returnValue Power::AD_symmetric( int dim , /**< number of directions */ VariableType *varType , /**< the variable types */ int *component , /**< and their components */ Operator *l , /**< the backward seed */ Operator **S , /**< forward seed matrix */ int dimS , /**< dimension of forward seed */ Operator **dfS , /**< first order foward result */ Operator **ldf , /**< first order backward result */ Operator **H , /**< upper trianglular part of the Hessian */ int &nNewLIS , /**< the number of newLIS */ TreeProjection ***newLIS , /**< the new LIS-pointer */ int &nNewSIS , /**< the number of newSIS */ TreeProjection ***newSIS , /**< the new SIS-pointer */ int &nNewHIS , /**< the number of newHIS */ TreeProjection ***newHIS /**< the new HIS-pointer */ ){ TreeProjection dyy, dy; TreeProjection dx( *derivative12 ); dy = Product( clone(), derivative02->clone()); TreeProjection dxx( *derivative22 ); TreeProjection dxy( *derivative23 ); dyy = Product( dy.clone(), derivative02->clone() ); return ADsymCommon2( argument1,argument2,dx,dy,dxx,dxy,dyy, dim, varType, component, l, S, dimS, dfS, ldf, H, nNewLIS, newLIS, nNewSIS, newSIS, nNewHIS, newHIS ); }
void computeCorners(CTensor<float>& aImage, CMatrix<float>& aCorners, float aRho) { aCorners.setSize(aImage.xSize(),aImage.ySize()); int aXSize = aImage.xSize(); int aYSize = aImage.ySize(); int aSize = aXSize*aYSize; // Compute gradient CTensor<float> dx(aXSize,aYSize,aImage.zSize()); CTensor<float> dy(aXSize,aYSize,aImage.zSize()); CDerivative<float> aDerivative(3); NFilter::filter(aImage,dx,aDerivative,1,1); NFilter::filter(aImage,dy,1,aDerivative,1); // Compute second moment matrix CMatrix<float> dxx(aXSize,aYSize,0); CMatrix<float> dyy(aXSize,aYSize,0); CMatrix<float> dxy(aXSize,aYSize,0); int i2 = 0; for (int k = 0; k < aImage.zSize(); k++) for (int i = 0; i < aSize; i++,i2++) { dxx.data()[i] += dx.data()[i2]*dx.data()[i2]; dyy.data()[i] += dy.data()[i2]*dy.data()[i2]; dxy.data()[i] += dx.data()[i2]*dy.data()[i2]; } // Smooth second moment matrix NFilter::recursiveSmoothX(dxx,aRho); NFilter::recursiveSmoothY(dxx,aRho); NFilter::recursiveSmoothX(dyy,aRho); NFilter::recursiveSmoothY(dyy,aRho); NFilter::recursiveSmoothX(dxy,aRho); NFilter::recursiveSmoothY(dxy,aRho); // Compute smallest eigenvalue for (int i = 0; i < aSize; i++) { float a = dxx.data()[i]; float b = dxy.data()[i]; float c = dyy.data()[i]; float temp = 0.5*(a+c); float temp2 = temp*temp+b*b-a*c; if (temp2 < 0.0f) aCorners.data()[i] = 0.0f; else aCorners.data()[i] = temp-sqrt(temp2); } }
//---------------------------------------------------------------------------- int ExtractRidges::Main (int, char**) { std::string imageName = Environment::GetPathR("Head.im"); ImageDouble2D image(imageName.c_str()); // Normalize the image values to be in [0,1]. int quantity = image.GetQuantity(); double minValue = image[0], maxValue = minValue; int i; for (i = 1; i < quantity; ++i) { if (image[i] < minValue) { minValue = image[i]; } else if (image[i] > maxValue) { maxValue = image[i]; } } double invRange = 1.0/(maxValue - minValue); for (i = 0; i < quantity; ++i) { image[i] = (image[i] - minValue)*invRange; } // Use first-order centered finite differences to estimate the image // derivatives. The gradient is DF = (df/dx, df/dy) and the Hessian // is D^2F = {{d^2f/dx^2, d^2f/dxdy}, {d^2f/dydx, d^2f/dy^2}}. int xBound = image.GetBound(0); int yBound = image.GetBound(1); int xBoundM1 = xBound - 1; int yBoundM1 = yBound - 1; ImageDouble2D dx(xBound, yBound); ImageDouble2D dy(xBound, yBound); ImageDouble2D dxx(xBound, yBound); ImageDouble2D dxy(xBound, yBound); ImageDouble2D dyy(xBound, yBound); int x, y; for (y = 1; y < yBoundM1; ++y) { for (x = 1; x < xBoundM1; ++x) { dx(x, y) = 0.5*(image(x+1, y) - image(x-1, y)); dy(x, y) = 0.5*(image(x, y+1) - image(x, y-1)); dxx(x, y) = image(x+1, y) - 2.0*image(x, y) + image(x-1, y); dxy(x, y) = 0.25*(image(x+1, y+1) + image(x-1, y-1) - image(x+1, y-1) - image(x-1, y+1)); dyy(x, y) = image(x, y+1) - 2.0*image(x, y) + image(x, y+1); } } dx.Save("dx.im"); dy.Save("dy.im"); dxx.Save("dxx.im"); dxy.Save("dxy.im"); dyy.Save("dyy.im"); // The eigensolver produces eigenvalues a and b and corresponding // eigenvectors U and V: D^2F*U = a*U, D^2F*V = b*V. Define // P = Dot(U,DF) and Q = Dot(V,DF). The classification is as follows. // ridge: P = 0 with a < 0 // valley: Q = 0 with b > 0 ImageDouble2D aImage(xBound, yBound); ImageDouble2D bImage(xBound, yBound); ImageDouble2D pImage(xBound, yBound); ImageDouble2D qImage(xBound, yBound); for (y = 1; y < yBoundM1; ++y) { for (x = 1; x < xBoundM1; ++x) { Vector2d gradient(dx(x, y), dy(x, y)); Matrix2d hessian(dxx(x, y), dxy(x, y), dxy(x, y), dyy(x, y)); EigenDecompositiond decomposer(hessian); decomposer.Solve(true); aImage(x,y) = decomposer.GetEigenvalue(0); bImage(x,y) = decomposer.GetEigenvalue(1); Vector2d u = decomposer.GetEigenvector2(0); Vector2d v = decomposer.GetEigenvector2(1); pImage(x,y) = u.Dot(gradient); qImage(x,y) = v.Dot(gradient); } } aImage.Save("a.im"); bImage.Save("b.im"); pImage.Save("p.im"); qImage.Save("q.im"); // Use a cheap classification of the pixels by testing for sign changes // between neighboring pixels. ImageRGB82D result(xBound, yBound); for (y = 1; y < yBoundM1; ++y) { for (x = 1; x < xBoundM1; ++x) { unsigned char gray = (unsigned char)(255.0f*image(x, y)); double pValue = pImage(x, y); bool isRidge = false; if (pValue*pImage(x-1 ,y) < 0.0 || pValue*pImage(x+1, y) < 0.0 || pValue*pImage(x, y-1) < 0.0 || pValue*pImage(x, y+1) < 0.0) { if (aImage(x, y) < 0.0) { isRidge = true; } } double qValue = qImage(x,y); bool isValley = false; if (qValue*qImage(x-1, y) < 0.0 || qValue*qImage(x+1, y) < 0.0 || qValue*qImage(x, y-1) < 0.0 || qValue*qImage(x, y+1) < 0.0) { if (bImage(x,y) > 0.0) { isValley = true; } } if (isRidge) { if (isValley) { result(x, y) = GetColor24(gray, 0, gray); } else { result(x, y) = GetColor24(gray, 0, 0); } } else if (isValley) { result(x, y) = GetColor24(0, 0, gray); } else { result(x, y) = GetColor24(gray, gray, gray); } } } result.Save("result.im"); return 0; }