollisionShape** shapePtr = shapeMap.find(colObjData->m_collisionShape);
			if (shapePtr && *shapePtr)
			{
				btTransform startTransform;
				startTransform.deSerializeFloat(colObjData->m_worldTransform);
				btCollisionShape* shape = (btCollisionShape*)*shapePtr;
				btCollisionObject* body = createCollisionObject(startTransform,shape,colObjData->m_name);

#ifdef USE_INTERNAL_EDGE_UTILITY
				if (shape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
				{
					btBvhTriangleMeshShape* trimesh = (btBvhTriangleMeshShape*)shape;
					if (trimesh->getTriangleInfoMap())
					{
						body->setCollisionFlags(body->getCollisionFlags()  | btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
					}
				}
#endif //USE_INTERNAL_EDGE_UTILITY
				bodyMap.insert(colObjData,body);
			} else
			{
				printf("error: no shape found\n");
			}
		}
		
		printf("bla");
	}

	
	for (i=0;i<bulletFile2->m_constraints.size();i++)
	{
		btTypedConstraintData* constraintData = (btTypedConstraintData*)bulletFile2->m_constraints[i];
		btCollisionObject** colAptr = bodyMap.find(constraintData->m_rbA);
		btCollisionObject** colBptr = bodyMap.find(constraintData->m_rbB);

		btRigidBody* rbA = 0;
		btRigidBody* rbB = 0;

		if (colAptr)
		{
			rbA = btRigidBody::upcast(*colAptr);
			if (!rbA)
				rbA = &getFixedBody();
		}
		if (colBptr)
		{
			rbB = btRigidBody::upcast(*colBptr);
			if (!rbB)
				rbB = &getFixedBody();
		}
				
		btTypedConstraint* constraint = 0;

		switch (constraintData->m_objectType)
		{
		case POINT2POINT_CONSTRAINT_TYPE:
			{
				if (bulletFile2->getFlags() & bParse::FD_DOUBLE_PRECISION)
				{
					btPoint2PointConstraintDoubleData* p2pData = (btPoint2PointConstraintDoubleData*)constraintData;
					if (rbA && rbB)
					{					
						btVector3 pivotInA,pivotInB;
						pivotInA.deSerializeDouble(p2pData->m_pivotInA);
						pivotInB.deSerializeDouble(p2pData->m_pivotInB);
						constraint = createPoint2PointConstraint(*rbA,*rbB,pivotInA,pivotInB);
					} else
					{
						btVector3 pivotInA;
						pivotInA.deSerializeDouble(p2pData->m_pivotInA);
						constraint = createPoint2PointConstraint(*rbA,pivotInA);
					}
				} else
				{
					btPoint2PointConstraintFloatData* p2pData = (btPoint2PointConstraintFloatData*)constraintData;
					if (rbA&& rbB)
					{					
						btVector3 pivotInA,pivotInB;
						pivotInA.deSerializeFloat(p2pData->m_pivotInA);
						pivotInB.deSerializeFloat(p2pData->m_pivotInB);
						constraint = createPoint2PointConstraint(*rbA,*rbB,pivotInA,pivotInB);
					
					} else
					{
						btVector3 pivotInA;
						pivotInA.deSerializeFloat(p2pData->m_pivotInA);
						constraint = createPoint2PointConstraint(*rbA,pivotInA);
					}

				}

				break;
			}
		case HINGE_CONSTRAINT_TYPE:
			{
				btHingeConstraint* hinge = 0;

				if (bulletFile2->getFlags() & bParse::FD_DOUBLE_PRECISION)
				{
					btHingeConstraintDoubleData* hingeData = (btHingeConstraintDoubleData*)constraintData;
					if (rbA&& rbB)
					{
						btTransform rbAFrame,rbBFrame;
						rbAFrame.deSerializeDouble(hingeData->m_rbAFrame);
						rbBFrame.deSerializeDouble(hingeData->m_rbBFrame);
						hinge = createHingeConstraint(*rbA,*rbB,rbAFrame,rbBFrame,hingeData->m_useReferenceFrameA!=0);
					} else
					{
						btTransform rbAFrame;
						rbAFrame.deSerializeDouble(hingeData->m_rbAFrame);
						hinge = createHingeConstraint(*rbA,rbAFrame,hingeData->m_useReferenceFrameA!=0);
					}
					if (hingeData->m_enableAngularMotor)
					{
						hinge->enableAngularMotor(true,hingeData->m_motorTargetVelocity,hingeData->m_maxMotorImpulse);
					}
					hinge->setAngularOnly(hingeData->m_angularOnly!=0);
					hinge->setLimit(btScalar(hingeData->m_lowerLimit),btScalar(hingeData->m_upperLimit),btScalar(hingeData->m_limitSoftness),btScalar(hingeData->m_biasFactor),btScalar(hingeData->m_relaxationFactor));
				} else
				{
					btHingeConstraintFloatData* hingeData = (btHingeConstraintFloatData*)constraintData;
					if (rbA&& rbB)
					{
						btTransform rbAFrame,rbBFrame;
						rbAFrame.deSerializeFloat(hingeData->m_rbAFrame);
						rbBFrame.deSerializeFloat(hingeData->m_rbBFrame);
						hinge = createHingeConstraint(*rbA,*rbB,rbAFrame,rbBFrame,hingeData->m_useReferenceFrameA!=0);
					} else
					{
						btTransform rbAFrame;
						rbAFrame.deSerializeFloat(hingeData->m_rbAFrame);
						hinge = createHingeConstraint(*rbA,rbAFrame,hingeData->m_useReferenceFrameA!=0);
					}
					if (hingeData->m_enableAngularMotor)
					{
						hinge->enableAngularMotor(true,hingeData->m_motorTargetVelocity,hingeData->m_maxMotorImpulse);
					}
					hinge->setAngularOnly(hingeData->m_angularOnly!=0);
					hinge->setLimit(btScalar(hingeData->m_lowerLimit),btScalar(hingeData->m_upperLimit),btScalar(hingeData->m_limitSoftness),btScalar(hingeData->m_biasFactor),btScalar(hingeData->m_relaxationFactor));
				}

				constraint = hinge;
				break;

			}
		case CONETWIST_CONSTRAINT_TYPE:
			{
				btConeTwistConstraintData* coneData = (btConeTwistConstraintData*)constraintData;
				btConeTwistConstraint* coneTwist = 0;
				
				if (rbA&& rbB)
				{
					btTransform rbAFrame,rbBFrame;
					rbAFrame.deSerializeFloat(coneData->m_rbAFrame);
					rbBFrame.deSerializeFloat(coneData->m_rbBFrame);
					coneTwist = createConeTwistConstraint(*rbA,*rbB,rbAFrame,rbBFrame);
				} else
				{
					btTransform rbAFrame;
					rbAFrame.deSerializeFloat(coneData->m_rbAFrame);
					coneTwist = createConeTwistConstraint(*rbA,rbAFrame);
				}
				coneTwist->setLimit(coneData->m_swingSpan1,coneData->m_swingSpan2,coneData->m_twistSpan,coneData->m_limitSoftness,coneData->m_biasFactor,coneData->m_relaxationFactor);
				coneTwist->setDamping(coneData->m_damping);
				
				constraint = coneTwist;
				break;
			}

		case D6_CONSTRAINT_TYPE:
			{
				btGeneric6DofConstraintData* dofData = (btGeneric6DofConstraintData*)constraintData;
				btGeneric6DofConstraint* dof = 0;

				if (rbA&& rbB)
				{
					btTransform rbAFrame,rbBFrame;
					rbAFrame.deSerializeFloat(dofData->m_rbAFrame);
					rbBFrame.deSerializeFloat(dofData->m_rbBFrame);
					dof = createGeneric6DofConstraint(*rbA,*rbB,rbAFrame,rbBFrame,dofData->m_useLinearReferenceFrameA!=0);
				} else
				{
					if (rbB)
					{
						btTransform rbBFrame;
						rbBFrame.deSerializeFloat(dofData->m_rbBFrame);
						dof = createGeneric6DofConstraint(*rbB,rbBFrame,dofData->m_useLinearReferenceFrameA!=0);
					} else
					{
						printf("Error in btWorldImporter::createGeneric6DofConstraint: missing rbB\n");
					}
				}

				if (dof)
				{
					btVector3 angLowerLimit,angUpperLimit, linLowerLimit,linUpperlimit;
					angLowerLimit.deSerializeFloat(dofData->m_angularLowerLimit);
					angUpperLimit.deSerializeFloat(dofData->m_angularUpperLimit);
					linLowerLimit.deSerializeFloat(dofData->m_linearLowerLimit);
					linUpperlimit.deSerializeFloat(dofData->m_linearUpperLimit);
					
					dof->setAngularLowerLimit(angLowerLimit);
					dof->setAngularUpperLimit(angUpperLimit);
					dof->setLinearLowerLimit(linLowerLimit);
					dof->setLinearUpperLimit(linUpperlimit);
				}

				constraint = dof;
				break;
			}
		case SLIDER_CONSTRAINT_TYPE:
			{
				btSliderConstraintData* sliderData = (btSliderConstraintData*)constraintData;
				btSliderConstraint* slider = 0;
				if (rbA&& rbB)
				{
					btTransform rbAFrame,rbBFrame;
					rbAFrame.deSerializeFloat(sliderData->m_rbAFrame);
					rbBFrame.deSerializeFloat(sliderData->m_rbBFrame);
					slider = createSliderConstraint(*rbA,*rbB,rbAFrame,rbBFrame,sliderData->m_useLinearReferenceFrameA!=0);
				} else
				{
					btTransform rbBFrame;
					rbBFrame.deSerializeFloat(sliderData->m_rbBFrame);
					slider = createSliderConstraint(*rbB,rbBFrame,sliderData->m_useLinearReferenceFrameA!=0);
				}
				slider->setLowerLinLimit(sliderData->m_linearLowerLimit);
				slider->setUpperLinLimit(sliderData->m_linearUpperLimit);
				slider->setLowerAngLimit(sliderData->m_angularLowerLimit);
				slider->setUpperAngLimit(sliderData->m_angularUpperLimit);
				slider->setUseFrameOffset(sliderData->m_useOffsetForConstraintFrame!=0);
				constraint = slider;
				break;
			}
		
		default:
			{
				printf("unknown constraint type\n");
			}
		};

		if (constraint)
		{
			constraint->setDbgDrawSize(constraintData->m_dbgDrawSize);
			if (constraintData->m_name)
			{
				char* newname = duplicateName(constraintData->m_name);
				m_nameConstraintMap.insert(newname,constraint);
				m_objectNameMap.insert(constraint,newname);
			}
			if(m_dynamicsWorld)
				m_dynamicsWorld->addConstraint(constraint,constraintData->m_disableCollisionsBetweenLinkedBodies!=0);
		}
		
	}

	return true;
}